Stochastic Strongly Convex Optimization via Distributed Epoch Stochastic Gradient Algorithm
This article considers the problem of stochastic strongly convex optimization over a network of multiple interacting nodes. The optimization is under a global inequality constraint and the restriction that nodes have only access to the stochastic gradients of their objective functions. We propose an...
Saved in:
| Published in: | IEEE transaction on neural networks and learning systems Vol. 32; no. 6; pp. 2344 - 2357 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This article considers the problem of stochastic strongly convex optimization over a network of multiple interacting nodes. The optimization is under a global inequality constraint and the restriction that nodes have only access to the stochastic gradients of their objective functions. We propose an efficient distributed non-primal-dual algorithm, by incorporating the inequality constraint into the objective via a smoothing technique. We show that the proposed algorithm achieves an optimal <inline-formula> <tex-math notation="LaTeX">\mathcal {O}((1)/(T)) </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula> is the total number of iterations) convergence rate in the mean square distance from the optimal solution. In particular, we establish a high probability bound for the proposed algorithm, by showing that with a probability at least <inline-formula> <tex-math notation="LaTeX">1-\delta </tex-math></inline-formula>, the proposed algorithm converges at a rate of <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\ln (\ln (T)/\delta)/ T) </tex-math></inline-formula>. Finally, we provide numerical experiments to demonstrate the efficacy of the proposed algorithm. |
|---|---|
| AbstractList | This article considers the problem of stochastic strongly convex optimization over a network of multiple interacting nodes. The optimization is under a global inequality constraint and the restriction that nodes have only access to the stochastic gradients of their objective functions. We propose an efficient distributed non-primal-dual algorithm, by incorporating the inequality constraint into the objective via a smoothing technique. We show that the proposed algorithm achieves an optimal O((1)/(T)) ( T is the total number of iterations) convergence rate in the mean square distance from the optimal solution. In particular, we establish a high probability bound for the proposed algorithm, by showing that with a probability at least 1-δ , the proposed algorithm converges at a rate of O(ln(ln(T)/δ)/ T) . Finally, we provide numerical experiments to demonstrate the efficacy of the proposed algorithm.This article considers the problem of stochastic strongly convex optimization over a network of multiple interacting nodes. The optimization is under a global inequality constraint and the restriction that nodes have only access to the stochastic gradients of their objective functions. We propose an efficient distributed non-primal-dual algorithm, by incorporating the inequality constraint into the objective via a smoothing technique. We show that the proposed algorithm achieves an optimal O((1)/(T)) ( T is the total number of iterations) convergence rate in the mean square distance from the optimal solution. In particular, we establish a high probability bound for the proposed algorithm, by showing that with a probability at least 1-δ , the proposed algorithm converges at a rate of O(ln(ln(T)/δ)/ T) . Finally, we provide numerical experiments to demonstrate the efficacy of the proposed algorithm. This article considers the problem of stochastic strongly convex optimization over a network of multiple interacting nodes. The optimization is under a global inequality constraint and the restriction that nodes have only access to the stochastic gradients of their objective functions. We propose an efficient distributed non-primal-dual algorithm, by incorporating the inequality constraint into the objective via a smoothing technique. We show that the proposed algorithm achieves an optimal [Formula Omitted] ([Formula Omitted] is the total number of iterations) convergence rate in the mean square distance from the optimal solution. In particular, we establish a high probability bound for the proposed algorithm, by showing that with a probability at least [Formula Omitted], the proposed algorithm converges at a rate of [Formula Omitted]. Finally, we provide numerical experiments to demonstrate the efficacy of the proposed algorithm. This article considers the problem of stochastic strongly convex optimization over a network of multiple interacting nodes. The optimization is under a global inequality constraint and the restriction that nodes have only access to the stochastic gradients of their objective functions. We propose an efficient distributed non-primal-dual algorithm, by incorporating the inequality constraint into the objective via a smoothing technique. We show that the proposed algorithm achieves an optimal <inline-formula> <tex-math notation="LaTeX">\mathcal {O}((1)/(T)) </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula> is the total number of iterations) convergence rate in the mean square distance from the optimal solution. In particular, we establish a high probability bound for the proposed algorithm, by showing that with a probability at least <inline-formula> <tex-math notation="LaTeX">1-\delta </tex-math></inline-formula>, the proposed algorithm converges at a rate of <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\ln (\ln (T)/\delta)/ T) </tex-math></inline-formula>. Finally, we provide numerical experiments to demonstrate the efficacy of the proposed algorithm. |
| Author | Ho, Daniel W. C. Xu, Shengyuan Yuan, Deming |
| Author_xml | – sequence: 1 givenname: Deming orcidid: 0000-0003-4371-5105 surname: Yuan fullname: Yuan, Deming email: dmyuan1012@gmail.com organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China – sequence: 2 givenname: Daniel W. C. orcidid: 0000-0001-9799-3712 surname: Ho fullname: Ho, Daniel W. C. email: madaniel@cityu.edu.hk organization: Department of Mathematics, City University of Hong Kong, Hong Kong – sequence: 3 givenname: Shengyuan orcidid: 0000-0002-3015-0662 surname: Xu fullname: Xu, Shengyuan email: syxu@njust.edu.cn organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China |
| BookMark | eNp9kU1LAzEQhoNUbP34A3pZ8OKlNZNsPvZYqlah6KEKgoeQ3U3blO2mJqlYf73bD0Q8OJeZw_sMwzzHqFW72iB0DrgHgLPr58fH0bhHMME9inEqCD1AHQKcdAmVsvUzi9c2OgthjpvimPE0O0JtSjikQrAOehtHV8x0iLZIxtG7elqtk4GrP8xn8rSMdmG_dLSuTj6sTm5siN7mq2jK5HbZcMkveuh1aU0dk341dd7G2eIUHU50FczZvp-gl7vb58F9d_Q0fBj0R92CEhm7E8YKoEClziUGCVBKKnhaEgHaMKEhy1leCGwYziEvuWA6k5SnMhMM8mY8QVe7vUvv3lcmRLWwoTBVpWvjVkGRlGBIuWSsiV7-ic7dytfNdYowyjHFjNImJXepwrsQvJmowsbtG6LXtlKA1caB2jpQGwdq76BByR906e1C-_X_0MUOssaYHyCDRhMD-g3n3pGp |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1109_TNNLS_2021_3137010 crossref_primary_10_1016_j_jfranklin_2023_09_001 crossref_primary_10_1109_TAC_2024_3481040 crossref_primary_10_1109_TNNLS_2024_3462516 crossref_primary_10_1002_asjc_3555 crossref_primary_10_1109_TCNS_2023_3281561 crossref_primary_10_1109_TSMC_2022_3200680 crossref_primary_10_1109_TNNLS_2022_3170944 crossref_primary_10_1109_TNNLS_2022_3172450 crossref_primary_10_1007_s11432_020_3275_3 crossref_primary_10_1109_TASE_2025_3599573 crossref_primary_10_1016_j_neucom_2024_128267 crossref_primary_10_1016_j_sigpro_2023_109222 crossref_primary_10_1109_TNNLS_2022_3213715 crossref_primary_10_1109_TNNLS_2020_3027288 crossref_primary_10_1016_j_sysconle_2024_105733 crossref_primary_10_1109_TNNLS_2024_3423720 crossref_primary_10_1109_TNNLS_2024_3423376 crossref_primary_10_1002_asjc_2506 |
| Cites_doi | 10.1109/TAC.2011.2167817 10.1109/TAC.2011.2160020 10.1109/TAC.2017.2688452 10.1016/j.sysconle.2004.02.022 10.1109/TNNLS.2016.2549566 10.1109/TCYB.2015.2464255 10.1109/CDC.2018.8619228 10.1109/TAC.2016.2529285 10.1016/j.sysconle.2015.06.006 10.1109/TCYB.2017.2681119 10.1109/TAC.2014.2308612 10.1109/TSMC.2016.2531649 10.1137/15M1048896 10.1109/TAC.2013.2278132 10.1109/TCYB.2015.2453167 10.1109/TAC.2011.2161027 10.1109/TAC.2015.2504962 10.1007/s10957-010-9737-7 10.1109/TAC.2013.2275671 10.1109/TAC.2008.2009515 10.1016/j.automatica.2017.12.053 10.1109/TAC.2014.2309261 10.1109/CDC.2008.4738860 10.1109/TNNLS.2014.2336806 10.1109/TAC.2015.2416927 10.1109/TAC.2010.2041686 10.1109/Allerton.2012.6483272 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2020.3004723 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 2357 |
| ExternalDocumentID | 10_1109_TNNLS_2020_3004723 9132651 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Fund for Excellent Young Scholars of Jiangsu Province grantid: BK20170099 funderid: 10.13039/501100004608 – fundername: National Natural Science Foundation of China grantid: 61673215 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 30919011105 funderid: 10.13039/501100012226 – fundername: 333 Project grantid: BRA2017380 – fundername: Research Grants Council of the Hong Kong Special Administrative Region, China grantid: 11202819; 11200717 funderid: 10.13039/501100002920 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c328t-f55c13138ab801811d83764d271ae57a19b5bc70e50b1bd675a9836489751b983 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000658349600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sun Sep 28 01:17:25 EDT 2025 Sun Nov 09 08:37:33 EST 2025 Tue Nov 18 22:17:19 EST 2025 Sat Nov 29 01:40:07 EST 2025 Wed Aug 27 02:29:54 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-f55c13138ab801811d83764d271ae57a19b5bc70e50b1bd675a9836489751b983 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3015-0662 0000-0003-4371-5105 0000-0001-9799-3712 |
| PMID | 32614775 |
| PQID | 2536030533 |
| PQPubID | 85436 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2536030533 ieee_primary_9132651 proquest_miscellaneous_2420146855 crossref_citationtrail_10_1109_TNNLS_2020_3004723 crossref_primary_10_1109_TNNLS_2020_3004723 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref19 mahdavi (ref18) 2012 hazan (ref14) 2014; 15 chen (ref16) 2016 ref24 ref23 ref26 ref25 ref20 ref22 yang (ref17) 2017 ref21 ref28 boucheron (ref29) 2004; 3176 ref8 ref7 ref9 ref4 ref3 ref6 ref5 zhu (ref27) 2012; 57 rakhlin (ref15) 2012 |
| References_xml | – volume: 57 start-page: 151 year: 2012 ident: ref27 article-title: On distributed convex optimization under inequality and equality constraints publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2011.2167817 – ident: ref11 doi: 10.1109/TAC.2011.2160020 – ident: ref32 doi: 10.1109/TAC.2017.2688452 – ident: ref30 doi: 10.1016/j.sysconle.2004.02.022 – start-page: 122 year: 2016 ident: ref16 article-title: Optimal stochastic strongly convex optimization with a logarithmic number of projections publication-title: Proc 32nd Conf Uncertainty Artif Intell (UAI) – ident: ref8 doi: 10.1109/TNNLS.2016.2549566 – ident: ref26 doi: 10.1109/TCYB.2015.2464255 – ident: ref24 doi: 10.1109/CDC.2018.8619228 – ident: ref22 doi: 10.1109/TAC.2016.2529285 – ident: ref33 doi: 10.1016/j.sysconle.2015.06.006 – ident: ref13 doi: 10.1109/TCYB.2017.2681119 – ident: ref25 doi: 10.1109/TAC.2014.2308612 – ident: ref5 doi: 10.1109/TSMC.2016.2531649 – volume: 15 start-page: 2489 year: 2014 ident: ref14 article-title: Beyond the regret minimization barrier: An optimal algorithm for stochastic strongly-convex optimization publication-title: J Mach Learn Res – start-page: 503 year: 2012 ident: ref18 article-title: Stochastic gradient descent with only one projection publication-title: Proc Adv Neural Inf Process Syst – ident: ref19 doi: 10.1137/15M1048896 – volume: 3176 start-page: 208 year: 2004 ident: ref29 publication-title: Concentration Inequalities – ident: ref10 doi: 10.1109/TAC.2013.2278132 – ident: ref12 doi: 10.1109/TCYB.2015.2453167 – ident: ref3 doi: 10.1109/TAC.2011.2161027 – ident: ref31 doi: 10.1109/TAC.2015.2504962 – ident: ref20 doi: 10.1007/s10957-010-9737-7 – ident: ref9 doi: 10.1109/TAC.2013.2275671 – ident: ref1 doi: 10.1109/TAC.2008.2009515 – ident: ref23 doi: 10.1016/j.automatica.2017.12.053 – ident: ref7 doi: 10.1109/TAC.2014.2309261 – start-page: 3901 year: 2017 ident: ref17 article-title: A richer theory of convex constrained optimization with reduced projections and improved rates publication-title: Proc 34th Int Conf Mach Learn (ICML) – ident: ref28 doi: 10.1109/CDC.2008.4738860 – ident: ref6 doi: 10.1109/TNNLS.2014.2336806 – ident: ref2 doi: 10.1109/TAC.2015.2416927 – ident: ref4 doi: 10.1109/TAC.2010.2041686 – ident: ref21 doi: 10.1109/Allerton.2012.6483272 – start-page: 449 year: 2012 ident: ref15 article-title: Making gradient descent optimal for strongly convex stochastic optimization publication-title: Proc 29th Int Conf Mach Learn |
| SSID | ssj0000605649 |
| Score | 2.4616108 |
| Snippet | This article considers the problem of stochastic strongly convex optimization over a network of multiple interacting nodes. The optimization is under a global... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2344 |
| SubjectTerms | Algorithms Approximation algorithms Computational geometry Convergence Convergence rate Convex analysis Convex functions Convexity Distributed algorithms distributed stochastic strongly optimization epoch gradient descent inequality constraint Linear programming multiagent systems Nodes Optimization Probability theory Stochastic processes Stochasticity |
| Title | Stochastic Strongly Convex Optimization via Distributed Epoch Stochastic Gradient Algorithm |
| URI | https://ieeexplore.ieee.org/document/9132651 https://www.proquest.com/docview/2536030533 https://www.proquest.com/docview/2420146855 |
| Volume | 32 |
| WOSCitedRecordID | wos000658349600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEA9W-tCX2taKp1ZS6Ftd3Xwnj-JHfZBr4Swc-LDka_XgvJVzT-x_30xubxGUQt8CyYRlJ5lkJjO_H0LffJ3OAONIIZmKBQ9RFcnmyaKua8KEMzZ4nckm1HCox2Pzaw0d9LUwMcacfBYPoZnf8kPjFxAqOzLJdZJQL_1GKbWs1erjKWW6l8t826VE0oIyNV7VyJTm6Go4vBwlb5AmJzUDJAJ_TpqMcAUZhs-OpMyx8sIw59PmfOP_vvMDet_dKvHxchl8RGtx9gltrBgbcLeBN9H1qG38rQVsZjyCIPjN9A8-gcTzJ_wzGY-7rioTP04sPgVMXaDDigGf3Sc5_Ez6xzznirX4eHrTzCft7d1n9Pv87OrkoujoFQrPqG6LWghPGGHaOg2wXSQkZ1XyQBWxUShLjBPOqzKK0hEXkmdhjWaSa6MEcam5hdZnzSxuI1xHH5LjoaQ0nFsfNPF1yUSQjnEWuRogsvrDle-wx4ECY1plH6Q0VVZQBQqqOgUN0Pde5n6JvPHP0Zugh35kp4IB2lspsuo250NFBZNg51iS-tp3p20FbyV2FptFGsMpwOpoIXZen3kXvaOQ3pIDMntovZ0v4hf01j-2k4f5flqhY72fV-hfYe3fsg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-lFfSlrVbptVUj-KZrN9_JY-mHFc9VuBMOfFg2H9seXG_Lda_of28mt7cUFMG3QDJh2UkmmcnM74fQW1fHM8BYkkmmQsZ9UFm0eTKr65owYU3lnU5kE6oo9GRivm2g930tTAghJZ-FD9BMb_m-cUsIlR2b6DpJqJfeEpxTsqrW6iMqebyZy3TfpUTSjDI1WVfJ5OZ4XBTDUfQHaXRTE0QiMOjE6QhXkGP44FBKLCt_mOZ03lzs_N-X7qLt7l6JT1YL4SnaCPNnaGfN2YC7LbyHfozaxl1XgM6MRxAGv5r9wqeQev4Tf43m46ary8T30wqfAaouEGIFj89voxx-IP1xkbLFWnwyu2oW0_b65jn6fnE-Pr3MOoKFzDGq26wWwhFGmK6sBuAu4qO7KrmnilRBqIoYK6xTeRC5JdZH36IymkmujRLExuYLtDlv5mEf4To4H10PJaXhvHJeE1fnTHhpGWeBqwEi6z9cug59HEgwZmXyQnJTJgWVoKCyU9AAvetlblfYG_8cvQd66Ed2Khigo7Uiy2573pVUMAmWjkWpN3133FjwWlLNQ7OMYzgFYB0txMHfZ36NHl-OvwzL4afi8yF6QiHZJYVnjtBmu1iGl-iRu2-nd4tXaZ3-BubQ4hE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Strongly+Convex+Optimization+via+Distributed+Epoch+Stochastic+Gradient+Algorithm&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Yuan%2C+Deming&rft.au=Ho%2C+Daniel+W.+C.&rft.au=Xu%2C+Shengyuan&rft.date=2021-06-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=32&rft.issue=6&rft.spage=2344&rft.epage=2357&rft_id=info:doi/10.1109%2FTNNLS.2020.3004723&rft_id=info%3Apmid%2F32614775&rft.externalDocID=9132651 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |