General Type-2 Fuzzy C-Means Algorithm for Uncertain Fuzzy Clustering

Pattern recognition in real-world data is subject to various sources of uncertainty that should be appropriately managed. The focus of this paper is the management of uncertainty associated with parameters of fuzzy clustering algorithms. Type-2 fuzzy sets (T2 FSs) have received increased research in...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on fuzzy systems Vol. 20; no. 5; pp. 883 - 897
Main Authors: Linda, O., Manic, M.
Format: Journal Article
Language:English
Published: New York IEEE 01.10.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1063-6706, 1941-0034
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Pattern recognition in real-world data is subject to various sources of uncertainty that should be appropriately managed. The focus of this paper is the management of uncertainty associated with parameters of fuzzy clustering algorithms. Type-2 fuzzy sets (T2 FSs) have received increased research interest over the past decade, primarily due to their potential to model various uncertainties. However, because of the computational intensity of the processing of general T2 fuzzy sets (GT2 FSs), only their constrained version, i.e., the interval T2 (IT2) FSs, were typically used. Fortunately, the recently introduced concepts of α-planes and zSlices allow for efficient representation and computation with GT2 FSs. Following this recent development, this paper presents a novel approach for uncertain fuzzy clustering using the general type-2 fuzzy C-means (GT2 FCM) algorithm. The proposed method builds on top of the previously published IT2 FCM algorithm, which is extended via the α- planes representation theorem. The fuzzifier parameter of the FCM algorithm can be expressed using linguistic terms such as "small" or "high," which are modeled as T1 FSs. This linguistic fuzzifier value is then used to construct the GT2 FCM cluster membership functions. The linguistic uncertainty is transformed into uncertain fuzzy positions of the extracted clusters. The GT2 FCM algorithm was found to balance the performance of T1 FCM algorithms in various uncertain pattern recognition tasks and to provide increased robustness in situations where noisy or insufficient training data are present.
AbstractList Pattern recognition in real-world data is subject to various sources of uncertainty that should be appropriately managed. The focus of this paper is the management of uncertainty associated with parameters of fuzzy clustering algorithms. Type-2 fuzzy sets (T2 FSs) have received increased research interest over the past decade, primarily due to their potential to model various uncertainties. However, because of the computational intensity of the processing of general T2 fuzzy sets (GT2 FSs), only their constrained version, i.e., the interval T2 (IT2) FSs, were typically used. Fortunately, the recently introduced concepts of alpha -planes and zSlices allow for efficient representation and computation with GT2 FSs. Following this recent development, this paper presents a novel approach for uncertain fuzzy clustering using the general type-2 fuzzy C-means (GT2 FCM) algorithm. The proposed method builds on top of the previously published IT2 FCM algorithm, which is extended via the alpha - planes representation theorem. The fuzzifier parameter of the FCM algorithm can be expressed using linguistic terms such as "small" or "high," which are modeled as T1 FSs. This linguistic fuzzifier value is then used to construct the GT2 FCM cluster membership functions. The linguistic uncertainty is transformed into uncertain fuzzy positions of the extracted clusters. The GT2 FCM algorithm was found to balance the performance of T1 FCM algorithms in various uncertain pattern recognition tasks and to provide increased robustness in situations where noisy or insufficient training data are present.
Pattern recognition in real-world data is subject to various sources of uncertainty that should be appropriately managed. The focus of this paper is the management of uncertainty associated with parameters of fuzzy clustering algorithms. Type-2 fuzzy sets (T2 FSs) have received increased research interest over the past decade, primarily due to their potential to model various uncertainties. However, because of the computational intensity of the processing of general T2 fuzzy sets (GT2 FSs), only their constrained version, i.e., the interval T2 (IT2) FSs, were typically used. Fortunately, the recently introduced concepts of α-planes and zSlices allow for efficient representation and computation with GT2 FSs. Following this recent development, this paper presents a novel approach for uncertain fuzzy clustering using the general type-2 fuzzy C-means (GT2 FCM) algorithm. The proposed method builds on top of the previously published IT2 FCM algorithm, which is extended via the α- planes representation theorem. The fuzzifier parameter of the FCM algorithm can be expressed using linguistic terms such as "small" or "high," which are modeled as T1 FSs. This linguistic fuzzifier value is then used to construct the GT2 FCM cluster membership functions. The linguistic uncertainty is transformed into uncertain fuzzy positions of the extracted clusters. The GT2 FCM algorithm was found to balance the performance of T1 FCM algorithms in various uncertain pattern recognition tasks and to provide increased robustness in situations where noisy or insufficient training data are present.
Author Manic, M.
Linda, O.
Author_xml – sequence: 1
  givenname: O.
  surname: Linda
  fullname: Linda, O.
  email: olinda@uidaho.edu
  organization: Dept. of Comput. Sci., Univ. of Idaho, Idaho Falls, ID, USA
– sequence: 2
  givenname: M.
  surname: Manic
  fullname: Manic, M.
  email: misko@ieee.org
  organization: Dept. of Comput. Sci., Univ. of Idaho, Idaho Falls, ID, USA
BookMark eNp9kTFPAyEYQInRRKv-AV0ucXG5ygccHKNpWjXRuLSLy4XS75TmylW4G9pfL7Xq0MGBwPAe4XsMyLFvPRJyBXQIQPXddDJ7exsyCmzIoFSi4EfkDLSAnFIujtOZSp5LReUpGcS4pBREAeUZGT-gx2CabLpZY86ySb_dbrJR_oLGx-y-eW-D6z5WWd2GbOYths44_0s1fewwOP9-QU5q00S8_NnPyWwyno4e8-fXh6fR_XNuOSu7HEuDrKCWgxAWFK9rmZaixRxsoedcS6GtMqqsSy1VobmRCrSypVjUEhacn5Pb_b3r0H72GLtq5aLFpjEe2z5WwHbTKwU79OYAXbZ98Ol1VQpWCCG5Fokq95QNbYwB68q6znSu9V0wrklotetbffetdn2rn75JZQfqOriVCZv_peu95BDxT5CQ_oJx_gVlD4aG
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_ins_2016_03_026
crossref_primary_10_1007_s12555_016_0569_6
crossref_primary_10_1109_TFUZZ_2017_2785244
crossref_primary_10_1016_j_eswa_2017_02_046
crossref_primary_10_1016_j_fss_2019_09_009
crossref_primary_10_1016_j_jocs_2022_101840
crossref_primary_10_1109_TFUZZ_2019_2955892
crossref_primary_10_1016_j_fss_2017_03_015
crossref_primary_10_1109_TFUZZ_2019_2956900
crossref_primary_10_1007_s40314_019_1008_0
crossref_primary_10_1016_j_patcog_2018_04_006
crossref_primary_10_3390_math9192383
crossref_primary_10_1080_13682199_2018_1549694
crossref_primary_10_1109_TIA_2021_3108413
crossref_primary_10_1016_j_eswa_2017_08_041
crossref_primary_10_1016_j_asoc_2014_04_025
crossref_primary_10_1109_JBHI_2018_2884208
crossref_primary_10_1109_TFUZZ_2018_2858740
crossref_primary_10_1109_TFUZZ_2021_3051355
crossref_primary_10_3233_IDA_173365
crossref_primary_10_1007_s00521_017_3144_z
crossref_primary_10_1016_j_compag_2018_06_007
crossref_primary_10_1016_j_compbiomed_2014_06_017
crossref_primary_10_1177_0954406214526585
crossref_primary_10_1002_mma_8492
crossref_primary_10_1109_ACCESS_2020_3005666
crossref_primary_10_1016_j_ijar_2018_07_008
crossref_primary_10_1016_j_isatra_2020_12_008
crossref_primary_10_1016_j_ins_2020_10_062
crossref_primary_10_1016_j_ins_2020_02_002
crossref_primary_10_1016_j_fss_2019_07_011
crossref_primary_10_1109_TCYB_2020_2994235
crossref_primary_10_3390_machines2040275
crossref_primary_10_1109_TFUZZ_2016_2637403
crossref_primary_10_1016_j_fss_2018_02_012
crossref_primary_10_1080_23248378_2015_1015222
crossref_primary_10_1109_TFUZZ_2013_2250290
crossref_primary_10_1109_TFUZZ_2020_2969907
crossref_primary_10_1016_j_eswa_2015_03_031
crossref_primary_10_1016_j_ins_2014_02_066
crossref_primary_10_1109_TCYB_2022_3163350
crossref_primary_10_1016_j_ins_2013_04_032
crossref_primary_10_1109_TFUZZ_2015_2500274
crossref_primary_10_3390_a13070158
crossref_primary_10_1016_j_ijhydene_2020_08_261
crossref_primary_10_1109_TCYB_2019_2906658
crossref_primary_10_1016_j_swevo_2019_01_001
crossref_primary_10_1109_TFUZZ_2013_2255613
crossref_primary_10_1016_j_ins_2015_08_027
crossref_primary_10_1109_TFUZZ_2013_2255612
crossref_primary_10_3390_land14061242
crossref_primary_10_1007_s10462_022_10380_5
crossref_primary_10_1016_j_ins_2017_03_001
crossref_primary_10_1007_s00500_015_1712_7
crossref_primary_10_1109_ACCESS_2020_3015270
crossref_primary_10_1016_j_ins_2018_05_053
crossref_primary_10_1016_j_knosys_2014_03_023
crossref_primary_10_1016_j_asoc_2019_105572
crossref_primary_10_1080_01431161_2018_1488292
crossref_primary_10_1109_ACCESS_2020_2980865
crossref_primary_10_1016_j_ins_2014_04_005
crossref_primary_10_1016_j_patcog_2015_02_018
crossref_primary_10_3233_JIFS_231883
crossref_primary_10_1109_TFUZZ_2019_2924402
crossref_primary_10_1016_j_ins_2017_10_032
crossref_primary_10_1016_j_ijar_2018_02_006
crossref_primary_10_1109_TFUZZ_2020_3013681
crossref_primary_10_1007_s13369_020_04995_5
crossref_primary_10_1016_j_eswa_2015_03_024
crossref_primary_10_1007_s41066_015_0003_0
crossref_primary_10_1016_j_knosys_2024_112948
crossref_primary_10_1007_s10916_015_0311_6
crossref_primary_10_1007_s00521_015_2111_9
crossref_primary_10_1007_s10489_016_0759_1
crossref_primary_10_1007_s00500_018_3265_z
crossref_primary_10_1109_TFUZZ_2013_2280141
crossref_primary_10_3390_rs9070683
crossref_primary_10_3390_rs9090960
crossref_primary_10_1109_TFUZZ_2014_2346247
crossref_primary_10_1109_TFUZZ_2018_2856184
crossref_primary_10_1016_j_fss_2021_07_001
crossref_primary_10_1016_j_sigpro_2019_107347
crossref_primary_10_3390_app10249037
crossref_primary_10_1109_TFUZZ_2017_2763122
crossref_primary_10_1049_iet_ipr_2016_0282
crossref_primary_10_3390_axioms6030022
crossref_primary_10_1016_j_ins_2025_122356
crossref_primary_10_1109_TIE_2022_3177802
crossref_primary_10_3390_axioms14010027
crossref_primary_10_1088_1742_6596_2132_1_012016
crossref_primary_10_1016_j_ins_2020_10_003
crossref_primary_10_1016_j_simpat_2020_102217
crossref_primary_10_1016_j_neucom_2019_01_042
crossref_primary_10_1016_j_neucom_2025_130989
crossref_primary_10_1016_j_fss_2015_02_012
Cites_doi 10.1016/j.patrec.2005.05.001
10.1016/j.patcog.2008.06.006
10.1109/TFUZZ.2006.889763
10.1016/j.ins.2010.09.020
10.1016/0020-0255(75)90036-5
10.1109/TFUZZ.2004.832538
10.1109/TFUZZ.2009.2024411
10.1109/MCI.2007.357192
10.1109/TFUZZ.2010.2103076
10.1109/3477.658584
10.1109/MCI.2007.357193
10.1109/TII.2011.2166786
10.1109/FUZZ.2003.1206532
10.1109/TFUZZ.2006.879986
10.1016/j.ins.2007.11.014
10.1016/j.ins.2007.07.012
10.1016/j.ins.2006.05.003
10.1109/91.705509
10.1002/9780470061190
10.1109/FUZZY.2005.1452420
10.1016/j.ins.2011.03.008
10.1109/FUZZY.2004.1375568
10.1109/TFUZZ.2012.2185502
10.1016/j.ins.2004.02.027
10.1109/FUZZY.2006.1681899
10.1109/FUZZY.2006.1681965
10.1007/978-1-4757-0450-1
10.1109/FUZZY.2010.5584547
10.1109/TFUZZ.2006.882463
10.1109/91.811231
10.1109/TFUZZ.2010.2093148
10.1109/NAFIPS.2001.944361
10.1109/NAFIPS.2001.944356
10.1109/FUZZY.2008.4630390
10.1109/TFUZZ.2009.2039368
10.1109/TFUZZ.2006.889764
10.1109/91.531770
10.1109/TFUZZ.2010.2045386
10.1109/IECON.2010.5675521
10.1016/S0020-0255(01)00069-X
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7SP
F28
FR3
DOI 10.1109/TFUZZ.2012.2187453
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 897
ExternalDocumentID 2783845081
10_1109_TFUZZ_2012_2187453
6151823
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7SP
F28
FR3
ID FETCH-LOGICAL-c328t-e8ae250c3144c173ff63ff705b1c59b39649c7a78f8967593a67197c84df61d33
IEDL.DBID RIE
ISICitedReferencesCount 128
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309740000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Wed Oct 01 13:19:01 EDT 2025
Sun Nov 30 04:34:14 EST 2025
Sat Nov 29 03:12:33 EST 2025
Tue Nov 18 21:32:25 EST 2025
Tue Aug 26 17:02:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-e8ae250c3144c173ff63ff705b1c59b39649c7a78f8967593a67197c84df61d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1095446394
PQPubID 85428
PageCount 15
ParticipantIDs proquest_journals_1095446394
crossref_citationtrail_10_1109_TFUZZ_2012_2187453
proquest_miscellaneous_1221877713
crossref_primary_10_1109_TFUZZ_2012_2187453
ieee_primary_6151823
PublicationCentury 2000
PublicationDate 2012-10-01
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2012
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
rhee (ref29) 2002; 2
ref34
ref12
ref37
ref15
ref36
ref14
ref31
mendel (ref11) 2001
ref30
ref33
ref32
ref10
ref2
ref39
ref17
ref38
ref16
ref19
ref18
(ref1) 0
(ref45) 0
ref24
ref23
hamrawi (ref44) 2009
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref8
  doi: 10.1016/j.patrec.2005.05.001
– ident: ref27
  doi: 10.1016/j.patcog.2008.06.006
– ident: ref10
  doi: 10.1109/TFUZZ.2006.889763
– ident: ref34
  doi: 10.1016/j.ins.2010.09.020
– ident: ref16
  doi: 10.1016/0020-0255(75)90036-5
– ident: ref18
  doi: 10.1109/TFUZZ.2004.832538
– ident: ref32
  doi: 10.1109/TFUZZ.2009.2024411
– ident: ref13
  doi: 10.1109/MCI.2007.357192
– ident: ref37
  doi: 10.1109/TFUZZ.2010.2103076
– ident: ref7
  doi: 10.1109/3477.658584
– year: 0
  ident: ref45
– ident: ref4
  doi: 10.1109/MCI.2007.357193
– ident: ref22
  doi: 10.1109/TII.2011.2166786
– ident: ref30
  doi: 10.1109/FUZZ.2003.1206532
– year: 2001
  ident: ref11
  publication-title: Uncertain Rule-Based Fuzzy Logic Systems Introduction and New Directions
– ident: ref24
  doi: 10.1109/TFUZZ.2006.879986
– ident: ref31
  doi: 10.1016/j.ins.2007.11.014
– ident: ref26
  doi: 10.1016/j.ins.2007.07.012
– volume: 2
  start-page: 1331
  year: 2002
  ident: ref29
  article-title: An interval type-2 fuzzy perceptron
  publication-title: Proc Int Conf Fuzzy Syst
– ident: ref12
  doi: 10.1016/j.ins.2006.05.003
– year: 0
  ident: ref1
– ident: ref6
  doi: 10.1109/91.705509
– ident: ref3
  doi: 10.1002/9780470061190
– ident: ref19
  doi: 10.1109/FUZZY.2005.1452420
– ident: ref17
  doi: 10.1016/j.ins.2011.03.008
– ident: ref28
  doi: 10.1109/FUZZY.2004.1375568
– ident: ref41
  doi: 10.1109/TFUZZ.2012.2185502
– ident: ref25
  doi: 10.1016/j.ins.2004.02.027
– ident: ref20
  doi: 10.1109/FUZZY.2006.1681899
– ident: ref38
  doi: 10.1109/FUZZY.2006.1681965
– ident: ref2
  doi: 10.1007/978-1-4757-0450-1
– ident: ref36
  doi: 10.1109/FUZZY.2010.5584547
– ident: ref42
  doi: 10.1109/TFUZZ.2006.882463
– ident: ref14
  doi: 10.1109/91.811231
– ident: ref40
  doi: 10.1109/TFUZZ.2010.2093148
– ident: ref9
  doi: 10.1109/NAFIPS.2001.944361
– ident: ref35
  doi: 10.1109/NAFIPS.2001.944356
– start-page: 606
  year: 2009
  ident: ref44
  article-title: Type-2 fuzzy arithmetic using alpha-planes
  publication-title: Proc Int Fuzzy Syst Assoc Eur Soc Fuzzy Logic and Technol
– ident: ref43
  doi: 10.1109/FUZZY.2008.4630390
– ident: ref39
  doi: 10.1109/TFUZZ.2009.2039368
– ident: ref15
  doi: 10.1109/TFUZZ.2006.889764
– ident: ref5
  doi: 10.1109/91.531770
– ident: ref33
  doi: 10.1109/TFUZZ.2010.2045386
– ident: ref21
  doi: 10.1109/IECON.2010.5675521
– ident: ref23
  doi: 10.1016/S0020-0255(01)00069-X
SSID ssj0014518
Score 2.4517522
Snippet Pattern recognition in real-world data is subject to various sources of uncertainty that should be appropriately managed. The focus of this paper is the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 883
SubjectTerms Algorithms
Clustering algorithms
Construction
Frequency selective surfaces
Fuzzy
Fuzzy C-means
Fuzzy logic
Fuzzy set theory
Fuzzy sets
general type-2 fuzzy sets
Linguistics
Mathematical models
Partitioning algorithms
pattern recognition
Pragmatics
Studies
Uncertainty
α-planes representation
Title General Type-2 Fuzzy C-Means Algorithm for Uncertain Fuzzy Clustering
URI https://ieeexplore.ieee.org/document/6151823
https://www.proquest.com/docview/1095446394
https://www.proquest.com/docview/1221877713
Volume 20
WOSCitedRecordID wos000309740000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_o8KAH5yfOLyJ402jbpE1yHOLwoOLBwdildFmiwtxkWwX31_uSfqAogodCoS9peS_Je7--L4BTGyLycV0DMssF5VwrikovoNwoprhBIJT5riW34v5e9nrqYQnO61wYY4wPPjMX7tb78ocTnbtfZZdO-8qILcOyEKLI1ao9BjwOi7S3hNFEBEmVIBOoy8dOt993UVzRReRa0MXsmxLyXVV-HMVev3Sa__uyDVgv7UjSLgS_CUtmvAXNqkcDKbfsFqx9KTi4DddllWni4CeNSCdfLD7IFb0zqLFIe_Q0mb7Mn18JWrKki-N9uEBFNcpdUQWcZwe6nevHqxtaNlKgmkVyTo3MDJo6miF60qFg1iZ4iSAehDpWA6YSrrTIhLRSIYBQLEtEqISWfGiTcMjYLjTGk7HZAyK5RZMuMcoqyfUgGnCRDZVAVBJbPDZ1C8KKs6kuq4y7Zhej1KONQKVeGqmTRlpKowVn9Zi3osbGn9Tbjv81Zcn6FhxWAkzLbThz7vUY8S6uuhac1I9xAzmvSDY2kxxpIjexwCW7__vMB7Dq3l9E8B1CYz7NzRGs6Pf5y2x67FfhJ-uC1qU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB-sFmofar2zdFs_IvStje5uspvkUcRF8Tz6cAfiy7KXS1S47sl5W6h_fSfZDxRF8GFhYSchzCSZmZ2PH8APG6Hn41ADCssF5VwrikovpNwoprhBR6jwqCUDMRzKy0v1ewV-dbUwxhiffGYO3KuP5U_nunK_yg6d9pUxewdrCedxVFdrdTEDnkR14VvKaCrCtC2RCdXhKBtfXbk8rvggdiB0CXuihjyuyrPL2GuYbONta_sMnxpLkhzVot-EFVP2YKNFaSDNoe3Bx0ctB_tw0vSZJs4BpTHJqoeHf-SYXhjUWeRodj1f3C5v_hC0ZckYx_uEgZZqVrm2CjjPFoyzk9HxKW2gFKhmsVxSIwuDxo5m6D_pSDBrU3xEmEwinagJUylXWhRCWqnQhVCsSEWkhJZ8atNoytgXWC3npfkKRHKLRl1qlFWS60k84aKYKoF-SWLx4tQBRC1nc930GXdwF7Pc-xuhyr00cieNvJFGAD-7MXd1l41XqfuO_x1lw_oAtlsB5s1BvHcBdtwraIbxAPa7z3iEXFykKM28QprYTSxw0357eeY9-HA6uhjkg7Ph-XdYd2up8_m2YXW5qMwOvNd_l7f3i12_I_8DP0rZ7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=General+Type-2+Fuzzy+C-Means+Algorithm+for+Uncertain+Fuzzy+Clustering&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Linda%2C+Ondrej&rft.au=Manic%2C+Milos&rft.date=2012-10-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=20&rft.issue=5&rft.spage=883&rft.epage=897&rft_id=info:doi/10.1109%2FTFUZZ.2012.2187453&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2012_2187453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon