Optimisation of phonetic aware speech recognition through multi-objective evolutionary algorithms

Recent advances in the availability of computational resources allow for more sophisticated approaches to speech recognition than ever before. This study considers Artificial Neural Network and Hidden Markov Model methods of classification for Human Speech Recognition through Diphthong Vowel sounds...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 153; S. 113402
Hauptverfasser: Bird, Jordan J., Wanner, Elizabeth, Ekárt, Anikó, Faria, Diego R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Ltd 01.09.2020
Elsevier BV
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recent advances in the availability of computational resources allow for more sophisticated approaches to speech recognition than ever before. This study considers Artificial Neural Network and Hidden Markov Model methods of classification for Human Speech Recognition through Diphthong Vowel sounds in the English Phonetic Alphabet rather than the classical approach of the classification of whole words and phrases, with a specific focus on both single and multi-objective evolutionary optimisation of bioinspired classification methods. A set of audio clips are recorded by subjects from the United Kingdom and Mexico and the recordings are transformed into a static dataset of statistics by way of their Mel-Frequency Cepstral Coefficients (MFCC) at sliding window length of 200ms as well as a reshaped MFCC timeseries format for forecast-based models. An deep neural network with evolutionary optimised topology achieves 90.77% phoneme classification accuracy in comparison to the best HMM that achieves 86.23% accuracy with 150 hidden units, when only accuracy is considered in a single-objective optimisation approach. The obtained solutions are far more complex than the HMM taking around 248 seconds to train on powerful hardware versus 160 for the HMM. A multi-objective approach is explored due to this. In the multi-objective approaches of scalarisation presented, within which real-time resource usage is also considered towards solution fitness, far more optimal solutions are produced which train far quicker than the forecast approach (69 seconds) with classification ability retained (86.73%). Weightings towards either maximising accuracy or reducing resource usage from 0.1 to 0.9 are suggested depending on the resources available, since many future IoT devices and autonomous robots may have limited access to cloud resources at a premium in comparison to the GPU used in this experiment.
AbstractList Recent advances in the availability of computational resources allow for more sophisticated approaches to speech recognition than ever before. This study considers Artificial Neural Network and Hidden Markov Model methods of classification for Human Speech Recognition through Diphthong Vowel sounds in the English Phonetic Alphabet rather than the classical approach of the classification of whole words and phrases, with a specific focus on both single and multi-objective evolutionary optimisation of bioinspired classification methods. A set of audio clips are recorded by subjects from the United Kingdom and Mexico and the recordings are transformed into a static dataset of statistics by way of their Mel-Frequency Cepstral Coefficients (MFCC) at sliding window length of 200ms as well as a reshaped MFCC timeseries format for forecast-based models. An deep neural network with evolutionary optimised topology achieves 90.77% phoneme classification accuracy in comparison to the best HMM that achieves 86.23% accuracy with 150 hidden units, when only accuracy is considered in a single-objective optimisation approach. The obtained solutions are far more complex than the HMM taking around 248 seconds to train on powerful hardware versus 160 for the HMM. A multi-objective approach is explored due to this. In the multi-objective approaches of scalarisation presented, within which real-time resource usage is also considered towards solution fitness, far more optimal solutions are produced which train far quicker than the forecast approach (69 seconds) with classification ability retained (86.73%). Weightings towards either maximising accuracy or reducing resource usage from 0.1 to 0.9 are suggested depending on the resources available, since many future IoT devices and autonomous robots may have limited access to cloud resources at a premium in comparison to the GPU used in this experiment.
ArticleNumber 113402
Author Ekárt, Anikó
Bird, Jordan J.
Wanner, Elizabeth
Faria, Diego R.
Author_xml – sequence: 1
  givenname: Jordan J.
  orcidid: 0000-0002-9858-1231
  surname: Bird
  fullname: Bird, Jordan J.
  email: birdj1@aston.ac.uk
  organization: Aston Robotics, Vision and Intelligent Systems (ARVIS), United Kingdom
– sequence: 2
  givenname: Elizabeth
  surname: Wanner
  fullname: Wanner, Elizabeth
  email: efwanner@decom.cefetmg.br
  organization: Computer Science Department, School of Engineering and Applied Science, Aston University, United Kingdom
– sequence: 3
  givenname: Anikó
  surname: Ekárt
  fullname: Ekárt, Anikó
  email: a.ekart@aston.ac.uk
  organization: Computer Science Department, School of Engineering and Applied Science, Aston University, United Kingdom
– sequence: 4
  givenname: Diego R.
  orcidid: 0000-0002-2771-1713
  surname: Faria
  fullname: Faria, Diego R.
  email: d.faria@aston.ac.uk
  organization: Aston Robotics, Vision and Intelligent Systems (ARVIS), United Kingdom
BookMark eNp9kLtqwzAUhkVJoUnaF-hk6OxUkhXJhi4l9AaBLO0sFPk4lnEsV5IT-vaVk04dMokj_u9cvhmadLYDhO4JXhBM-GOzAH9UC4pp_CAZw_QKTUkuspSLIpugKS6WImVEsBs0877BmAiMxRSpTR_M3ngVjO0SWyV9HTsHoxN1VA4S3wPoOnGg7a4zp1ConR12dbIf2mBSu21AB3OABA62HcaEcj-JanfWmVDv_S26rlTr4e7vnaOv15fP1Xu63rx9rJ7Xqc5oHtJqWRZ5yYSgjIBimuSUcaYKvd0Sjjke1yWQVVqpTFO-JFVRVrQiQFUsqMjm6OHct3f2ewAfZGMH18WRkjLGuMiWnMcUPae0s947qGTvzD5uLAmWo0rZyFGlHFXKs8oI5f8gbcLJWHDKtJfRpzMK8fSDASe9NtBpKE10GmRpzSX8F637ku0
CitedBy_id crossref_primary_10_1080_15397734_2020_1781655
crossref_primary_10_1007_s11042_022_13594_5
crossref_primary_10_1016_j_dsp_2022_103450
crossref_primary_10_1155_2022_7281892
crossref_primary_10_1109_ACCESS_2020_3034762
crossref_primary_10_1016_j_ejor_2022_08_032
crossref_primary_10_1049_tje2_12082
crossref_primary_10_1007_s11042_023_16438_y
crossref_primary_10_3390_bdcc8120195
crossref_primary_10_1016_j_sasc_2025_200304
Cites_doi 10.1073/pnas.81.10.3088
10.1021/ci00027a006
10.3390/computers8040076
10.1080/01621459.1937.10503522
10.1109/TASL.2007.913036
10.1016/j.csda.2008.03.024
10.1109/5.18626
10.1214/aoms/1177729694
10.1515/jisys-2018-0372
10.1126/science.270.5234.303
10.1109/TASLP.2014.2367814
10.1109/4235.585893
10.1121/1.1915893
10.1214/aoms/1177699147
10.1016/j.ipm.2008.09.003
10.1016/j.specom.2011.11.004
10.1016/j.eswa.2019.112840
10.1162/106365602320169811
10.1016/j.jpdc.2017.09.006
10.1007/s10710-018-9339-y
10.1136/jamia.2000.0070462
10.1038/nature14539
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Sep 1, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 1, 2020
DBID AAYXX
CITATION
7SC
7T9
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.113402
DatabaseName CrossRef
Computer and Information Systems Abstracts
Linguistics and Language Behavior Abstracts (LLBA)
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Linguistics and Language Behavior Abstracts (LLBA)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Statistics
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_113402
S0957417420302268
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
7T9
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-f5d98d477241ea4c182464a9cbb1606070071e3fcaa3c2651f9df2f1e2a651273
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000533513600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 08 21:02:31 EST 2025
Tue Nov 18 22:04:52 EST 2025
Sat Nov 29 07:11:28 EST 2025
Fri Feb 23 02:47:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective evolutionary computation
Phoneme classification
Applied hyperheuristics
Speech recognition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-f5d98d477241ea4c182464a9cbb1606070071e3fcaa3c2651f9df2f1e2a651273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2771-1713
0000-0002-9858-1231
PQID 2444673566
PQPubID 2045477
ParticipantIDs proquest_journals_2444673566
crossref_primary_10_1016_j_eswa_2020_113402
crossref_citationtrail_10_1016_j_eswa_2020_113402
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113402
PublicationCentury 2000
PublicationDate 2020-09-01
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Martín, Lara-Cabrera, Fuentes-Hurtado, Naranjo, Camacho (bib0033) 2018; 117
Wilges, Mateus, Silveira, Nassar (bib0059) 2007
Cao, Fan (bib0010) 2010
Hastie, Buja, Tibshirani (bib0020) 1995
Rabiner (bib0043) 1989; 77
Zoughi, Homayounpour, Deypir (bib0062) 2020; 139
Kullback, Leibler (bib0025) 1951; 22
Phan, Maaß, Mazur, Mertins (bib0040) 2015; 23
Moore (bib0035) 2001
Shannon, Zeng, Kamath, Wygonski, Ekelid (bib0049) 1995; 270
Pipiras, Maskeliūnas, Damaševičius (bib0041) 2019; 8
Stevens, Volkmann, Newman (bib0053) 1937; 8
Huang, X. D., Ariki, Y., & Jack, M. A. (1990). Hidden Markov models for speech recognition,.
Nemenyi (bib0037) 1962; 18
Verlic, Zorman, Mertik (bib0057) 2005
Baum, Petrie (bib0004) 1966; 37
Qureshi, Nakamura, Yoshikawa, Ishiguro (bib0042) 2016
Foster, Alami, Gestranius, Lemon, Niemelä, Odobez (bib0013) 2016
Muda, L., Begam, M., & Elamvazuthi, I. (2010). Voice recognition algorithms using mel frequency cepstral coefficient (mfcc) and dynamic time warping (dtw) techniques. arXiv
Waibel, Hanazawa, Hinton, Shikano, Lang (bib0058) 1990
Xue, Zhao (bib0061) 2008; 16
.
Bourlard, Morgan (bib0009) 2012; 247
Ager, Cvetkovic, Sollich (bib0001) 2013
Hopfield (bib0021) 1984; 81
Li, Yu (bib0028) 2008; 52
Bird, Ekart, Faria (bib0007) 2019
Margulies (bib0032) 2016; 68
Passricha, Aggarwal (bib0039) 2019; 29
Wolpert, Macready (bib0060) 1997; 1
Rogers, Dalby (bib0044) 1996; 96
Rong, Li, Chen (bib0045) 2009; 45
Lahoual, Frejus (bib0026) 2019
Li, X. et al. (2018). Bayesian classification and change point detection for functional data.,.
Friedman (bib0014) 1937; 32
Baugh, Cable (bib0003) 1993
Su, Jelinek, Khudanpur (bib0054) 2007
López, Quesada, Guerrero (bib0030) 2017
Togelius, Karakovskiy, Koutník, Schmidhuber (bib0056) 2009
Shpigelman, Weiss, Reiter (bib0050) 2009
Hudson, Cohen (bib0023) 2006
Sahidullah, Saha (bib0048) 2012; 54
Bird, Wanner, Ekart, Faria (bib0008) 2019
Graves, Jaitly, Mohamed (bib0018) 2013
Loyn (bib0031) 2014
Graves, Mohamed, Hinton (bib0019) 2013
Lerch (bib0027) 2012
Rosenblatt (bib0046) 1961
Assunçao, F., Lourenço, N., Machado, P., & Ribeiro, B. (2018). Denser: Deep evolutionary network structured representation. arXiv
Merriam-Webster (2018). New dictionary words.
Gagniuc (bib0016) 2017
Bayes, T., Price, R., & Canton, J. (1763). An essay towards solving a problem in the doctrine of chances,.
Steinkraus, Buck, Simard (bib0052) 2005
Juang, Rabiner (bib0024) 2005; 1
Garofolo (bib0017) 1993
Devine, Gaehde, Curtis (bib0011) 2000; 7
Stanley, Miikkulainen (bib0051) 2002; 10
Fang, Wang, Yamagishi, Echizen (bib0012) 2019
Bengio, Goodfellow, Courville (bib0006) 2015; 521
Nunes, Dihl, Fraga, Woszezenki, Oliveira, Fransisco (bib0038) 2002
Russell, Norvig (bib0047) 2016
Fromkin, Rodman, Hyams (bib0015) 2006
Tetko, Livingstone, Luik (bib0055) 1995; 35
Bourlard (10.1016/j.eswa.2020.113402_bib0009) 2012; 247
Bird (10.1016/j.eswa.2020.113402_bib0008) 2019
Wolpert (10.1016/j.eswa.2020.113402_bib0060) 1997; 1
10.1016/j.eswa.2020.113402_bib0022
Juang (10.1016/j.eswa.2020.113402_bib0024) 2005; 1
Wilges (10.1016/j.eswa.2020.113402_bib0059) 2007
Steinkraus (10.1016/j.eswa.2020.113402_bib0052) 2005
Graves (10.1016/j.eswa.2020.113402_bib0018) 2013
Kullback (10.1016/j.eswa.2020.113402_bib0025) 1951; 22
Rabiner (10.1016/j.eswa.2020.113402_bib0043) 1989; 77
10.1016/j.eswa.2020.113402_bib0034
Phan (10.1016/j.eswa.2020.113402_bib0040) 2015; 23
10.1016/j.eswa.2020.113402_bib0036
Passricha (10.1016/j.eswa.2020.113402_bib0039) 2019; 29
Baum (10.1016/j.eswa.2020.113402_bib0004) 1966; 37
Hopfield (10.1016/j.eswa.2020.113402_bib0021) 1984; 81
Qureshi (10.1016/j.eswa.2020.113402_bib0042) 2016
Fromkin (10.1016/j.eswa.2020.113402_bib0015) 2006
Lerch (10.1016/j.eswa.2020.113402_bib0027) 2012
Devine (10.1016/j.eswa.2020.113402_bib0011) 2000; 7
Lahoual (10.1016/j.eswa.2020.113402_bib0026) 2019
Cao (10.1016/j.eswa.2020.113402_bib0010) 2010
10.1016/j.eswa.2020.113402_bib0029
Martín (10.1016/j.eswa.2020.113402_bib0033) 2018; 117
Rosenblatt (10.1016/j.eswa.2020.113402_bib0046) 1961
10.1016/j.eswa.2020.113402_bib0002
Moore (10.1016/j.eswa.2020.113402_bib0035) 2001
Verlic (10.1016/j.eswa.2020.113402_bib0057) 2005
Friedman (10.1016/j.eswa.2020.113402_bib0014) 1937; 32
Stevens (10.1016/j.eswa.2020.113402_bib0053) 1937; 8
Zoughi (10.1016/j.eswa.2020.113402_bib0062) 2020; 139
Gagniuc (10.1016/j.eswa.2020.113402_bib0016) 2017
Hastie (10.1016/j.eswa.2020.113402_bib0020) 1995
Shpigelman (10.1016/j.eswa.2020.113402_bib0050) 2009
Li (10.1016/j.eswa.2020.113402_bib0028) 2008; 52
Pipiras (10.1016/j.eswa.2020.113402_bib0041) 2019; 8
Bengio (10.1016/j.eswa.2020.113402_bib0006) 2015; 521
Hudson (10.1016/j.eswa.2020.113402_bib0023) 2006
Nunes (10.1016/j.eswa.2020.113402_bib0038) 2002
Foster (10.1016/j.eswa.2020.113402_bib0013) 2016
Togelius (10.1016/j.eswa.2020.113402_bib0056) 2009
Rong (10.1016/j.eswa.2020.113402_bib0045) 2009; 45
Bird (10.1016/j.eswa.2020.113402_bib0007) 2019
Tetko (10.1016/j.eswa.2020.113402_bib0055) 1995; 35
Ager (10.1016/j.eswa.2020.113402_bib0001) 2013
Garofolo (10.1016/j.eswa.2020.113402_bib0017) 1993
Stanley (10.1016/j.eswa.2020.113402_bib0051) 2002; 10
Nemenyi (10.1016/j.eswa.2020.113402_bib0037) 1962; 18
Su (10.1016/j.eswa.2020.113402_bib0054) 2007
Xue (10.1016/j.eswa.2020.113402_bib0061) 2008; 16
Margulies (10.1016/j.eswa.2020.113402_bib0032) 2016; 68
Graves (10.1016/j.eswa.2020.113402_bib0019) 2013
Russell (10.1016/j.eswa.2020.113402_bib0047) 2016
Waibel (10.1016/j.eswa.2020.113402_bib0058) 1990
Rogers (10.1016/j.eswa.2020.113402_bib0044) 1996; 96
Baugh (10.1016/j.eswa.2020.113402_bib0003) 1993
Shannon (10.1016/j.eswa.2020.113402_bib0049) 1995; 270
10.1016/j.eswa.2020.113402_bib0005
Fang (10.1016/j.eswa.2020.113402_bib0012) 2019
López (10.1016/j.eswa.2020.113402_bib0030) 2017
Sahidullah (10.1016/j.eswa.2020.113402_bib0048) 2012; 54
Loyn (10.1016/j.eswa.2020.113402_bib0031) 2014
References_xml – year: 1961
  ident: bib0046
  article-title: Principles of neurodynamics. perceptrons and the theory of brain mechanisms
  publication-title: Technical Report
– volume: 139
  start-page: 112840
  year: 2020
  ident: bib0062
  article-title: Adaptive windows multiple deep residual networks for speech recognition
  publication-title: Expert Systems with Applications
– volume: 68
  start-page: 1045
  year: 2016
  ident: bib0032
  article-title: Surveillance by algorithm: The nsa, computerized intelligence collection, and human rights
  publication-title: Florida Law Review
– volume: 77
  start-page: 257
  year: 1989
  end-page: 286
  ident: bib0043
  article-title: A tutorial on hidden markov models and selected applications in speech recognition
  publication-title: Proceedings of the IEEE
– volume: 117
  start-page: 180
  year: 2018
  end-page: 191
  ident: bib0033
  article-title: Evodeep: A new evolutionary approach for automatic deep neural networks parametrisation
  publication-title: Journal of Parallel and Distributed Computing
– reference: Huang, X. D., Ariki, Y., & Jack, M. A. (1990). Hidden Markov models for speech recognition,.
– reference: Muda, L., Begam, M., & Elamvazuthi, I. (2010). Voice recognition algorithms using mel frequency cepstral coefficient (mfcc) and dynamic time warping (dtw) techniques. arXiv:
– volume: 18
  start-page: 263
  year: 1962
  ident: bib0037
  article-title: Distribution-free multiple comparisons
  publication-title: Biometrics
– volume: 45
  start-page: 315
  year: 2009
  end-page: 328
  ident: bib0045
  article-title: Acoustic feature selection for automatic emotion recognition from speech
  publication-title: Information processing & management
– volume: 8
  start-page: 76
  year: 2019
  ident: bib0041
  article-title: Lithuanian speech recognition using purely phonetic deep learning
  publication-title: Computers
– volume: 96
  year: 1996
  ident: bib0044
  article-title: Prediction of foreign-accented speech intelligibility from segmental contrast measures
  publication-title: Journal of the Acoustical Society of America
– volume: 29
  start-page: 1261
  year: 2019
  end-page: 1274
  ident: bib0039
  article-title: A hybrid of deep cnn and bidirectional lstm for automatic speech recognition
  publication-title: Journal of Intelligent Systems
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0006
  article-title: Deep learning
  publication-title: Nature
– year: 2013
  ident: bib0001
  article-title: Phoneme classification in high-dimensional linear feature domains
  publication-title: Computing Research Repository
– volume: 52
  start-page: 4790
  year: 2008
  end-page: 4800
  ident: bib0028
  article-title: Classification of functional data: A segmentation approach
  publication-title: Computational Statistics & Data Analysis
– volume: 247
  year: 2012
  ident: bib0009
  article-title: Connectionist speech recognition: A hybrid approach
– year: 1993
  ident: bib0003
  article-title: A history of the English language
– start-page: CS08
  year: 2019
  ident: bib0026
  article-title: When users assist the voice assistants: From supervision to failure resolution
  publication-title: Extended abstracts of the 2019 chi conference on human factors in computing systems
– volume: 7
  start-page: 462
  year: 2000
  end-page: 468
  ident: bib0011
  article-title: Comparative evaluation of three continuous speech recognition software packages in the generation of medical reports
  publication-title: Journal of the American Medical Informatics Association
– start-page: 362
  year: 2019
  end-page: 363
  ident: bib0008
  article-title: Phoneme aware speech recognition through evolutionary optimisation
  publication-title: The genetic and evolutionary computation conference
– year: 2007
  ident: bib0054
  article-title: Large-scale random forest language models for speech recognition
  publication-title: Eighth annual conference of the international speech communication association
– start-page: 753
  year: 2016
  end-page: 763
  ident: bib0013
  article-title: The mummer project: Engaging human-robot interaction in real-world public spaces
  publication-title: International conference on social robotics
– year: 1993
  ident: bib0017
  article-title: Timit acoustic phonetic continuous speech corpus
– start-page: 745
  year: 2016
  end-page: 751
  ident: bib0042
  article-title: Robot gains social intelligence through multimodal deep reinforcement learning
  publication-title: 2016 IEEE-RAS 16th international conference on humanoid robots (humanoids)
– start-page: 393
  year: 1990
  end-page: 404
  ident: bib0058
  article-title: Phoneme recognition using time-delay neural networks
  publication-title: Readings in speech recognition
– start-page: 65
  year: 2009
  end-page: 69
  ident: bib0050
  article-title: e-empowerment of young adults with special needs behind the computer screen i am not disable
  publication-title: 2009 virtual rehabilitation international conference
– start-page: 6332
  year: 2006
  end-page: 6335
  ident: bib0023
  article-title: Intelligent agent model for remote support of rural healthcare for the elderly
  publication-title: 28th annual international conference of the IEEE engineering in medicine and biology science, embs 06
– start-page: 186
  year: 2007
  end-page: 188
  ident: bib0059
  article-title: An animated pedagogical agent as a learning management system manipulating intelligent learning objects
  publication-title: 7th IEEE international conference on advanced learning technologies, icalt 2007
– volume: 16
  start-page: 519
  year: 2008
  end-page: 528
  ident: bib0061
  article-title: Random forests of phonetic decision trees for acoustic modeling in conversational speech recognition
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
– start-page: 273
  year: 2013
  end-page: 278
  ident: bib0018
  article-title: Hybrid speech recognition with deep bidirectional LSTM
  publication-title: 2013 IEEE workshop on automatic speech recognition and understanding
– start-page: 241
  year: 2017
  end-page: 250
  ident: bib0030
  article-title: Alexa vs. siri vs. cortana vs. google assistant: a comparison of speech-based natural user interfaces
  publication-title: International conference on applied human factors and ergonomics
– year: 2014
  ident: bib0031
  article-title: Anglo Saxon England and the Norman Conquest
– volume: 54
  start-page: 543
  year: 2012
  end-page: 565
  ident: bib0048
  article-title: Design, analysis and experimental evaluation of block based transformation in mfcc computation for speaker recognition
  publication-title: Speech Communication
– year: 2016
  ident: bib0047
  article-title: Artificial intelligence: A modern approach
– reference: Li, X. et al. (2018). Bayesian classification and change point detection for functional data.,.
– volume: 270
  start-page: 303
  year: 1995
  end-page: 304
  ident: bib0049
  article-title: Speech recognition with primarily temporal cues
  publication-title: Science
– volume: 35
  start-page: 826
  year: 1995
  end-page: 833
  ident: bib0055
  article-title: Neural network studies. 1. comparison of overfitting and overtraining
  publication-title: Journal of Chemical Information and Computer Sciences
– year: 2019
  ident: bib0007
  article-title: Evolutionary optimisation of fully connected artificial neural network topology
  publication-title: Sai computing conference 2019
– volume: 37
  start-page: 1554
  year: 1966
  end-page: 1563
  ident: bib0004
  article-title: Statistical inference for probabilistic functions of finite state markov chains
  publication-title: The Annals of Mathematical Statistics
– reference: Bayes, T., Price, R., & Canton, J. (1763). An essay towards solving a problem in the doctrine of chances,.
– start-page: 73
  year: 1995
  end-page: 102
  ident: bib0020
  article-title: Penalized discriminant analysis
  publication-title: The Annals of Statistics
– reference: Merriam-Webster (2018). New dictionary words.
– start-page: 53
  year: 2002
  end-page: 61
  ident: bib0038
  article-title: Animated pedagogical agent in the intelligent virtual teaching environment
  publication-title: Interactive Educational MUltimedia
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: bib0060
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2006
  ident: bib0015
  article-title: An introduction to language
– volume: 1
  start-page: 67
  year: 2005
  ident: bib0024
  article-title: Automatic speech recognition–a brief history of the technology development
  publication-title: Georgia Institute of Technology. Atlanta Rutgers University and the University of California. Santa Barbara
– volume: 23
  start-page: 20
  year: 2015
  end-page: 31
  ident: bib0040
  article-title: Random regression forests for acoustic event detection and classification
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
– year: 2017
  ident: bib0016
  article-title: Markov chains: From theory to implementation and experimentation
– volume: 81
  start-page: 3088
  year: 1984
  end-page: 3092
  ident: bib0021
  article-title: Neurons with graded response have collective computational properties like those of two-state neurons
  publication-title: Proceedings of the National Academy of Sciences
– start-page: 1115
  year: 2005
  end-page: 1120
  ident: bib0052
  article-title: Using gpus for machine learning algorithms
  publication-title: Eighth international conference on document analysis and recognition (ICDAR’05)
– start-page: 191
  year: 2010
  end-page: 195
  ident: bib0010
  article-title: Signal classification using random forest with kernels
  publication-title: 2010 sixth advanced international conference on telecommunications
– volume: 8
  start-page: 185
  year: 1937
  end-page: 190
  ident: bib0053
  article-title: A scale for the measurement of the psychological magnitude pitch
  publication-title: The Journal of the Acoustical Society of America
– year: 2012
  ident: bib0027
  article-title: An introduction to audio content analysis: Applications in signal processing and music informatics
– start-page: 6795
  year: 2019
  end-page: 6799
  ident: bib0012
  article-title: Audiovisual speaker conversion: Jointly and simultaneously transforming facial expression and acoustic characteristics
  publication-title: Icassp 2019-2019 IEEE international conference on acoustics, speech and signal processing (ICASSP)
– volume: 10
  start-page: 99
  year: 2002
  end-page: 127
  ident: bib0051
  article-title: Evolving neural networks through augmenting topologies
  publication-title: Evolutionary Computation
– start-page: 6645
  year: 2013
  end-page: 6649
  ident: bib0019
  article-title: Speech recognition with deep recurrent neural networks
  publication-title: Acoustics, speech and signal processing (icassp), 2013 IEEE international conference on
– reference: .
– reference: Assunçao, F., Lourenço, N., Machado, P., & Ribeiro, B. (2018). Denser: Deep evolutionary network structured representation. arXiv:
– start-page: 134
  year: 2005
  end-page: 138
  ident: bib0057
  article-title: iaperas - intelligent athlete’s personal assistant
  publication-title: 18th IEEE symposium on computer-based medical systems
– year: 2001
  ident: bib0035
  article-title: Cross-validation for detecting and preventing overfitting
  publication-title: School of Computer Science Carneigie Mellon University
– volume: 22
  start-page: 79
  year: 1951
  end-page: 86
  ident: bib0025
  article-title: On information and sufficiency
  publication-title: The Annals of Mathematical Statistics
– start-page: 156
  year: 2009
  end-page: 161
  ident: bib0056
  article-title: Super mario evolution
  publication-title: Computational intelligence and games, 2009. cig 2009. ieee symposium on
– volume: 32
  start-page: 675
  year: 1937
  end-page: 701
  ident: bib0014
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: Journal of the American Statistical Association
– volume: 81
  start-page: 3088
  issue: 10
  year: 1984
  ident: 10.1016/j.eswa.2020.113402_bib0021
  article-title: Neurons with graded response have collective computational properties like those of two-state neurons
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.81.10.3088
– ident: 10.1016/j.eswa.2020.113402_bib0022
– volume: 35
  start-page: 826
  issue: 5
  year: 1995
  ident: 10.1016/j.eswa.2020.113402_bib0055
  article-title: Neural network studies. 1. comparison of overfitting and overtraining
  publication-title: Journal of Chemical Information and Computer Sciences
  doi: 10.1021/ci00027a006
– volume: 8
  start-page: 76
  issue: 4
  year: 2019
  ident: 10.1016/j.eswa.2020.113402_bib0041
  article-title: Lithuanian speech recognition using purely phonetic deep learning
  publication-title: Computers
  doi: 10.3390/computers8040076
– start-page: 6332
  year: 2006
  ident: 10.1016/j.eswa.2020.113402_bib0023
  article-title: Intelligent agent model for remote support of rural healthcare for the elderly
– volume: 32
  start-page: 675
  issue: 200
  year: 1937
  ident: 10.1016/j.eswa.2020.113402_bib0014
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1937.10503522
– start-page: 6645
  year: 2013
  ident: 10.1016/j.eswa.2020.113402_bib0019
  article-title: Speech recognition with deep recurrent neural networks
– volume: 68
  start-page: 1045
  year: 2016
  ident: 10.1016/j.eswa.2020.113402_bib0032
  article-title: Surveillance by algorithm: The nsa, computerized intelligence collection, and human rights
  publication-title: Florida Law Review
– start-page: 745
  year: 2016
  ident: 10.1016/j.eswa.2020.113402_bib0042
  article-title: Robot gains social intelligence through multimodal deep reinforcement learning
– year: 2019
  ident: 10.1016/j.eswa.2020.113402_bib0007
  article-title: Evolutionary optimisation of fully connected artificial neural network topology
– start-page: 191
  year: 2010
  ident: 10.1016/j.eswa.2020.113402_bib0010
  article-title: Signal classification using random forest with kernels
– year: 1993
  ident: 10.1016/j.eswa.2020.113402_bib0003
– volume: 16
  start-page: 519
  issue: 3
  year: 2008
  ident: 10.1016/j.eswa.2020.113402_bib0061
  article-title: Random forests of phonetic decision trees for acoustic modeling in conversational speech recognition
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASL.2007.913036
– volume: 52
  start-page: 4790
  issue: 10
  year: 2008
  ident: 10.1016/j.eswa.2020.113402_bib0028
  article-title: Classification of functional data: A segmentation approach
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2008.03.024
– year: 2016
  ident: 10.1016/j.eswa.2020.113402_bib0047
– volume: 77
  start-page: 257
  issue: 2
  year: 1989
  ident: 10.1016/j.eswa.2020.113402_bib0043
  article-title: A tutorial on hidden markov models and selected applications in speech recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.18626
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  ident: 10.1016/j.eswa.2020.113402_bib0025
  article-title: On information and sufficiency
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177729694
– year: 2012
  ident: 10.1016/j.eswa.2020.113402_bib0027
– volume: 29
  start-page: 1261
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2020.113402_bib0039
  article-title: A hybrid of deep cnn and bidirectional lstm for automatic speech recognition
  publication-title: Journal of Intelligent Systems
  doi: 10.1515/jisys-2018-0372
– volume: 270
  start-page: 303
  issue: 5234
  year: 1995
  ident: 10.1016/j.eswa.2020.113402_bib0049
  article-title: Speech recognition with primarily temporal cues
  publication-title: Science
  doi: 10.1126/science.270.5234.303
– start-page: 1115
  year: 2005
  ident: 10.1016/j.eswa.2020.113402_bib0052
  article-title: Using gpus for machine learning algorithms
– start-page: 753
  year: 2016
  ident: 10.1016/j.eswa.2020.113402_bib0013
  article-title: The mummer project: Engaging human-robot interaction in real-world public spaces
– volume: 18
  start-page: 263
  year: 1962
  ident: 10.1016/j.eswa.2020.113402_bib0037
  article-title: Distribution-free multiple comparisons
– volume: 247
  year: 2012
  ident: 10.1016/j.eswa.2020.113402_bib0009
– volume: 23
  start-page: 20
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2020.113402_bib0040
  article-title: Random regression forests for acoustic event detection and classification
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2014.2367814
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.eswa.2020.113402_bib0060
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– start-page: 6795
  year: 2019
  ident: 10.1016/j.eswa.2020.113402_bib0012
  article-title: Audiovisual speaker conversion: Jointly and simultaneously transforming facial expression and acoustic characteristics
– year: 2014
  ident: 10.1016/j.eswa.2020.113402_bib0031
– start-page: 241
  year: 2017
  ident: 10.1016/j.eswa.2020.113402_bib0030
  article-title: Alexa vs. siri vs. cortana vs. google assistant: a comparison of speech-based natural user interfaces
– ident: 10.1016/j.eswa.2020.113402_bib0034
– year: 2017
  ident: 10.1016/j.eswa.2020.113402_bib0016
– start-page: CS08
  year: 2019
  ident: 10.1016/j.eswa.2020.113402_bib0026
  article-title: When users assist the voice assistants: From supervision to failure resolution
– volume: 8
  start-page: 185
  issue: 3
  year: 1937
  ident: 10.1016/j.eswa.2020.113402_bib0053
  article-title: A scale for the measurement of the psychological magnitude pitch
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.1915893
– year: 2006
  ident: 10.1016/j.eswa.2020.113402_bib0015
– volume: 1
  start-page: 67
  year: 2005
  ident: 10.1016/j.eswa.2020.113402_bib0024
  article-title: Automatic speech recognition–a brief history of the technology development
– volume: 37
  start-page: 1554
  issue: 6
  year: 1966
  ident: 10.1016/j.eswa.2020.113402_bib0004
  article-title: Statistical inference for probabilistic functions of finite state markov chains
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177699147
– year: 1993
  ident: 10.1016/j.eswa.2020.113402_bib0017
– start-page: 273
  year: 2013
  ident: 10.1016/j.eswa.2020.113402_bib0018
  article-title: Hybrid speech recognition with deep bidirectional LSTM
– start-page: 73
  year: 1995
  ident: 10.1016/j.eswa.2020.113402_bib0020
  article-title: Penalized discriminant analysis
  publication-title: The Annals of Statistics
– volume: 45
  start-page: 315
  issue: 3
  year: 2009
  ident: 10.1016/j.eswa.2020.113402_bib0045
  article-title: Acoustic feature selection for automatic emotion recognition from speech
  publication-title: Information processing & management
  doi: 10.1016/j.ipm.2008.09.003
– volume: 54
  start-page: 543
  issue: 4
  year: 2012
  ident: 10.1016/j.eswa.2020.113402_bib0048
  article-title: Design, analysis and experimental evaluation of block based transformation in mfcc computation for speaker recognition
  publication-title: Speech Communication
  doi: 10.1016/j.specom.2011.11.004
– start-page: 156
  year: 2009
  ident: 10.1016/j.eswa.2020.113402_bib0056
  article-title: Super mario evolution
– year: 1961
  ident: 10.1016/j.eswa.2020.113402_bib0046
  article-title: Principles of neurodynamics. perceptrons and the theory of brain mechanisms
– ident: 10.1016/j.eswa.2020.113402_bib0005
– volume: 139
  start-page: 112840
  year: 2020
  ident: 10.1016/j.eswa.2020.113402_bib0062
  article-title: Adaptive windows multiple deep residual networks for speech recognition
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.112840
– start-page: 65
  year: 2009
  ident: 10.1016/j.eswa.2020.113402_bib0050
  article-title: e-empowerment of young adults with special needs behind the computer screen i am not disable
– year: 2013
  ident: 10.1016/j.eswa.2020.113402_bib0001
  article-title: Phoneme classification in high-dimensional linear feature domains
  publication-title: Computing Research Repository
– start-page: 186
  year: 2007
  ident: 10.1016/j.eswa.2020.113402_bib0059
  article-title: An animated pedagogical agent as a learning management system manipulating intelligent learning objects
– volume: 10
  start-page: 99
  issue: 2
  year: 2002
  ident: 10.1016/j.eswa.2020.113402_bib0051
  article-title: Evolving neural networks through augmenting topologies
  publication-title: Evolutionary Computation
  doi: 10.1162/106365602320169811
– volume: 117
  start-page: 180
  year: 2018
  ident: 10.1016/j.eswa.2020.113402_bib0033
  article-title: Evodeep: A new evolutionary approach for automatic deep neural networks parametrisation
  publication-title: Journal of Parallel and Distributed Computing
  doi: 10.1016/j.jpdc.2017.09.006
– start-page: 134
  year: 2005
  ident: 10.1016/j.eswa.2020.113402_bib0057
  article-title: iaperas - intelligent athlete’s personal assistant
– ident: 10.1016/j.eswa.2020.113402_bib0002
  doi: 10.1007/s10710-018-9339-y
– year: 2001
  ident: 10.1016/j.eswa.2020.113402_bib0035
  article-title: Cross-validation for detecting and preventing overfitting
– ident: 10.1016/j.eswa.2020.113402_bib0036
– start-page: 53
  issue: 4
  year: 2002
  ident: 10.1016/j.eswa.2020.113402_bib0038
  article-title: Animated pedagogical agent in the intelligent virtual teaching environment
  publication-title: Interactive Educational MUltimedia
– volume: 96
  issue: 5
  year: 1996
  ident: 10.1016/j.eswa.2020.113402_bib0044
  article-title: Prediction of foreign-accented speech intelligibility from segmental contrast measures
  publication-title: Journal of the Acoustical Society of America
– volume: 7
  start-page: 462
  issue: 5
  year: 2000
  ident: 10.1016/j.eswa.2020.113402_bib0011
  article-title: Comparative evaluation of three continuous speech recognition software packages in the generation of medical reports
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1136/jamia.2000.0070462
– start-page: 393
  year: 1990
  ident: 10.1016/j.eswa.2020.113402_bib0058
  article-title: Phoneme recognition using time-delay neural networks
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.eswa.2020.113402_bib0006
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2007
  ident: 10.1016/j.eswa.2020.113402_bib0054
  article-title: Large-scale random forest language models for speech recognition
– ident: 10.1016/j.eswa.2020.113402_bib0029
– start-page: 362
  year: 2019
  ident: 10.1016/j.eswa.2020.113402_bib0008
  article-title: Phoneme aware speech recognition through evolutionary optimisation
SSID ssj0017007
Score 2.4006085
Snippet Recent advances in the availability of computational resources allow for more sophisticated approaches to speech recognition than ever before. This study...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113402
SubjectTerms Accuracy
Acknowledgment
Acoustics
Algorithms
Applied hyperheuristics
Artificial neural networks
Classification
Diphthongs
Evolutionary algorithms
Markov analysis
Markov chains
Mathematical models
Multi-objective evolutionary computation
Multiple objective analysis
Neural networks
Objectives
Phoneme classification
Phonemes
Phonetics
Resources
Robotics
Robots
Speech
Speech recognition
Statistics
Topology optimization
Voice recognition
Vowels
Words
Title Optimisation of phonetic aware speech recognition through multi-objective evolutionary algorithms
URI https://dx.doi.org/10.1016/j.eswa.2020.113402
https://www.proquest.com/docview/2444673566
Volume 153
WOSCitedRecordID wos000533513600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcuvBELC_KBW5Uqdt7HgnYFK7QgWKTeosSdbFtKWrWhu7-C38zYYydREStA4hK1URxbni_jGfubGcZeSQgDlQJ4UYRiCIvYVAMEDxerJPWzKpalCRR-n5yfp5NJ9nEw-OFiYXbLpK7T6-ts_V9FjfdQ2Dp09i_E3b4Ub-BvFDpeUex4_SPBf0Al8M2SdAyfebaqwaRlvdIsr-0aQM2GLXHIHBZQrR5DLvRW5YKU4BB2dqCaWVcsL1ebeTOz2c0XLYUPNo3NB-0i5Xpn4t0ePFHoz9DX1QFTo24j39X-6hPMyMj_ak7xBQUVjeu5-f-6VVSn6ObTadUcLlfDT6P-Dga6q46iZbfVXGhNx2Oi_cnECwWV8BkBaec0Cbw4oZKKrfqmZMO_LAW0K7EYwfZK55eSpnxN6Mtu4WvpiJ91Z7oviSoP7dH0FjuUSZShljwcvzuZnLXnUolPAfhucDYMixiD-z39ztTZW_SNJXNxn921LggfE3QesAHUD9k9V96DW23_iBV9JPFVxR2SuEESJyTxHpK4RRLfQxLvI4l3SHrMvpyeXLx569mKHJ4KZNp4VTTN0mmIHlkooAgVOqdhHBaZKkuBnrCvp0dAUKmiCJSMI1Fl00pWAiQqAYGW8hN2UONQnzKuRFD6sgKd0BYXkarAVhJUkPglGkzR9IgJN3m5sunqddWUZe54iYtcT3iuJzynCT9iw7bNmpK13Ph05GSSW3OTzMgcIXRju2MnwNx-99scrWQ0OQJ0jp7942ufszvdx3HMDprNd3jBbqtdM99uXlog_gRjSbDd
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimisation+of+phonetic+aware+speech+recognition+through+multi-objective+evolutionary+algorithms&rft.jtitle=Expert+systems+with+applications&rft.au=Bird%2C+Jordan+J.&rft.au=Wanner%2C+Elizabeth&rft.au=Ek%C3%A1rt%2C+Anik%C3%B3&rft.au=Faria%2C+Diego+R.&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=153&rft_id=info:doi/10.1016%2Fj.eswa.2020.113402&rft.externalDocID=S0957417420302268
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon