Minimum area polygons with two reflex angles enclosing k Points

We present in this paper, algorithms for finding the minimum area isothetic polygons having two reflex angles containing k points; (k<n) Our algorithms are based on line sweep paradigm. The idea is to enumerate all the polygons in each kind and find the minimum one. We also analyse the complexiti...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer mathematics Vol. 77; no. 4; pp. 507 - 522
Main Authors: Krithivasan, Kamala, Srilakshmi, Vanam
Format: Journal Article
Language:English
Published: Abingdon Gordon and Breach Science Publishers 01.01.2001
Taylor and Francis
Subjects:
ISSN:0020-7160, 1029-0265
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present in this paper, algorithms for finding the minimum area isothetic polygons having two reflex angles containing k points; (k<n) Our algorithms are based on line sweep paradigm. The idea is to enumerate all the polygons in each kind and find the minimum one. We also analyse the complexities of each of the algorithms. We find that out of the four orthogonal polygons with two reflex angles, three are orthoconvex and the algorithms presented for these polygons work in time, where n could be O(n-k) 3 in the worst case. The algorithm for the non-orthoconvex polygon has a complexity of where n could be O((n-k) 3 n) in the worst case.
AbstractList We present in this paper, algorithms for finding the minimum area isothetic polygons having two reflex angles containing k points; (k<n) Our algorithms are based on line sweep paradigm. The idea is to enumerate all the polygons in each kind and find the minimum one. We also analyse the complexities of each of the algorithms. We find that out of the four orthogonal polygons with two reflex angles, three are orthoconvex and the algorithms presented for these polygons work in time, where n could be O(n-k) 3 in the worst case. The algorithm for the non-orthoconvex polygon has a complexity of where n could be O((n-k) 3 n) in the worst case.
Author Krithivasan, Kamala
Srilakshmi, Vanam
Author_xml – sequence: 1
  givenname: Kamala
  surname: Krithivasan
  fullname: Krithivasan, Kamala
  email: kamala@iitm.ernet.in
  organization: Department of Computer Science , Indian Institute of Technology
– sequence: 2
  givenname: Vanam
  surname: Srilakshmi
  fullname: Srilakshmi, Vanam
  organization: Department of Computer Science , Indian Institute of Technology
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14060931$$DView record in Pascal Francis
BookMark eNqFkEtLAzEUhYNUsK3-AHfZuBy9ycxkMiCIFF9Q0YWuhzST1GgmKUlk2n_vlCouiri6XM757uNM0Mh5pxA6JXBOgMMFAIWKMBgaDiVwcoDGBGidAWXlCI23erY1HKFJjO8AwOuKjdHVo3Gm--ywCErglbebpXcR9ya94dR7HJS2ao2FW1oVsXLS-mjcEn_gZ29cisfoUAsb1cl3naLX25uX2X02f7p7mF3PM5lTnjK1oJIxrjWDouUgS0ratmR6QSvRas1JocSiEsXwQ6VrRWU1yHVJ20KWXNWQT9HZbu5KRCmsDsJJE5tVMJ0Im4YUwKDOyeAjO58MPsbh-l8LNNukmr2kBqbaMcZpHzrR-2DbJomN9eFn0R7VpHUayMt_yfzvxV8FTYIR
CODEN IJCMAT
Cites_doi 10.1007/978-1-4612-1098-6
10.1515/9780773591134-006
10.1016/0196-6774(91)90022-Q
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2001
2002 INIST-CNRS
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2001
– notice: 2002 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1080/00207160108805081
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
Mathematics
EISSN 1029-0265
EndPage 522
ExternalDocumentID 14060931
10_1080_00207160108805081
8805081
GroupedDBID -~X
.7F
.QJ
0BK
0R~
1TA
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABUFD
ABXUL
ABXYU
ACAGQ
ACGEJ
ACGFS
ACGOD
ACIWK
ACNCT
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AMVHM
AQTUD
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
DU5
EBS
EJD
ESX
E~A
E~B
GTTXZ
H13
HZ~
H~P
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
QCRFL
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
VH1
WH7
ZGOLN
~S~
.4S
.DC
07G
29J
AAIKQ
AAKBW
AAYJJ
AAYXX
ABDBF
ABEFU
ACGEE
ACTCW
ACTIO
ACUHS
AEUMN
AFFNX
AGCQS
AGLEN
AMXXU
AQRUH
ARCSS
BCCOT
BPLKW
C06
CITATION
DWIFK
EAP
EDO
EMK
EPL
EST
HF~
H~9
IPNFZ
IVXBP
LJTGL
MK~
NUSFT
RIG
TAQ
TFMCV
TUS
UB9
UU8
V3K
V4Q
ZY4
ADYSH
IQODW
ID FETCH-LOGICAL-c328t-eb2c668ff604d80c521dd56fb27adff814eab7a40717f9e2c7dd5952d4c58e903
IEDL.DBID TFW
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000174190400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7160
IngestDate Mon Jul 21 09:15:57 EDT 2025
Sat Nov 29 02:21:27 EST 2025
Mon May 13 12:10:04 EDT 2019
Mon Oct 20 23:45:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Computational geometry
Isothetic polygon
Minimum area polygon
Computational complexity
Optimization
Orthoconvex polygon
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-eb2c668ff604d80c521dd56fb27adff814eab7a40717f9e2c7dd5952d4c58e903
PageCount 16
ParticipantIDs informaworld_taylorfrancis_310_1080_00207160108805081
pascalfrancis_primary_14060931
crossref_primary_10_1080_00207160108805081
PublicationCentury 2000
PublicationDate 1/1/2001
2001-01-00
2001
PublicationDateYYYYMMDD 2001-01-01
PublicationDate_xml – month: 01
  year: 2001
  text: 1/1/2001
  day: 01
PublicationDecade 2000
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of computer mathematics
PublicationYear 2001
Publisher Gordon and Breach Science Publishers
Taylor and Francis
Publisher_xml – name: Gordon and Breach Science Publishers
– name: Taylor and Francis
References O'Rourke J. (CIT0008) 1987
Jeyalakshmi S. (CIT0005) 1998
CIT0001
Datta A. (CIT0002) 1993; 709
CIT0003
Preperata F.P. (CIT0009) 1985
CIT0004
CIT0007
CIT0006
References_xml – ident: CIT0003
– volume-title: Computational Geometry-An Introduction
  year: 1985
  ident: CIT0009
  doi: 10.1007/978-1-4612-1098-6
– volume-title: Minimum L-shaped polygons enclosing fc-subsets of a point set
  year: 1998
  ident: CIT0005
– ident: CIT0006
– volume-title: Art Gallery Theorems and Algorithms
  year: 1987
  ident: CIT0008
– ident: CIT0004
– ident: CIT0007
  doi: 10.1515/9780773591134-006
– volume: 709
  start-page: 265
  volume-title: Lecture Notes in Computer Science
  year: 1993
  ident: CIT0002
– ident: CIT0001
  doi: 10.1016/0196-6774(91)90022-Q
SSID ssj0008976
Score 1.5223916
Snippet We present in this paper, algorithms for finding the minimum area isothetic polygons having two reflex angles containing k points; (k<n) Our algorithms are...
SourceID pascalfrancis
crossref
informaworld
SourceType Index Database
Enrichment Source
Publisher
StartPage 507
SubjectTerms Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science; control theory; systems
Convex and discrete geometry
Exact sciences and technology
F.2.2[Analysis of Algorithms and Problem Complexity]
Geometry
I.3.5[Computational Geometry and Object Modeling]
Isothetic polygon with reflex angles
Line sweep paradigm
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Minimum area polygon
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Optimization problem
Orthoconvex polygon
Polygon enclosing points
Sciences and techniques of general use
Theoretical computing
Title Minimum area polygons with two reflex angles enclosing k Points
URI https://www.tandfonline.com/doi/abs/10.1080/00207160108805081
Volume 77
WOSCitedRecordID wos000174190400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1029-0265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008976
  issn: 0020-7160
  databaseCode: TFW
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQxcBCeYryqDwwIUXKq449IYSoWKg6FNEtsh27ikiTqkmh_HvOeZQWUAeQssV2rLuz7_vsyx1C14R7ESWOtIgkQFAiJizOhGcFnFBpECrhoiw2EQwGdDxmwzo2J6_DKg2H1lWiiHKvNoubi7yJiDN_cINjNEwCjA8AhiE_4PbNshz1X1b7MGVlaTnT2jLNmzvN30bY8EobOUtNsCTPQV66KnSx5n367X_O-wDt17AT31V2coh2VHqE2k1JB1yv8GN0-xSn8XQxxRzAJJ5lyccEzBKb01pcvGcYZp6oJebpJFE5hj5JZg4b8CseZnFa5Cfouf8wun-06hoLlvRcWlhArCUhVGti-xG1JXjzKOoRLdyAR1pTx1dcBLykfZopVwbwmvXcyJc9qpjtnaJWmqXqDGHXVrCzAruVzPY97XIlROQFIgAroQAFOuimkXE4q1JphM4qQ-k30XSQva6FsCjPL2od_GweFsuig3pbunhbPtXd0PDX5ADs2Mxzzv848AXaqyLWzHOJWsV8oa7Qrnwr4nzeLY31E96t5j8
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QIMGF8RTjMXLghFSpjzVNTgghpiG2aYchdqvSNJkmtnZaOxj_HqePsQHaAaTemqSR7dj-HNdG6JpwJ6TEEgYRBABKyAKDs8AxPE6o0B4q4UHWbMLrdGi_z7pFwC0p0io1hlZ5oYhMV-vDrYPRZUqc_oUbLKOGEiB94GEA-tlywc7q2vm9xstCE1OWNZfTww09vrzV_G2JFbu0UrVUp0vyBCim8lYXS_anUfnvzvfRXuF54rtcVA7QhowOUaXs6oCLQ36EbtvDaDiejTEHfxJP4tHHACQT64AtTt9jDFsfyTnm0WAkEwxzRrGON-BX3I2HUZoco-fGQ---aRRtFgzh2DQ1AFsLQqhSxKyH1BRg0MPQJSqwPR4qRa265IHHM-SnmLSFB6-Za4d14VLJTOcEbUZxJE8Rtk0JyhUArmBm3VE2l0EQOl7ggaBQ8Aaq6KYksj_Jq2n41qJI6TfSVJG5zAY_zUIYBRN-DvfTeVpF7popzppP1VZY_LU58HdM5lhnf1z4Cu00e-2W33rsPJ2j3TyBTT8XaDOdzuQl2hZv6TCZ1jLJ_QR8aupp
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQIMRCeYryKB6YkCKlSevYE0JABAKqDkV0ixw_qoo2qZoUyr_nnEdpAXUAKVtsx_Kd777PvtwhdE64KympC4sIAgRFstDiLHQtjxMqDEIlPMyKTXitFu12WbuIzUmKsErDoXWeKCKz1WZzj6QuI-LMH9zgGA2TAOUDgAHkZw1gMzEK3vFfZoaYsqy2nGlumfblpeZvQyy4pYWkpSZakiewYDqvdDHnfvzKPye-jbYK3ImvckXZQSsq2kWVsqYDLrb4Hrp86kf94WSIOaBJPIoHHz3QS2yOa3H6HmOY-UBNMY96A5Vg6DOIzWkDfsXtuB-lyT569m8713dWUWTBEq5DUwuYtSCEak3shqS2AHcuZZPo0PG41JrWG4qHHs94n2bKER68Zk1HNkSTKma7B2g1iiN1iLBjKzCtQG8FsxuudrgKQ-l6oQdqQgELVNFFucbBKM-lEdRnKUq_LU0V2fNSCNLsAKOQwc_mQTpNq6i5pIu75FO1BQl_TQ7Qjs3c-tEfBz5DG-0bP3i8bz0co808es08J2g1HU_UKVoXb2k_Gdcyvf0EycfpGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimum+area+polygons+with+two+reflex+angles+enclosing+k+points&rft.jtitle=International+journal+of+computer+mathematics&rft.au=KRITHIVASAN%2C+Kamala&rft.au=SRILAKSHMI%2C+Vanam&rft.date=2001&rft.pub=Taylor+and+Francis&rft.issn=0020-7160&rft.volume=77&rft.issue=4&rft.spage=507&rft.epage=522&rft_id=info:doi/10.1080%2F00207160108805081&rft.externalDBID=n%2Fa&rft.externalDocID=14060931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon