Efficient Active Learning by Querying Discriminative and Representative Samples and Fully Exploiting Unlabeled Data
Active learning is an important learning paradigm in machine learning and data mining, which aims to train effective classifiers with as few labeled samples as possible. Querying discriminative (informative) and representative samples are the state-of-the-art approach for active learning. Fully util...
Saved in:
| Published in: | IEEE transaction on neural networks and learning systems Vol. 32; no. 9; pp. 4111 - 4122 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!