Learning deep neural networks for node classification
•Propose a novel deep neural network method for node classification.•The model could overcome the existing problem of only getting the suboptimal solution.•A superior performance of results demonstrates the effectiveness of proposed approach. Deep Neural Network (DNN) has made great leaps in image c...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 137; S. 324 - 334 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Elsevier Ltd
15.12.2019
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Propose a novel deep neural network method for node classification.•The model could overcome the existing problem of only getting the suboptimal solution.•A superior performance of results demonstrates the effectiveness of proposed approach.
Deep Neural Network (DNN) has made great leaps in image classification and speech recognition in recent years. However, employing DNN for node classification such as in social network remains to be a non-trivial problem. Moreover, the current advanced method of implementing node classification tasks usually takes two steps, i.e. firstly, the embedding vector of the node is obtained through network embedding and then the classifier such as SVM is leveraged to do the task. Distinctly, this may only get the suboptimal solution of the problem. To settle the above issues, a novel Deep Neural Network method for node classification named DNNNC is proposed in the framework of Deep Learning. Specifically, we first get the positive pointwise mutual information (PPMI) matrix from the given adjacency matrix. Then, the data is fed to deep neural network composed of deep stacked sparse autoencoders and softmax layer, which could learn the node representation while encoding the rich nonlinear structural and semantic information and could be well trained for node classification under the DNN framework. Extensive experiments are conducted on real-world network datasets for node classification task and have shown that the proposed model DNNNC outperforms the state-of-the-art method in the view of superior performance. |
|---|---|
| AbstractList | •Propose a novel deep neural network method for node classification.•The model could overcome the existing problem of only getting the suboptimal solution.•A superior performance of results demonstrates the effectiveness of proposed approach.
Deep Neural Network (DNN) has made great leaps in image classification and speech recognition in recent years. However, employing DNN for node classification such as in social network remains to be a non-trivial problem. Moreover, the current advanced method of implementing node classification tasks usually takes two steps, i.e. firstly, the embedding vector of the node is obtained through network embedding and then the classifier such as SVM is leveraged to do the task. Distinctly, this may only get the suboptimal solution of the problem. To settle the above issues, a novel Deep Neural Network method for node classification named DNNNC is proposed in the framework of Deep Learning. Specifically, we first get the positive pointwise mutual information (PPMI) matrix from the given adjacency matrix. Then, the data is fed to deep neural network composed of deep stacked sparse autoencoders and softmax layer, which could learn the node representation while encoding the rich nonlinear structural and semantic information and could be well trained for node classification under the DNN framework. Extensive experiments are conducted on real-world network datasets for node classification task and have shown that the proposed model DNNNC outperforms the state-of-the-art method in the view of superior performance. Deep Neural Network (DNN) has made great leaps in image classification and speech recognition in recent years. However, employing DNN for node classification such as in social network remains to be a non-trivial problem. Moreover, the current advanced method of implementing node classification tasks usually takes two steps, i.e. firstly, the embedding vector of the node is obtained through network embedding and then the classifier such as SVM is leveraged to do the task. Distinctly, this may only get the suboptimal solution of the problem. To settle the above issues, a novel Deep Neural Network method for node classification named DNNNC is proposed in the framework of Deep Learning. Specifically, we first get the positive pointwise mutual information (PPMI) matrix from the given adjacency matrix. Then, the data is fed to deep neural network composed of deep stacked sparse autoencoders and softmax layer, which could learn the node representation while encoding the rich nonlinear structural and semantic information and could be well trained for node classification under the DNN framework. Extensive experiments are conducted on real-world network datasets for node classification task and have shown that the proposed model DNNNC outperforms the state-of-the-art method in the view of superior performance. |
| Author | Li, Bentian Pi, Dechang |
| Author_xml | – sequence: 1 givenname: Bentian orcidid: 0000-0001-6504-3851 surname: Li fullname: Li, Bentian email: lbt@nuaa.edu.cn organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China – sequence: 2 givenname: Dechang surname: Pi fullname: Pi, Dechang email: dc.pi@nuaa.edu.cn organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China |
| BookMark | eNp9kD1PwzAQhi1UJNrCH2CKxJxwthM7kVhQxZdUiQVmy7XPyKHYxU6p-PeklImhw-ld7rmPZ0YmIQYk5JJCRYGK677CvNMVA9pVICsAcUKmtJW8FLLjEzKFrpFlTWV9RmY59wBUAsgpaZaoU_DhrbCImyLgNun1GMMupvdcuJiKEC0WZq1z9s4bPfgYzsmp0-uMF385J6_3dy-Lx3L5_PC0uF2WhrN2KJ2QDlummeZ1K8BwDQ0DjWDHctqZRpiVYXVjVoB11xomNLW2k1yjtqLjc3J1mLtJ8XOLeVB93KYwrlSMg6ilACnGrvbQZVLMOaFTxg-_dw5J-7WioPaSVK_2ktRekgKpRkkjyv6hm-Q_dPo-Dt0cIBxf__KYVDYeg0HrE5pB2eiP4T-iu4M6 |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2022_108699 crossref_primary_10_1016_j_knosys_2021_107345 crossref_primary_10_1007_s00521_021_06617_z crossref_primary_10_1007_s11633_023_1470_4 crossref_primary_10_1016_j_eswa_2021_114655 crossref_primary_10_1016_j_isatra_2020_10_033 crossref_primary_10_1016_j_eswa_2021_114895 crossref_primary_10_1109_TKDE_2023_3312358 crossref_primary_10_1007_s10489_025_06818_2 crossref_primary_10_1016_j_eswa_2021_115063 crossref_primary_10_1016_j_eswa_2025_127292 crossref_primary_10_1016_j_neucom_2025_131368 crossref_primary_10_1177_01655515221111002 crossref_primary_10_1007_s11042_024_19525_w crossref_primary_10_1109_MCI_2022_3222049 crossref_primary_10_1016_j_eswa_2020_113957 crossref_primary_10_3390_e23111542 crossref_primary_10_3390_e26020149 crossref_primary_10_1007_s13042_025_02626_9 crossref_primary_10_3390_app12189290 crossref_primary_10_3390_app112311447 crossref_primary_10_1016_j_knosys_2021_107438 crossref_primary_10_1007_s40747_023_01211_3 crossref_primary_10_1371_journal_pone_0302327 crossref_primary_10_1016_j_petrol_2022_110323 crossref_primary_10_1007_s40747_022_00641_9 crossref_primary_10_1007_s00521_020_04908_5 crossref_primary_10_1007_s11227_022_04767_y crossref_primary_10_1016_j_optcom_2020_126243 crossref_primary_10_3390_math11173680 crossref_primary_10_1108_DTA_06_2022_0247 crossref_primary_10_1016_j_ins_2022_06_088 crossref_primary_10_1093_comjnl_bxae060 crossref_primary_10_1007_s11408_021_00391_7 |
| Cites_doi | 10.1371/journal.pone.0200600 10.1016/S0893-6080(05)80056-5 10.1007/s10618-017-0533-y 10.1109/TPAMI.2013.50 10.1109/TPAMI.2007.250598 10.1016/j.eswa.2016.10.024 10.1126/science.290.5500.2323 10.1109/TKDE.2018.2807452 10.1038/nature14539 10.1038/nrn2575 10.1109/TNNLS.2015.2479223 10.1109/MNET.2018.1700282 10.1109/TKDE.2018.2807840 10.3758/BF03193020 10.1126/science.290.5500.2319 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Dec 15, 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Dec 15, 2019 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2019.07.006 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| EndPage | 334 |
| ExternalDocumentID | 10_1016_j_eswa_2019_07_006 S0957417419304853 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c328t-f67fe82a2a34860c3a0520ae0dae0fafc56cbc245cb0e498c26a1dd973aead693 |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487167500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sun Nov 09 05:50:57 EST 2025 Sat Nov 29 07:04:10 EST 2025 Tue Nov 18 22:43:31 EST 2025 Fri Feb 23 02:24:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Deep neural network Network embedding Node classification |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-f67fe82a2a34860c3a0520ae0dae0fafc56cbc245cb0e498c26a1dd973aead693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6504-3851 |
| PQID | 2306476076 |
| PQPubID | 2045477 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2306476076 crossref_citationtrail_10_1016_j_eswa_2019_07_006 crossref_primary_10_1016_j_eswa_2019_07_006 elsevier_sciencedirect_doi_10_1016_j_eswa_2019_07_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-15 |
| PublicationDateYYYYMMDD | 2019-12-15 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Perozzi, Al-Rfou, Skiena (bib0026) 2014 Rumelhart, Hinton, Williams (bib0028) 1988 Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib0033) 2010; 11 Zheleva, Getoor (bib0041) 2009 Mikolov, Chen, Corrado, Dean (bib0022) 2013 Møller (bib0025) 1993; 6 Levy, Goldberg (bib0019) 2014 Bengio, Courville, Vincent (bib0003) 2013; 35 Wang, Wang, Wang, Zhao, Zhang, Zhang (bib0035) 2018 Yang, Liu, Zhao, Sun, Chang (bib0039) 2015 Huang, Li, Hu (bib0015) 2017 Li, Zhu, Zhang (bib0021) 2016 Bullinaria, Levy (bib0004) 2007; 39 Cai, Zheng, Chang (bib0006) 2018; 30 Defferrard, Bresson, Vandergheynst (bib0010) 2016 Jian, Li, Liu (bib0016) 2018; 32 Mikolov, Sutskever, Chen, Corrado, Dean (bib0023) 2013 Grover, Leskovec (bib0012) 2016 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair (bib0011) 2014 Tang, Qu, Wang, Zhang, Yan, Mei (bib0031) 2015 Wang, Cui, Zhu (bib0034) 2016 Xiaofei, Partha (bib0037) 2003 Roweis, Saul (bib0027) 2000; 290 Tang, Aggarwal, Liu (bib0030) 2016 Hinton, Zemel (bib0013) 1993 Kipf, Welling (bib0017) 2017 Tenenbaum, Silva, Langford (bib0032) 2000; 290 Lecun, Bengio, Hinton (bib0018) 2015; 521 Bullmore, Sporns (bib0005) 2009; 10 Ahmed, Shervashidze, Narayanamurthy, Josifovski, Smola (bib0001) 2013 Dai, Li, Tang, Wang (bib0009) 2018 Church, Hanks (bib0008) 1990; 16 Hosseini-Asl, Zurada, Nasraoui (bib0014) 2016; 27 Zheng, Han, Sun (bib0042) 2018; 30 Mnih, Hinton (bib0024) 2008 Wang, Cui, Wang, Pei, Zhu, Yang (bib0036) 2017 Cao, Lu, Xu (bib0007) 2016 Yan, Xu, Zhang, Zhang, Yang, Lin (bib0038) 2007; 29 Zhang, Li, Gao, Bian, Song, Dong (bib0040) 2018; 32 Belkin, Niyogi (bib0002) 2002 Li, Pi (bib0020) 2018; 13 Seo, Kim, Lee, Baik (bib0029) 2017; 69 Defferrard (10.1016/j.eswa.2019.07.006_bib0010) 2016 Hinton (10.1016/j.eswa.2019.07.006_bib0013) 1993 Li (10.1016/j.eswa.2019.07.006_bib0020) 2018; 13 Huang (10.1016/j.eswa.2019.07.006_bib0015) 2017 Møller (10.1016/j.eswa.2019.07.006_bib0025) 1993; 6 Wang (10.1016/j.eswa.2019.07.006_bib0036) 2017 Cai (10.1016/j.eswa.2019.07.006_bib0006) 2018; 30 Xiaofei (10.1016/j.eswa.2019.07.006_bib0037) 2003 Roweis (10.1016/j.eswa.2019.07.006_bib0027) 2000; 290 Levy (10.1016/j.eswa.2019.07.006_bib0019) 2014 Seo (10.1016/j.eswa.2019.07.006_bib0029) 2017; 69 Dai (10.1016/j.eswa.2019.07.006_bib0009) 2018 Belkin (10.1016/j.eswa.2019.07.006_bib0002) 2002 Bullinaria (10.1016/j.eswa.2019.07.006_bib0004) 2007; 39 Hosseini-Asl (10.1016/j.eswa.2019.07.006_bib0014) 2016; 27 Tang (10.1016/j.eswa.2019.07.006_bib0030) 2016 Mikolov (10.1016/j.eswa.2019.07.006_bib0022) 2013 Grover (10.1016/j.eswa.2019.07.006_bib0012) 2016 Rumelhart (10.1016/j.eswa.2019.07.006_bib0028) 1988 Wang (10.1016/j.eswa.2019.07.006_bib0035) 2018 Cao (10.1016/j.eswa.2019.07.006_bib0007) 2016 Ahmed (10.1016/j.eswa.2019.07.006_bib0001) 2013 Yang (10.1016/j.eswa.2019.07.006_bib0039) 2015 Lecun (10.1016/j.eswa.2019.07.006_bib0018) 2015; 521 Mikolov (10.1016/j.eswa.2019.07.006_bib0023) 2013 Li (10.1016/j.eswa.2019.07.006_bib0021) 2016 Zheleva (10.1016/j.eswa.2019.07.006_bib0041) 2009 Bullmore (10.1016/j.eswa.2019.07.006_bib0005) 2009; 10 Perozzi (10.1016/j.eswa.2019.07.006_bib0026) 2014 Mnih (10.1016/j.eswa.2019.07.006_bib0024) 2008 Wang (10.1016/j.eswa.2019.07.006_bib0034) 2016 Jian (10.1016/j.eswa.2019.07.006_bib0016) 2018; 32 Zheng (10.1016/j.eswa.2019.07.006_bib0042) 2018; 30 Vincent (10.1016/j.eswa.2019.07.006_bib0033) 2010; 11 Yan (10.1016/j.eswa.2019.07.006_bib0038) 2007; 29 Tang (10.1016/j.eswa.2019.07.006_bib0031) 2015 Church (10.1016/j.eswa.2019.07.006_bib0008) 1990; 16 Bengio (10.1016/j.eswa.2019.07.006_bib0003) 2013; 35 Goodfellow (10.1016/j.eswa.2019.07.006_bib0011) 2014 Kipf (10.1016/j.eswa.2019.07.006_bib0017) 2017 Tenenbaum (10.1016/j.eswa.2019.07.006_bib0032) 2000; 290 Zhang (10.1016/j.eswa.2019.07.006_bib0040) 2018; 32 |
| References_xml | – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: bib0003 article-title: Representation learning: A review and new perspectives publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 39 start-page: 510 year: 2007 end-page: 526 ident: bib0004 article-title: Extracting semantic representations from word co-occurrence statistics: A computational study publication-title: Behavior Research Methods – year: 2018 ident: bib0035 article-title: Graphgan: Graph representation learning with generative adversarial nets publication-title: Proceedings of the thirty-second AAAI conference on artificial intelligence – volume: 30 start-page: 1616 year: 2018 end-page: 1637 ident: bib0006 article-title: A comprehensive survey of graph embedding: Problems, techniques and applications publication-title: IEEE Transactions on Knowledge & Data Engineering – start-page: 3844 year: 2016 end-page: 3852 ident: bib0010 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Advances in neural information processing systems – volume: 13 start-page: e0200600 year: 2018 ident: bib0020 article-title: Analysis of global stock index data during crisis period via complex network approach publication-title: Plos One – start-page: 2177 year: 2014 end-page: 2185 ident: bib0019 article-title: Neural word embedding as implicit matrix factorization publication-title: Advances in neural information processing systems – start-page: 1004 year: 2016 end-page: 1013 ident: bib0021 article-title: Discriminative deep random walk for network classification publication-title: Meeting of the association for computational linguistics – start-page: 531 year: 2009 end-page: 540 ident: bib0041 article-title: To join or not to join: The illusion of privacy in social networks with mixed public and private user profiles publication-title: International world wide web conferences – start-page: 37 year: 2013 end-page: 48 ident: bib0001 article-title: Distributed large-scale natural graph factorization publication-title: Proceedings of the 22nd international conference on world wide web – start-page: 2672 year: 2014 end-page: 2680 ident: bib0011 article-title: Generative adversarial nets publication-title: International conference on neural information processing systems – year: 2013 ident: bib0022 article-title: Efficient estimation of word representations in vector space publication-title: International conference on learning representations – start-page: 701 year: 2014 end-page: 710 ident: bib0026 article-title: Deepwalk: Online learning of social representations publication-title: The 20th ACM SIGKDD international conference on knowledge discovery and data mining – start-page: 3 year: 1993 end-page: 10 ident: bib0013 article-title: Autoencoders, minimum description length and helmholtz free energy publication-title: International conference on neural information processing systems – start-page: 1081 year: 2008 end-page: 1088 ident: bib0024 article-title: A scalable hierarchical distributed language model publication-title: International conference on neural information processing systems – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0018 article-title: Deep learning publication-title: Nature – volume: 69 start-page: 135 year: 2017 end-page: 148 ident: bib0029 article-title: Personalized recommender system based on friendship strength in social network services publication-title: Expert Systems with Applications – start-page: 1145 year: 2016 end-page: 1152 ident: bib0007 article-title: Deep neural networks for learning graph representations publication-title: Thirtieth AAAI conference on artificial intelligence – start-page: 1225 year: 2016 end-page: 1234 ident: bib0034 article-title: Structural deep network embedding publication-title: ACM SIGKDD international conference on knowledge discovery and data mining – start-page: 1067 year: 2015 end-page: 1077 ident: bib0031 article-title: Line: Large-scale information network embedding publication-title: International world wide web conferences – start-page: 673 year: 1988 end-page: 695 ident: bib0028 article-title: Neurocomputing: Foundations of research – volume: 16 start-page: 22 year: 1990 end-page: 29 ident: bib0008 article-title: Word association norms, mutual information, and lexicography publication-title: Computational Linguistics – start-page: 186 year: 2003 end-page: 197 ident: bib0037 article-title: Locality preserving projections publication-title: Advances in neural information processing systems – start-page: 855 year: 2016 end-page: 864 ident: bib0012 article-title: node2vec: Scalable feature learning for networks publication-title: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining – volume: 290 start-page: 2319 year: 2000 end-page: 2323 ident: bib0032 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science – start-page: 2111 year: 2015 end-page: 2117 ident: bib0039 article-title: Network representation learning with rich text information publication-title: Proceedings of the twenty-fourth international joint conference on artificial intelligence – year: 2018 ident: bib0009 article-title: Adversarial network embedding publication-title: Proceedings of the thirty-second AAAI conference on artificial intelligence – volume: 32 start-page: 231 year: 2018 end-page: 257 ident: bib0016 article-title: Toward online node classification on streaming networks publication-title: Data Mining and Knowledge Discovery – volume: 10 start-page: 186 year: 2009 end-page: 198 ident: bib0005 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nature Reviews Neuroscience – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: bib0033 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: Journal of Machine Learning Research – volume: 30 start-page: 1652 year: 2018 end-page: 1671 ident: bib0042 article-title: A survey of location prediction on twitter publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 633 year: 2017 end-page: 641 ident: bib0015 article-title: Accelerated attributed network embedding. publication-title: Siam international conference on data mining – volume: 27 start-page: 2486 year: 2016 end-page: 2498 ident: bib0014 article-title: Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints publication-title: IEEE Transactions on Neural Networks & Learning Systems – year: 2017 ident: bib0017 article-title: Semi-supervised classification with graph convolutional networks publication-title: International conference on learning representations – volume: 290 start-page: 2323 year: 2000 end-page: 2326 ident: bib0027 article-title: Nonlinear dimensionality reduction by locally linear embedding. publication-title: Science – start-page: 203 year: 2017 end-page: 209 ident: bib0036 article-title: Community preserving network embedding publication-title: Proceedings of the thirty-first AAAI conference on artificial intelligence – start-page: 3111 year: 2013 end-page: 3119 ident: bib0023 article-title: Distributed representations of words and phrases and their compositionality publication-title: 27th annual conference on neural information processing systems – start-page: 585 year: 2002 end-page: 591 ident: bib0002 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering publication-title: Advances in neural information processing systems – volume: 6 start-page: 525 year: 1993 end-page: 533 ident: bib0025 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural networks – volume: 29 start-page: 40 year: 2007 end-page: 51 ident: bib0038 article-title: Graph embedding and extension: A general framework for dimensionality reduction publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 54 year: 2016 end-page: 62 ident: bib0030 article-title: Node classification in signed social networks publication-title: Proceedings of the 2016 SIAM international conference on data mining, miami, florida, usa, may 5–7, 2016 – volume: 32 start-page: 146 year: 2018 end-page: 153 ident: bib0040 article-title: Mobile social big data: Wechat moments dataset, network applications, and opportunities publication-title: IEEE Network – volume: 13 start-page: e0200600 issue: 7 year: 2018 ident: 10.1016/j.eswa.2019.07.006_bib0020 article-title: Analysis of global stock index data during crisis period via complex network approach publication-title: Plos One doi: 10.1371/journal.pone.0200600 – start-page: 54 year: 2016 ident: 10.1016/j.eswa.2019.07.006_bib0030 article-title: Node classification in signed social networks – start-page: 1067 year: 2015 ident: 10.1016/j.eswa.2019.07.006_bib0031 article-title: Line: Large-scale information network embedding – start-page: 3111 year: 2013 ident: 10.1016/j.eswa.2019.07.006_bib0023 article-title: Distributed representations of words and phrases and their compositionality – start-page: 37 year: 2013 ident: 10.1016/j.eswa.2019.07.006_bib0001 article-title: Distributed large-scale natural graph factorization – start-page: 2111 year: 2015 ident: 10.1016/j.eswa.2019.07.006_bib0039 article-title: Network representation learning with rich text information – start-page: 3844 year: 2016 ident: 10.1016/j.eswa.2019.07.006_bib0010 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – year: 2017 ident: 10.1016/j.eswa.2019.07.006_bib0017 article-title: Semi-supervised classification with graph convolutional networks – volume: 6 start-page: 525 issue: 4 year: 1993 ident: 10.1016/j.eswa.2019.07.006_bib0025 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural networks doi: 10.1016/S0893-6080(05)80056-5 – volume: 11 start-page: 3371 year: 2010 ident: 10.1016/j.eswa.2019.07.006_bib0033 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: Journal of Machine Learning Research – volume: 16 start-page: 22 issue: 1 year: 1990 ident: 10.1016/j.eswa.2019.07.006_bib0008 article-title: Word association norms, mutual information, and lexicography publication-title: Computational Linguistics – volume: 32 start-page: 231 issue: 1 year: 2018 ident: 10.1016/j.eswa.2019.07.006_bib0016 article-title: Toward online node classification on streaming networks publication-title: Data Mining and Knowledge Discovery doi: 10.1007/s10618-017-0533-y – start-page: 1081 year: 2008 ident: 10.1016/j.eswa.2019.07.006_bib0024 article-title: A scalable hierarchical distributed language model – volume: 35 start-page: 1798 issue: 8 year: 2013 ident: 10.1016/j.eswa.2019.07.006_bib0003 article-title: Representation learning: A review and new perspectives publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2013.50 – year: 2013 ident: 10.1016/j.eswa.2019.07.006_bib0022 article-title: Efficient estimation of word representations in vector space – year: 2018 ident: 10.1016/j.eswa.2019.07.006_bib0035 article-title: Graphgan: Graph representation learning with generative adversarial nets – volume: 29 start-page: 40 issue: 1 year: 2007 ident: 10.1016/j.eswa.2019.07.006_bib0038 article-title: Graph embedding and extension: A general framework for dimensionality reduction publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2007.250598 – start-page: 673 year: 1988 ident: 10.1016/j.eswa.2019.07.006_bib0028 – start-page: 633 year: 2017 ident: 10.1016/j.eswa.2019.07.006_bib0015 article-title: Accelerated attributed network embedding. – volume: 69 start-page: 135 year: 2017 ident: 10.1016/j.eswa.2019.07.006_bib0029 article-title: Personalized recommender system based on friendship strength in social network services publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.10.024 – start-page: 1225 year: 2016 ident: 10.1016/j.eswa.2019.07.006_bib0034 article-title: Structural deep network embedding – volume: 290 start-page: 2323 issue: 5500 year: 2000 ident: 10.1016/j.eswa.2019.07.006_bib0027 article-title: Nonlinear dimensionality reduction by locally linear embedding. publication-title: Science doi: 10.1126/science.290.5500.2323 – start-page: 203 year: 2017 ident: 10.1016/j.eswa.2019.07.006_bib0036 article-title: Community preserving network embedding – start-page: 1145 year: 2016 ident: 10.1016/j.eswa.2019.07.006_bib0007 article-title: Deep neural networks for learning graph representations – start-page: 585 year: 2002 ident: 10.1016/j.eswa.2019.07.006_bib0002 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering – volume: 30 start-page: 1616 issue: 9 year: 2018 ident: 10.1016/j.eswa.2019.07.006_bib0006 article-title: A comprehensive survey of graph embedding: Problems, techniques and applications publication-title: IEEE Transactions on Knowledge & Data Engineering doi: 10.1109/TKDE.2018.2807452 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.eswa.2019.07.006_bib0018 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 10 start-page: 186 issue: 3 year: 2009 ident: 10.1016/j.eswa.2019.07.006_bib0005 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn2575 – start-page: 3 year: 1993 ident: 10.1016/j.eswa.2019.07.006_bib0013 article-title: Autoencoders, minimum description length and helmholtz free energy – start-page: 531 year: 2009 ident: 10.1016/j.eswa.2019.07.006_bib0041 article-title: To join or not to join: The illusion of privacy in social networks with mixed public and private user profiles – start-page: 855 year: 2016 ident: 10.1016/j.eswa.2019.07.006_bib0012 article-title: node2vec: Scalable feature learning for networks – start-page: 2672 year: 2014 ident: 10.1016/j.eswa.2019.07.006_bib0011 article-title: Generative adversarial nets – volume: 27 start-page: 2486 issue: 12 year: 2016 ident: 10.1016/j.eswa.2019.07.006_bib0014 article-title: Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints publication-title: IEEE Transactions on Neural Networks & Learning Systems doi: 10.1109/TNNLS.2015.2479223 – start-page: 2177 year: 2014 ident: 10.1016/j.eswa.2019.07.006_bib0019 article-title: Neural word embedding as implicit matrix factorization – volume: 32 start-page: 146 issue: 3 year: 2018 ident: 10.1016/j.eswa.2019.07.006_bib0040 article-title: Mobile social big data: Wechat moments dataset, network applications, and opportunities publication-title: IEEE Network doi: 10.1109/MNET.2018.1700282 – start-page: 1004 year: 2016 ident: 10.1016/j.eswa.2019.07.006_bib0021 article-title: Discriminative deep random walk for network classification – volume: 30 start-page: 1652 issue: 9 year: 2018 ident: 10.1016/j.eswa.2019.07.006_bib0042 article-title: A survey of location prediction on twitter publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2018.2807840 – start-page: 186 year: 2003 ident: 10.1016/j.eswa.2019.07.006_bib0037 article-title: Locality preserving projections – volume: 39 start-page: 510 issue: 3 year: 2007 ident: 10.1016/j.eswa.2019.07.006_bib0004 article-title: Extracting semantic representations from word co-occurrence statistics: A computational study publication-title: Behavior Research Methods doi: 10.3758/BF03193020 – year: 2018 ident: 10.1016/j.eswa.2019.07.006_bib0009 article-title: Adversarial network embedding – volume: 290 start-page: 2319 issue: 5500 year: 2000 ident: 10.1016/j.eswa.2019.07.006_bib0032 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – start-page: 701 year: 2014 ident: 10.1016/j.eswa.2019.07.006_bib0026 article-title: Deepwalk: Online learning of social representations |
| SSID | ssj0017007 |
| Score | 2.5174956 |
| Snippet | •Propose a novel deep neural network method for node classification.•The model could overcome the existing problem of only getting the suboptimal solution.•A... Deep Neural Network (DNN) has made great leaps in image classification and speech recognition in recent years. However, employing DNN for node classification... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 324 |
| SubjectTerms | Artificial neural networks Classification Deep learning Deep neural network Embedding Image classification Machine learning Network embedding Neural networks Node classification Nodes Object recognition Social networks Speech recognition |
| Title | Learning deep neural networks for node classification |
| URI | https://dx.doi.org/10.1016/j.eswa.2019.07.006 https://www.proquest.com/docview/2306476076 |
| Volume | 137 |
| WOSCitedRecordID | wos000487167500021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB609cGX1ivWVpkH35YpSSZzyWOVioqUghX2bZhbwEXSZXdt-_N75pZdVywq-JAQQi7DfJMzZ06-cz6E3rTcOi6lJ9qwirRGUmJYbYiuOs9l72ytTRSbEGdncjrtzrPM3TLKCYhhkDc33fy_Qg3nAOyQOvsXcI8PhRNwDKDDHmCH_R8B_7kEO5z380moVwkoDIntHYsvTIZL5yc2uM2BJ7SGZjbS8vxilWs8l-y3jf_cI4cnEgHeBrrReoidp8R1HxOKN0MKddRDSEmVKc5Vcl3WxKIUMBSkrZOmzrFP5lIKSrhIGoejPU1VXLJFpE27MbnSFLn8xW6nEMLs2C-vQzGouosVVautItlx2v0SGhLaAa4nmB9G76PdRrAOrPLuycfT6afxJ5KoUrZ8aXjOmUr0vu03_c4v2Zqho9tx8Qjt5fUCPkk4P0b3_PAE7RctDpxN81PECuw4wI4T7LjAjgF2HGDHP8P-DH19f3rx7gPJkhjE0kauSM9F72WjG02DepilOvCYtK8cbL3uLePW2KZl1lS-7aRtuK6d6wTVYDJ4R5-jneFy8C8Qdpa6VkganNSWOiu1rTwDj9TAktkYdoDq0iHK5nrxQbbkuyrEwJkKnahCJ6oq0Bj4AZqM98xTtZQ7r2aln1X295Ifp2BY3HnfUQFF5Q9vqeJSWvBK8Jf_-NhD9HD9MRyhndXih3-FHtir1bfl4nUeXLeXiISY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+deep+neural+networks+for+node+classification&rft.jtitle=Expert+systems+with+applications&rft.au=Li%2C+Bentian&rft.au=Pi%2C+Dechang&rft.date=2019-12-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=137&rft.spage=324&rft.epage=334&rft_id=info:doi/10.1016%2Fj.eswa.2019.07.006&rft.externalDocID=S0957417419304853 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |