Stochastic Strongly Convex Optimization via Distributed Epoch Stochastic Gradient Algorithm
This article considers the problem of stochastic strongly convex optimization over a network of multiple interacting nodes. The optimization is under a global inequality constraint and the restriction that nodes have only access to the stochastic gradients of their objective functions. We propose an...
Gespeichert in:
| Veröffentlicht in: | IEEE transaction on neural networks and learning systems Jg. 32; H. 6; S. 2344 - 2357 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This article considers the problem of stochastic strongly convex optimization over a network of multiple interacting nodes. The optimization is under a global inequality constraint and the restriction that nodes have only access to the stochastic gradients of their objective functions. We propose an efficient distributed non-primal-dual algorithm, by incorporating the inequality constraint into the objective via a smoothing technique. We show that the proposed algorithm achieves an optimal <inline-formula> <tex-math notation="LaTeX">\mathcal {O}((1)/(T)) </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula> is the total number of iterations) convergence rate in the mean square distance from the optimal solution. In particular, we establish a high probability bound for the proposed algorithm, by showing that with a probability at least <inline-formula> <tex-math notation="LaTeX">1-\delta </tex-math></inline-formula>, the proposed algorithm converges at a rate of <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\ln (\ln (T)/\delta)/ T) </tex-math></inline-formula>. Finally, we provide numerical experiments to demonstrate the efficacy of the proposed algorithm. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2162-237X 2162-2388 2162-2388 |
| DOI: | 10.1109/TNNLS.2020.3004723 |