Stochastic Strongly Convex Optimization via Distributed Epoch Stochastic Gradient Algorithm

This article considers the problem of stochastic strongly convex optimization over a network of multiple interacting nodes. The optimization is under a global inequality constraint and the restriction that nodes have only access to the stochastic gradients of their objective functions. We propose an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 32; číslo 6; s. 2344 - 2357
Hlavní autoři: Yuan, Deming, Ho, Daniel W. C., Xu, Shengyuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This article considers the problem of stochastic strongly convex optimization over a network of multiple interacting nodes. The optimization is under a global inequality constraint and the restriction that nodes have only access to the stochastic gradients of their objective functions. We propose an efficient distributed non-primal-dual algorithm, by incorporating the inequality constraint into the objective via a smoothing technique. We show that the proposed algorithm achieves an optimal <inline-formula> <tex-math notation="LaTeX">\mathcal {O}((1)/(T)) </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula> is the total number of iterations) convergence rate in the mean square distance from the optimal solution. In particular, we establish a high probability bound for the proposed algorithm, by showing that with a probability at least <inline-formula> <tex-math notation="LaTeX">1-\delta </tex-math></inline-formula>, the proposed algorithm converges at a rate of <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\ln (\ln (T)/\delta)/ T) </tex-math></inline-formula>. Finally, we provide numerical experiments to demonstrate the efficacy of the proposed algorithm.
AbstractList This article considers the problem of stochastic strongly convex optimization over a network of multiple interacting nodes. The optimization is under a global inequality constraint and the restriction that nodes have only access to the stochastic gradients of their objective functions. We propose an efficient distributed non-primal-dual algorithm, by incorporating the inequality constraint into the objective via a smoothing technique. We show that the proposed algorithm achieves an optimal O((1)/(T)) ( T is the total number of iterations) convergence rate in the mean square distance from the optimal solution. In particular, we establish a high probability bound for the proposed algorithm, by showing that with a probability at least 1-δ , the proposed algorithm converges at a rate of O(ln(ln(T)/δ)/ T) . Finally, we provide numerical experiments to demonstrate the efficacy of the proposed algorithm.This article considers the problem of stochastic strongly convex optimization over a network of multiple interacting nodes. The optimization is under a global inequality constraint and the restriction that nodes have only access to the stochastic gradients of their objective functions. We propose an efficient distributed non-primal-dual algorithm, by incorporating the inequality constraint into the objective via a smoothing technique. We show that the proposed algorithm achieves an optimal O((1)/(T)) ( T is the total number of iterations) convergence rate in the mean square distance from the optimal solution. In particular, we establish a high probability bound for the proposed algorithm, by showing that with a probability at least 1-δ , the proposed algorithm converges at a rate of O(ln(ln(T)/δ)/ T) . Finally, we provide numerical experiments to demonstrate the efficacy of the proposed algorithm.
This article considers the problem of stochastic strongly convex optimization over a network of multiple interacting nodes. The optimization is under a global inequality constraint and the restriction that nodes have only access to the stochastic gradients of their objective functions. We propose an efficient distributed non-primal-dual algorithm, by incorporating the inequality constraint into the objective via a smoothing technique. We show that the proposed algorithm achieves an optimal [Formula Omitted] ([Formula Omitted] is the total number of iterations) convergence rate in the mean square distance from the optimal solution. In particular, we establish a high probability bound for the proposed algorithm, by showing that with a probability at least [Formula Omitted], the proposed algorithm converges at a rate of [Formula Omitted]. Finally, we provide numerical experiments to demonstrate the efficacy of the proposed algorithm.
This article considers the problem of stochastic strongly convex optimization over a network of multiple interacting nodes. The optimization is under a global inequality constraint and the restriction that nodes have only access to the stochastic gradients of their objective functions. We propose an efficient distributed non-primal-dual algorithm, by incorporating the inequality constraint into the objective via a smoothing technique. We show that the proposed algorithm achieves an optimal <inline-formula> <tex-math notation="LaTeX">\mathcal {O}((1)/(T)) </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula> is the total number of iterations) convergence rate in the mean square distance from the optimal solution. In particular, we establish a high probability bound for the proposed algorithm, by showing that with a probability at least <inline-formula> <tex-math notation="LaTeX">1-\delta </tex-math></inline-formula>, the proposed algorithm converges at a rate of <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\ln (\ln (T)/\delta)/ T) </tex-math></inline-formula>. Finally, we provide numerical experiments to demonstrate the efficacy of the proposed algorithm.
Author Ho, Daniel W. C.
Xu, Shengyuan
Yuan, Deming
Author_xml – sequence: 1
  givenname: Deming
  orcidid: 0000-0003-4371-5105
  surname: Yuan
  fullname: Yuan, Deming
  email: dmyuan1012@gmail.com
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
– sequence: 2
  givenname: Daniel W. C.
  orcidid: 0000-0001-9799-3712
  surname: Ho
  fullname: Ho, Daniel W. C.
  email: madaniel@cityu.edu.hk
  organization: Department of Mathematics, City University of Hong Kong, Hong Kong
– sequence: 3
  givenname: Shengyuan
  orcidid: 0000-0002-3015-0662
  surname: Xu
  fullname: Xu, Shengyuan
  email: syxu@njust.edu.cn
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
BookMark eNp9kU1LAzEQhoNUbP34A3pZ8OKlNZNsPvZYqlah6KEKgoeQ3U3blO2mJqlYf73bD0Q8OJeZw_sMwzzHqFW72iB0DrgHgLPr58fH0bhHMME9inEqCD1AHQKcdAmVsvUzi9c2OgthjpvimPE0O0JtSjikQrAOehtHV8x0iLZIxtG7elqtk4GrP8xn8rSMdmG_dLSuTj6sTm5siN7mq2jK5HbZcMkveuh1aU0dk341dd7G2eIUHU50FczZvp-gl7vb58F9d_Q0fBj0R92CEhm7E8YKoEClziUGCVBKKnhaEgHaMKEhy1leCGwYziEvuWA6k5SnMhMM8mY8QVe7vUvv3lcmRLWwoTBVpWvjVkGRlGBIuWSsiV7-ic7dytfNdYowyjHFjNImJXepwrsQvJmowsbtG6LXtlKA1caB2jpQGwdq76BByR906e1C-_X_0MUOssaYHyCDRhMD-g3n3pGp
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TNNLS_2021_3137010
crossref_primary_10_1016_j_jfranklin_2023_09_001
crossref_primary_10_1109_TAC_2024_3481040
crossref_primary_10_1109_TNNLS_2024_3462516
crossref_primary_10_1002_asjc_3555
crossref_primary_10_1109_TCNS_2023_3281561
crossref_primary_10_1109_TSMC_2022_3200680
crossref_primary_10_1109_TNNLS_2022_3170944
crossref_primary_10_1109_TNNLS_2022_3172450
crossref_primary_10_1007_s11432_020_3275_3
crossref_primary_10_1109_TASE_2025_3599573
crossref_primary_10_1016_j_neucom_2024_128267
crossref_primary_10_1016_j_sigpro_2023_109222
crossref_primary_10_1109_TNNLS_2022_3213715
crossref_primary_10_1109_TNNLS_2020_3027288
crossref_primary_10_1016_j_sysconle_2024_105733
crossref_primary_10_1109_TNNLS_2024_3423720
crossref_primary_10_1109_TNNLS_2024_3423376
crossref_primary_10_1002_asjc_2506
Cites_doi 10.1109/TAC.2011.2167817
10.1109/TAC.2011.2160020
10.1109/TAC.2017.2688452
10.1016/j.sysconle.2004.02.022
10.1109/TNNLS.2016.2549566
10.1109/TCYB.2015.2464255
10.1109/CDC.2018.8619228
10.1109/TAC.2016.2529285
10.1016/j.sysconle.2015.06.006
10.1109/TCYB.2017.2681119
10.1109/TAC.2014.2308612
10.1109/TSMC.2016.2531649
10.1137/15M1048896
10.1109/TAC.2013.2278132
10.1109/TCYB.2015.2453167
10.1109/TAC.2011.2161027
10.1109/TAC.2015.2504962
10.1007/s10957-010-9737-7
10.1109/TAC.2013.2275671
10.1109/TAC.2008.2009515
10.1016/j.automatica.2017.12.053
10.1109/TAC.2014.2309261
10.1109/CDC.2008.4738860
10.1109/TNNLS.2014.2336806
10.1109/TAC.2015.2416927
10.1109/TAC.2010.2041686
10.1109/Allerton.2012.6483272
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2020.3004723
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2357
ExternalDocumentID 10_1109_TNNLS_2020_3004723
9132651
Genre orig-research
GrantInformation_xml – fundername: Natural Science Fund for Excellent Young Scholars of Jiangsu Province
  grantid: BK20170099
  funderid: 10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 61673215
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 30919011105
  funderid: 10.13039/501100012226
– fundername: 333 Project
  grantid: BRA2017380
– fundername: Research Grants Council of the Hong Kong Special Administrative Region, China
  grantid: 11202819; 11200717
  funderid: 10.13039/501100002920
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c328t-f55c13138ab801811d83764d271ae57a19b5bc70e50b1bd675a9836489751b983
IEDL.DBID RIE
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000658349600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 01:17:25 EDT 2025
Sun Nov 09 08:37:33 EST 2025
Tue Nov 18 22:17:19 EST 2025
Sat Nov 29 01:40:07 EST 2025
Wed Aug 27 02:29:54 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-f55c13138ab801811d83764d271ae57a19b5bc70e50b1bd675a9836489751b983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3015-0662
0000-0003-4371-5105
0000-0001-9799-3712
PMID 32614775
PQID 2536030533
PQPubID 85436
PageCount 14
ParticipantIDs proquest_journals_2536030533
ieee_primary_9132651
proquest_miscellaneous_2420146855
crossref_citationtrail_10_1109_TNNLS_2020_3004723
crossref_primary_10_1109_TNNLS_2020_3004723
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref19
mahdavi (ref18) 2012
hazan (ref14) 2014; 15
chen (ref16) 2016
ref24
ref23
ref26
ref25
ref20
ref22
yang (ref17) 2017
ref21
ref28
boucheron (ref29) 2004; 3176
ref8
ref7
ref9
ref4
ref3
ref6
ref5
zhu (ref27) 2012; 57
rakhlin (ref15) 2012
References_xml – volume: 57
  start-page: 151
  year: 2012
  ident: ref27
  article-title: On distributed convex optimization under inequality and equality constraints
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2011.2167817
– ident: ref11
  doi: 10.1109/TAC.2011.2160020
– ident: ref32
  doi: 10.1109/TAC.2017.2688452
– ident: ref30
  doi: 10.1016/j.sysconle.2004.02.022
– start-page: 122
  year: 2016
  ident: ref16
  article-title: Optimal stochastic strongly convex optimization with a logarithmic number of projections
  publication-title: Proc 32nd Conf Uncertainty Artif Intell (UAI)
– ident: ref8
  doi: 10.1109/TNNLS.2016.2549566
– ident: ref26
  doi: 10.1109/TCYB.2015.2464255
– ident: ref24
  doi: 10.1109/CDC.2018.8619228
– ident: ref22
  doi: 10.1109/TAC.2016.2529285
– ident: ref33
  doi: 10.1016/j.sysconle.2015.06.006
– ident: ref13
  doi: 10.1109/TCYB.2017.2681119
– ident: ref25
  doi: 10.1109/TAC.2014.2308612
– ident: ref5
  doi: 10.1109/TSMC.2016.2531649
– volume: 15
  start-page: 2489
  year: 2014
  ident: ref14
  article-title: Beyond the regret minimization barrier: An optimal algorithm for stochastic strongly-convex optimization
  publication-title: J Mach Learn Res
– start-page: 503
  year: 2012
  ident: ref18
  article-title: Stochastic gradient descent with only one projection
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref19
  doi: 10.1137/15M1048896
– volume: 3176
  start-page: 208
  year: 2004
  ident: ref29
  publication-title: Concentration Inequalities
– ident: ref10
  doi: 10.1109/TAC.2013.2278132
– ident: ref12
  doi: 10.1109/TCYB.2015.2453167
– ident: ref3
  doi: 10.1109/TAC.2011.2161027
– ident: ref31
  doi: 10.1109/TAC.2015.2504962
– ident: ref20
  doi: 10.1007/s10957-010-9737-7
– ident: ref9
  doi: 10.1109/TAC.2013.2275671
– ident: ref1
  doi: 10.1109/TAC.2008.2009515
– ident: ref23
  doi: 10.1016/j.automatica.2017.12.053
– ident: ref7
  doi: 10.1109/TAC.2014.2309261
– start-page: 3901
  year: 2017
  ident: ref17
  article-title: A richer theory of convex constrained optimization with reduced projections and improved rates
  publication-title: Proc 34th Int Conf Mach Learn (ICML)
– ident: ref28
  doi: 10.1109/CDC.2008.4738860
– ident: ref6
  doi: 10.1109/TNNLS.2014.2336806
– ident: ref2
  doi: 10.1109/TAC.2015.2416927
– ident: ref4
  doi: 10.1109/TAC.2010.2041686
– ident: ref21
  doi: 10.1109/Allerton.2012.6483272
– start-page: 449
  year: 2012
  ident: ref15
  article-title: Making gradient descent optimal for strongly convex stochastic optimization
  publication-title: Proc 29th Int Conf Mach Learn
SSID ssj0000605649
Score 2.4616108
Snippet This article considers the problem of stochastic strongly convex optimization over a network of multiple interacting nodes. The optimization is under a global...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2344
SubjectTerms Algorithms
Approximation algorithms
Computational geometry
Convergence
Convergence rate
Convex analysis
Convex functions
Convexity
Distributed algorithms
distributed stochastic strongly optimization
epoch gradient descent
inequality constraint
Linear programming
multiagent systems
Nodes
Optimization
Probability theory
Stochastic processes
Stochasticity
Title Stochastic Strongly Convex Optimization via Distributed Epoch Stochastic Gradient Algorithm
URI https://ieeexplore.ieee.org/document/9132651
https://www.proquest.com/docview/2536030533
https://www.proquest.com/docview/2420146855
Volume 32
WOSCitedRecordID wos000658349600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEA6uePCyri8cdSXC3rS1804fxedBxoVRGPDQJOm0DozTMtMzuP9-U5meRlAEb4GkQtOVR1Wl6vsQ-lMSUZaWq6Q0xCS8TE1inLUJlVnhiSuYljaSTahuV_f72d8ldNzWwnjvY_KZP4FmfMsvKjeFUNlpFlwnCfXSP5RS81qtNp6SBrtcRmuXEkkTylR_USOTZqf33e5tL3iDNDipESAR-HPCZIQryDB8dyVFjpUPB3O8ba7Wvvedv9DPxqrEZ_NlsI6W_GgDrS0YG3CzgTfRY6-u3LMBbGbcgyD40_AfPofE8zd8Fw6Pl6YqE88GBl8Api7QYfkCX74GOfxO-nocc8VqfDZ8qsaD-vllCz1cXd6f3yQNvULiGNV1UgrhCCNMG6sBtosUwVmVvKCKGC-UIZkV1qnUi9QSWwTPwmSaSa4zJYgNzW20PKpGfgdhobgOhgj3kpfcEmFl4bjxyrO0VJT6DiKLP5y7BnscKDCGefRB0iyPCspBQXmjoA46amVe58gbX47eBD20IxsVdND-QpF5szknORVMwjnHgtRh2x22FbyVmJGvpmEMpwCro4XY_XzmPbRKIb0lBmT20XI9nvrfaMXN6sFkfBBWaF8fxBX6H3hg4EA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYhKbSXPFuySdqokFvrxnrLx5Bn6cYp7BYWejCSLCcLm3XYeEP776vRek2gpZCbQBphPHrMjGa-D6GjioiqslwllSEm4VVqEuOsTajMSk9cybS0kWxC5bkejbLvK-hzVwvjvY_JZ_4LNONbflm7OYTKjrPgOkmol14TnFOyqNbqIippsMxltHcpkTShTI2WVTJpdjzM8_4g-IM0uKkRIhEYdMJ0hCvIMXx2KUWWlb-O5njfXGy87Es30XprV-KTxULYQit-uo02lpwNuN3CO-jnoKndnQF0ZjyAMPjt5Dc-hdTzX_gmHB_3bV0mfhobfAaoukCI5Ut8_hDk8DPpy1nMFmvwyeS2no2bu_u36MfF-fD0KmkJFhLHqG6SSghHGGHaWA3AXaQM7qrkJVXEeKEMyaywTqVepJbYMvgWJtNMcp0pQWxovkOr03rqdxEWiutginAvecUtEVaWjhuvPEsrRanvIbL8w4Vr0ceBBGNSRC8kzYqooAIUVLQK6qFPnczDAnvjv6N3QA_dyFYFPXSwVGTRbs_Hggom4aRjQepj1x02FryWmKmv52EMpwCso4XY-_fMh-j11fC6X_S_5t_20RsKyS4xPHOAVpvZ3L9Hr9xTM36cfYjr9A8COuKf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Strongly+Convex+Optimization+via+Distributed+Epoch+Stochastic+Gradient+Algorithm&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Yuan%2C+Deming&rft.au=Ho%2C+Daniel+W.+C.&rft.au=Xu%2C+Shengyuan&rft.date=2021-06-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=32&rft.issue=6&rft.spage=2344&rft.epage=2357&rft_id=info:doi/10.1109%2FTNNLS.2020.3004723&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2020_3004723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon