Network-level aircraft trajectory planning via multi-agent deep reinforcement learning: Balancing climate considerations and operational manageability

Optimizing flight trajectories emerges as a viable strategy to mitigate the non-CO2 climate impacts of aviation. However, integrating individually optimized trajectories into the air traffic management system poses operational challenges, notably in terms of traffic safety and complexity. This paper...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 271; s. 126604
Hlavní autori: Baneshi, Fateme, Cerezo-Magaña, María, Soler, Manuel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.05.2025
Predmet:
ISSN:0957-4174
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Optimizing flight trajectories emerges as a viable strategy to mitigate the non-CO2 climate impacts of aviation. However, integrating individually optimized trajectories into the air traffic management system poses operational challenges, notably in terms of traffic safety and complexity. This paper presents a novel cooperative decision-making framework employing multi-agent deep reinforcement learning to plan operationally feasible climate-friendly routes from the perspective of the air traffic management system. The proposed strategy leverages the twin delayed deep deterministic policy gradient (TD3) algorithm to adjust flight trajectories during the planning phase to resolve the potential conflicts associated with climate-optimal trajectories. Addressing the scalability issue inherent in multi-agent environments, we derive a unique policy applicable to arbitrary numbers of concurrently operating aircraft. To handle the non-stationarity of the environment, fully observable critic networks are employed, providing comprehensive situational awareness for each agent during training. The effectiveness of the proposed approach is validated by comparing it against three algorithms and evaluating the derived policy across multiple sets of climate-optimal trajectories over European airspace. The results demonstrate that our framework can effectively mitigate aviation’s climate impact while maintaining operational feasibility. Restricting decision space to only speed changes, up to 80% climate impact reduction is achievable while decreasing potential conflicts by 10% compared to standard business-as-usual trajectories. Notably, without applying the proposed method, obtaining similar climate impact mitigation leads to a substantial increase in the number of conflicts. Enhancing the proposed framework by incorporating additional decision variables such as lateral path and altitude adjustments, as well as other ATM performance indicators relevant to the flight planning phase, can further facilitate the practical implementation of climate-friendly trajectories. •Aviation’s climate effects can be mitigated through climate-aware flight planning.•A dual-step approach is proposed to deliver climatically optimal flight trajectories.•A multi-agent reinforcement learning method is developed to reduce traffic complexity.•A scalable policy applicable to arbitrary numbers of operating aircraft is derived.•The proposed framework balances climate considerations & air traffic manageability.
AbstractList Optimizing flight trajectories emerges as a viable strategy to mitigate the non-CO2 climate impacts of aviation. However, integrating individually optimized trajectories into the air traffic management system poses operational challenges, notably in terms of traffic safety and complexity. This paper presents a novel cooperative decision-making framework employing multi-agent deep reinforcement learning to plan operationally feasible climate-friendly routes from the perspective of the air traffic management system. The proposed strategy leverages the twin delayed deep deterministic policy gradient (TD3) algorithm to adjust flight trajectories during the planning phase to resolve the potential conflicts associated with climate-optimal trajectories. Addressing the scalability issue inherent in multi-agent environments, we derive a unique policy applicable to arbitrary numbers of concurrently operating aircraft. To handle the non-stationarity of the environment, fully observable critic networks are employed, providing comprehensive situational awareness for each agent during training. The effectiveness of the proposed approach is validated by comparing it against three algorithms and evaluating the derived policy across multiple sets of climate-optimal trajectories over European airspace. The results demonstrate that our framework can effectively mitigate aviation’s climate impact while maintaining operational feasibility. Restricting decision space to only speed changes, up to 80% climate impact reduction is achievable while decreasing potential conflicts by 10% compared to standard business-as-usual trajectories. Notably, without applying the proposed method, obtaining similar climate impact mitigation leads to a substantial increase in the number of conflicts. Enhancing the proposed framework by incorporating additional decision variables such as lateral path and altitude adjustments, as well as other ATM performance indicators relevant to the flight planning phase, can further facilitate the practical implementation of climate-friendly trajectories. •Aviation’s climate effects can be mitigated through climate-aware flight planning.•A dual-step approach is proposed to deliver climatically optimal flight trajectories.•A multi-agent reinforcement learning method is developed to reduce traffic complexity.•A scalable policy applicable to arbitrary numbers of operating aircraft is derived.•The proposed framework balances climate considerations & air traffic manageability.
ArticleNumber 126604
Author Cerezo-Magaña, María
Soler, Manuel
Baneshi, Fateme
Author_xml – sequence: 1
  givenname: Fateme
  orcidid: 0000-0001-7963-5188
  surname: Baneshi
  fullname: Baneshi, Fateme
  email: fbaneshi@pa.uc3m.es
– sequence: 2
  givenname: María
  orcidid: 0000-0003-3334-8188
  surname: Cerezo-Magaña
  fullname: Cerezo-Magaña, María
  email: mcerezo@ing.uc3m.es
– sequence: 3
  givenname: Manuel
  orcidid: 0000-0002-4664-1693
  surname: Soler
  fullname: Soler, Manuel
  email: masolera@ing.uc3m.es
BookMark eNp9kEtOwzAQQL0oEm3hAqx8gRTbcZKC2EDFT6pgA2tr4kwqB8eOHNOqF-G8JLQrFl3NR_NGM29GJs47JOSKswVnPL9uFtjvYCGYyBZc5DmTEzJlN1mRSF7IczLr-4YxXjBWTMnPG8adD1-JxS1aCiboAHWkMUCDOvqwp50F54zb0K0B2n7baBLYoIu0QuxoQONqHzS2Y8sihHH2lj7AgOkR09a0EJFq73pTYYBohoyCq6jvjiVY2oIb1kJprIn7C3JWg-3x8hjn5PPp8WP1kqzfn19X9-tEp2IZE0SZcyGhZlzWVVVlIMuyzhiHNGc5E3mZgS61lmkqJaa14FICsqIQKDXPy3ROloe9Ovi-D1grbeLfRYMAYxVnanSqGjU6VaNTdXA6oOIf2oXh0bA_Dd0dIBye2hoMqtcGncbKhEG3qrw5hf8CXgyZ5w
CitedBy_id crossref_primary_10_1016_j_jatrs_2025_100077
Cites_doi 10.1016/j.atmosenv.2020.117834
10.3390/aerospace9030146
10.5194/gmd-16-3723-2023
10.1016/j.trd.2024.104196
10.5194/gmd-16-3313-2023
10.3390/app11114948
10.5194/gmd-13-4869-2020
10.1016/j.trd.2022.103592
10.1007/s10489-022-04105-y
10.1016/j.engappai.2024.108911
10.1109/TITS.2021.3077572
10.1016/j.cja.2021.03.015
10.1016/j.tranpol.2024.06.023
10.1109/TCYB.2020.2977374
10.1016/j.eswa.2023.121234
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2025.126604
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2025_126604
S095741742500226X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSH
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AAYWO
AAYXX
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c328t-ee46124af014fddd5a4bbf501a3606026b5acbcc43344e3f2144ae0772e4c16b3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001422258700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 18 22:18:57 EST 2025
Sat Nov 29 08:01:35 EST 2025
Sat Apr 26 15:42:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-agent deep reinforcement learning
Air traffic management system
Aviation climate impact
Aircraft trajectory planning
Conflict resolution
Twin delayed deep deterministic policy gradient algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-ee46124af014fddd5a4bbf501a3606026b5acbcc43344e3f2144ae0772e4c16b3
ORCID 0000-0003-3334-8188
0000-0001-7963-5188
0000-0002-4664-1693
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2025_126604
crossref_primary_10_1016_j_eswa_2025_126604
elsevier_sciencedirect_doi_10_1016_j_eswa_2025_126604
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Simorgh, Soler, González-Arribas, Matthes, Grewe, Dietmüller (b29) 2022; 9
Group (b14) 2006
Lea Zengerling, Lau (b16) 2024
Ghosh, Laguna, Lim, Wynter, Poonawala (b13) 2020
Ribeiro, M., Ellerbroek, J., & Hoekstra, J. (2020). Improvement of conflict detection and resolution at high densities through reinforcement learning. In
Brittain, Wei (b5) 2021
Dalmau, R., & Allard, E. (2020). Air traffic control using message passing neural networks and multi-agent reinforcement learning. In
Pham, Tran, Alam, Duong, Delahaye (b23) 2022; 135
Canese, Cardarilli, Di Nunzio, Fazzolari, Giardino, Re (b6) 2021; 11
Lee, Fahey, Skowron, Allen, Burkhardt, Chen (b17) 2021; 244
Dong, Weiping, Zhang (b10) 2022; 35
Baneshi, Soler, Simorgh (b3) 2023; 115
Simorgh, Soler, González-Arribas, Linke, Lührs, Meuser (b28) 2023; 16
Baneshi, Cerezo-Magaña, Soler (b2) 2024
Mollinga, van Hoof (b19) 2020
Dietmüller, Matthes, Dahlmann, Yamashita, Simorgh, Soler (b9) 2022; 2022
Nguyen, Nguyen, Nahavandi (b20) 2020; 50
Sutton, Barto (b30) 2018
Airports Council International World (b1) 2023
Fujimoto, Meger, Precup (b12) 2019
(pp. 7–10).
Yin, Grewe, Castino, Rao, Matthes, Dahlmann (b32) 2023; 16
Oroojlooy, Hajinezhad (b21) 2023; 53
Lillicrap, Hunt, Pritzel, Heess, Erez, Tassa (b18) 2015
Razzaghi, Tabrizian, Guo, Chen, Taye, Thompson (b24) 2024; 136
Yamashita, Yin, Grewe, Jöckel, Matthes, Kern (b31) 2020; 13
Papadopoulos, Bastas, Vouros, Crook, Andrienko, Andrienko (b22) 2024; 236
Fujimoto, Hoof, Meger (b11) 2018
.
International Air Transport Association (b15) 2022
Brittain, Wei (b4) 2019
Zhao, Liu (b33) 2021; 23
:
Simorgh, Soler (b26) 2025
Chachuat, B. (2007).
Simorgh, Soler, Dietmüller, Matthes, Yamashita, Castino (b27) 2024; 131
International Air Transport Association (10.1016/j.eswa.2025.126604_b15) 2022
Dietmüller (10.1016/j.eswa.2025.126604_b9) 2022; 2022
10.1016/j.eswa.2025.126604_b25
Group (10.1016/j.eswa.2025.126604_b14) 2006
Airports Council International World (10.1016/j.eswa.2025.126604_b1) 2023
Oroojlooy (10.1016/j.eswa.2025.126604_b21) 2023; 53
Lea Zengerling (10.1016/j.eswa.2025.126604_b16) 2024
Yamashita (10.1016/j.eswa.2025.126604_b31) 2020; 13
Simorgh (10.1016/j.eswa.2025.126604_b29) 2022; 9
Brittain (10.1016/j.eswa.2025.126604_b5) 2021
Ghosh (10.1016/j.eswa.2025.126604_b13) 2020
Nguyen (10.1016/j.eswa.2025.126604_b20) 2020; 50
Pham (10.1016/j.eswa.2025.126604_b23) 2022; 135
10.1016/j.eswa.2025.126604_b7
Simorgh (10.1016/j.eswa.2025.126604_b28) 2023; 16
10.1016/j.eswa.2025.126604_b8
Lillicrap (10.1016/j.eswa.2025.126604_b18) 2015
Zhao (10.1016/j.eswa.2025.126604_b33) 2021; 23
Brittain (10.1016/j.eswa.2025.126604_b4) 2019
Papadopoulos (10.1016/j.eswa.2025.126604_b22) 2024; 236
Canese (10.1016/j.eswa.2025.126604_b6) 2021; 11
Mollinga (10.1016/j.eswa.2025.126604_b19) 2020
Yin (10.1016/j.eswa.2025.126604_b32) 2023; 16
Lee (10.1016/j.eswa.2025.126604_b17) 2021; 244
Dong (10.1016/j.eswa.2025.126604_b10) 2022; 35
Fujimoto (10.1016/j.eswa.2025.126604_b11) 2018
Razzaghi (10.1016/j.eswa.2025.126604_b24) 2024; 136
Baneshi (10.1016/j.eswa.2025.126604_b3) 2023; 115
Simorgh (10.1016/j.eswa.2025.126604_b26) 2025
Simorgh (10.1016/j.eswa.2025.126604_b27) 2024; 131
Sutton (10.1016/j.eswa.2025.126604_b30) 2018
Fujimoto (10.1016/j.eswa.2025.126604_b12) 2019
Baneshi (10.1016/j.eswa.2025.126604_b2) 2024
References_xml – year: 2020
  ident: b13
  article-title: A deep ensemble multi-agent reinforcement learning approach for air traffic control
– year: 2006
  ident: b14
  article-title: Complexity metrics for ANSP benchmarking analysis
  publication-title: Eurocontrol
– reference: Dalmau, R., & Allard, E. (2020). Air traffic control using message passing neural networks and multi-agent reinforcement learning. In
– year: 2025
  ident: b26
  article-title: Pathways to sustainable aviation: Aligning flight plans with climate goals
  publication-title: Communications Earth & Environment
– start-page: 3256
  year: 2019
  end-page: 3262
  ident: b4
  article-title: Autonomous separation assurance in an high-density en route sector: A deep multi-agent reinforcement learning approach
  publication-title: 2019 IEEE intelligent transportation systems conference
– year: 2023
  ident: b1
  article-title: What to expect: Latest air travel outlook reveals short- and long-term demand
– reference: Ribeiro, M., Ellerbroek, J., & Hoekstra, J. (2020). Improvement of conflict detection and resolution at high densities through reinforcement learning. In
– year: 2018
  ident: b30
  article-title: Reinforcement learning: An introduction
– volume: 115
  year: 2023
  ident: b3
  article-title: Conflict assessment and resolution of climate-optimal aircraft trajectories at network scale
  publication-title: Transportation Research Part D: Transport and Environment
– year: 2015
  ident: b18
  article-title: Continuous control with deep reinforcement learning
– volume: 13
  start-page: 4869
  year: 2020
  end-page: 4890
  ident: b31
  article-title: Newly developed aircraft routing options for air traffic simulation in the chemistry–climate model EMAC 2.53: AirTraf 2.0
  publication-title: Geoscientific Model Development
– volume: 135
  year: 2022
  ident: b23
  article-title: Deep reinforcement learning based path stretch vector resolution in dense traffic with uncertainties
  publication-title: Transportation Research Part C (Emerging Technologies)
– start-page: 1587
  year: 2018
  end-page: 1596
  ident: b11
  article-title: Addressing function approximation error in actor-critic methods
  publication-title: International conference on machine learning
– volume: 16
  start-page: 3723
  year: 2023
  end-page: 3748
  ident: b28
  article-title: Robust 4D climate-optimal flight planning in structured airspace using parallelized simulation on GPUs: ROOST V1. 0
  publication-title: Geoscientific Model Development
– volume: 236
  year: 2024
  ident: b22
  article-title: Deep reinforcement learning in service of air traffic controllers to resolve tactical conflicts
  publication-title: Expert Systems with Applications
– volume: 131
  year: 2024
  ident: b27
  article-title: Robust 4D climate-optimal aircraft trajectory planning under weather-induced uncertainties: Free-routing airspace
  publication-title: Transportation Research Part D: Transport and Environment
– reference: (pp. 7–10).
– year: 2024
  ident: b2
  article-title: Integrating Non-CO2 climate impact considerations in air traffic management: Opportunities and challenges
  publication-title: Transport Policy
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 33
  ident: b9
  article-title: A python library for computing individual and merged non-CO
  publication-title: Geoscientific Model Development Discussions
– volume: 53
  start-page: 13677
  year: 2023
  end-page: 13722
  ident: b21
  article-title: A review of cooperative multi-agent deep reinforcement learning
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
– volume: 136
  year: 2024
  ident: b24
  article-title: A survey on reinforcement learning in aviation applications
  publication-title: Engineering Applications of Artificial Intelligence
– reference: :
– year: 2022
  ident: b15
  article-title: Air passenger numbers to recover in 2024
– reference: Chachuat, B. (2007).
– volume: 23
  start-page: 8288
  year: 2021
  end-page: 8301
  ident: b33
  article-title: Physics informed deep reinforcement learning for aircraft conflict resolution
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 1952
  year: 2021
  ident: b5
  article-title: One to any: Distributed conflict resolution with deep multi-agent reinforcement learning and long short-term memory
  publication-title: AIAA scitech 2021 forum
– reference: .
– volume: 244
  year: 2021
  ident: b17
  article-title: The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018
  publication-title: Atmospheric Environment
– volume: 35
  start-page: 195
  year: 2022
  end-page: 213
  ident: b10
  article-title: Study on the resolution of multi-aircraft flight conflicts based on an IDQN
  publication-title: Chinese Journal of Aeronautics
– volume: 9
  start-page: 146
  year: 2022
  ident: b29
  article-title: A comprehensive survey on climate optimal aircraft trajectory planning
  publication-title: Aerospace
– volume: 11
  start-page: 4948
  year: 2021
  ident: b6
  article-title: Multi-agent reinforcement learning: A review of challenges and applications
  publication-title: Applied Sciences
– volume: 16
  start-page: 3313
  year: 2023
  end-page: 3334
  ident: b32
  article-title: Predicting the climate impact of aviation for en-route emissions: the algorithmic climate change function submodel ACCF 1.0 of EMAC 2.53
  publication-title: Geoscientific Model Development
– year: 2020
  ident: b19
  article-title: An autonomous free airspace en-route controller using deep reinforcement learning techniques
– year: 2024
  ident: b16
  article-title: Reducing the Climate Impact of Flight Trajectories considering Network Effects
  publication-title: SESAR Innovation Days
– volume: 50
  start-page: 3826
  year: 2020
  end-page: 3839
  ident: b20
  article-title: Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications
  publication-title: IEEE Transactions on Cybernetics
– start-page: 2052
  year: 2019
  end-page: 2062
  ident: b12
  article-title: Off-policy deep reinforcement learning without exploration
  publication-title: International conference on machine learning
– volume: 2022
  start-page: 1
  year: 2022
  ident: 10.1016/j.eswa.2025.126604_b9
  article-title: A python library for computing individual and merged non-CO2 algorithmic climate change functions: CLIMaCCF V1.0
  publication-title: Geoscientific Model Development Discussions
– year: 2020
  ident: 10.1016/j.eswa.2025.126604_b13
– volume: 244
  year: 2021
  ident: 10.1016/j.eswa.2025.126604_b17
  article-title: The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2020.117834
– start-page: 1587
  year: 2018
  ident: 10.1016/j.eswa.2025.126604_b11
  article-title: Addressing function approximation error in actor-critic methods
– volume: 9
  start-page: 146
  issue: 3
  year: 2022
  ident: 10.1016/j.eswa.2025.126604_b29
  article-title: A comprehensive survey on climate optimal aircraft trajectory planning
  publication-title: Aerospace
  doi: 10.3390/aerospace9030146
– year: 2023
  ident: 10.1016/j.eswa.2025.126604_b1
– year: 2015
  ident: 10.1016/j.eswa.2025.126604_b18
– volume: 16
  start-page: 3723
  issue: 13
  year: 2023
  ident: 10.1016/j.eswa.2025.126604_b28
  article-title: Robust 4D climate-optimal flight planning in structured airspace using parallelized simulation on GPUs: ROOST V1. 0
  publication-title: Geoscientific Model Development
  doi: 10.5194/gmd-16-3723-2023
– ident: 10.1016/j.eswa.2025.126604_b7
– volume: 135
  year: 2022
  ident: 10.1016/j.eswa.2025.126604_b23
  article-title: Deep reinforcement learning based path stretch vector resolution in dense traffic with uncertainties
  publication-title: Transportation Research Part C (Emerging Technologies)
– year: 2025
  ident: 10.1016/j.eswa.2025.126604_b26
  article-title: Pathways to sustainable aviation: Aligning flight plans with climate goals
  publication-title: Communications Earth & Environment
– year: 2022
  ident: 10.1016/j.eswa.2025.126604_b15
– volume: 131
  year: 2024
  ident: 10.1016/j.eswa.2025.126604_b27
  article-title: Robust 4D climate-optimal aircraft trajectory planning under weather-induced uncertainties: Free-routing airspace
  publication-title: Transportation Research Part D: Transport and Environment
  doi: 10.1016/j.trd.2024.104196
– volume: 16
  start-page: 3313
  issue: 11
  year: 2023
  ident: 10.1016/j.eswa.2025.126604_b32
  article-title: Predicting the climate impact of aviation for en-route emissions: the algorithmic climate change function submodel ACCF 1.0 of EMAC 2.53
  publication-title: Geoscientific Model Development
  doi: 10.5194/gmd-16-3313-2023
– year: 2020
  ident: 10.1016/j.eswa.2025.126604_b19
– volume: 11
  start-page: 4948
  issue: 11
  year: 2021
  ident: 10.1016/j.eswa.2025.126604_b6
  article-title: Multi-agent reinforcement learning: A review of challenges and applications
  publication-title: Applied Sciences
  doi: 10.3390/app11114948
– start-page: 3256
  year: 2019
  ident: 10.1016/j.eswa.2025.126604_b4
  article-title: Autonomous separation assurance in an high-density en route sector: A deep multi-agent reinforcement learning approach
– year: 2024
  ident: 10.1016/j.eswa.2025.126604_b16
  article-title: Reducing the Climate Impact of Flight Trajectories considering Network Effects
  publication-title: SESAR Innovation Days
– volume: 13
  start-page: 4869
  issue: 10
  year: 2020
  ident: 10.1016/j.eswa.2025.126604_b31
  article-title: Newly developed aircraft routing options for air traffic simulation in the chemistry–climate model EMAC 2.53: AirTraf 2.0
  publication-title: Geoscientific Model Development
  doi: 10.5194/gmd-13-4869-2020
– volume: 115
  year: 2023
  ident: 10.1016/j.eswa.2025.126604_b3
  article-title: Conflict assessment and resolution of climate-optimal aircraft trajectories at network scale
  publication-title: Transportation Research Part D: Transport and Environment
  doi: 10.1016/j.trd.2022.103592
– volume: 53
  start-page: 13677
  issue: 11
  year: 2023
  ident: 10.1016/j.eswa.2025.126604_b21
  article-title: A review of cooperative multi-agent deep reinforcement learning
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
  doi: 10.1007/s10489-022-04105-y
– year: 2018
  ident: 10.1016/j.eswa.2025.126604_b30
– start-page: 1952
  year: 2021
  ident: 10.1016/j.eswa.2025.126604_b5
  article-title: One to any: Distributed conflict resolution with deep multi-agent reinforcement learning and long short-term memory
– ident: 10.1016/j.eswa.2025.126604_b25
– year: 2006
  ident: 10.1016/j.eswa.2025.126604_b14
  article-title: Complexity metrics for ANSP benchmarking analysis
  publication-title: Eurocontrol
– volume: 136
  year: 2024
  ident: 10.1016/j.eswa.2025.126604_b24
  article-title: A survey on reinforcement learning in aviation applications
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2024.108911
– start-page: 2052
  year: 2019
  ident: 10.1016/j.eswa.2025.126604_b12
  article-title: Off-policy deep reinforcement learning without exploration
– ident: 10.1016/j.eswa.2025.126604_b8
– volume: 23
  start-page: 8288
  issue: 7
  year: 2021
  ident: 10.1016/j.eswa.2025.126604_b33
  article-title: Physics informed deep reinforcement learning for aircraft conflict resolution
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2021.3077572
– volume: 35
  start-page: 195
  issue: 2
  year: 2022
  ident: 10.1016/j.eswa.2025.126604_b10
  article-title: Study on the resolution of multi-aircraft flight conflicts based on an IDQN
  publication-title: Chinese Journal of Aeronautics
  doi: 10.1016/j.cja.2021.03.015
– year: 2024
  ident: 10.1016/j.eswa.2025.126604_b2
  article-title: Integrating Non-CO2 climate impact considerations in air traffic management: Opportunities and challenges
  publication-title: Transport Policy
  doi: 10.1016/j.tranpol.2024.06.023
– volume: 50
  start-page: 3826
  issue: 9
  year: 2020
  ident: 10.1016/j.eswa.2025.126604_b20
  article-title: Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2020.2977374
– volume: 236
  year: 2024
  ident: 10.1016/j.eswa.2025.126604_b22
  article-title: Deep reinforcement learning in service of air traffic controllers to resolve tactical conflicts
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121234
SSID ssj0017007
Score 2.4676454
Snippet Optimizing flight trajectories emerges as a viable strategy to mitigate the non-CO2 climate impacts of aviation. However, integrating individually optimized...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126604
SubjectTerms Air traffic management system
Aircraft trajectory planning
Aviation climate impact
Conflict resolution
Multi-agent deep reinforcement learning
Twin delayed deep deterministic policy gradient algorithm
Title Network-level aircraft trajectory planning via multi-agent deep reinforcement learning: Balancing climate considerations and operational manageability
URI https://dx.doi.org/10.1016/j.eswa.2025.126604
Volume 271
WOSCitedRecordID wos001422258700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2FlgUb3ojy0izYWVP5MY5tdm1pBUhESC1SdtbM5FpKlDqR64bCh7DiY7nzsuOCKkBiYyVWxo5yT8Z37pxzDyGvOYRVXqmCVZApxlOZsiIRkhUxYLoAWZxXoTGbyCaTfDotPo1GP7wWZrPM6jq_uirW_zXUeA6DraWzfxHu7qJ4Al9j0PGIYcfjHwV-YondbKnpQIGYN6oRVau9IBamQv9VO0cbo6JgMxeWUciEVlgFM4B10IBppqpM3dC7ShhR9KGmQSqj0l3OMdM1RHdj9-n4dLoIv1q7t1qWYrg1thP4YPvYNFhuXRtpL7Db2krv66s4Exvb4eAE73feofAIGvi2Yro9tt7qP4yEEx6Zjf-33bPmdOWUjh9FfenUAa7GEac9o9AW3rz4pmc62QpmxnhkTX78ZB5bQ5dfHgy2RrHYh4svuttUnO5HmJpY5-NrDbdP9YX1dTE7xAxnPL1FduMsLXDO3D14fzz90O1SZaGV4_sv4kRZlj94_U6_T3y2kpmz--SuW4XQA4ueB2QE9UNyzzt8UDfhPyLfB2CiHky0BxP1YKIIJroFJqrBRAdgoh5Mb2gHJeqgRIdQogglugUlOoDSY_L55Pjs6B1zTh5MJXHeMgCOmTQXFS7Iq9lslgouZZWGkUhwAR3GY5kKJZXiScI5JJXu4ycgxJUfcBWNZfKE7NSrGp4SysNcyEIVMVc5F6kshIJCYdodyxlEIPdI5H_mUrk299ptZVl6PuOi1KEpdWhKG5o9EnRj1rbJy42fTn30Spem2vSzRLDdMO7ZP457Tu70_4kXZKdtLuElua027fyieeUw-RPffcG5
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network-level+aircraft+trajectory+planning+via+multi-agent+deep+reinforcement+learning%3A+Balancing+climate+considerations+and+operational+manageability&rft.jtitle=Expert+systems+with+applications&rft.au=Baneshi%2C+Fateme&rft.au=Cerezo-Maga%C3%B1a%2C+Mar%C3%ADa&rft.au=Soler%2C+Manuel&rft.date=2025-05-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=271&rft_id=info:doi/10.1016%2Fj.eswa.2025.126604&rft.externalDocID=S095741742500226X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon