Efficient Active Learning by Querying Discriminative and Representative Samples and Fully Exploiting Unlabeled Data

Active learning is an important learning paradigm in machine learning and data mining, which aims to train effective classifiers with as few labeled samples as possible. Querying discriminative (informative) and representative samples are the state-of-the-art approach for active learning. Fully util...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 32; H. 9; S. 4111 - 4122
Hauptverfasser: Gu, Bin, Zhai, Zhou, Deng, Cheng, Huang, Heng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!