Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems

•SMA-AGDE method is proposed for solving various optimization problems.•The algorithm performance is verified on CEC’17 benchmark.•The method performance is verified on 3 engineering and 2 combinatorial problems.•Efficiency of the proposed method is compared with many metaheuristics. The Slime Mould...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 174; s. 114689
Hlavní autori: Houssein, Essam H., Mahdy, Mohamed A., Blondin, Maude J., Shebl, Doaa, Mohamed, Waleed M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 15.07.2021
Elsevier BV
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •SMA-AGDE method is proposed for solving various optimization problems.•The algorithm performance is verified on CEC’17 benchmark.•The method performance is verified on 3 engineering and 2 combinatorial problems.•Efficiency of the proposed method is compared with many metaheuristics. The Slime Mould Algorithm (SMA) is a recent metaheuristic inspired by the oscillation of slime mould. Similar to other original metaheuristic algorithms (MAs), SMA may suffer from drawbacks, such as being trapped in minimum local regions and improper balance between exploitation and exploration phases. To overcome these weaknesses, this paper proposes a hybrid algorithm: SMA combined to Adaptive Guided Differential Evolution Algorithm (AGDE) (SMA-AGDE). The AGDE mutation method is employed to enhance the swarm agents’ local search, increase the population’s diversity, and help avoid premature convergence. The SMA-AGDE’s performance is evaluated on the CEC’17 test suite, three engineering design problems – tension/compression spring, pressure vessel, and rolling element bearing – and two combinatorial optimization problems – bin packing and quadratic assignment. The SMA-AGDE is compared with three categories of optimization methods: (1) The well-studied MAs, i.e., Biogeography-Based Optimizer (BBO), Gravitational Search Algorithm (GSA), and Teaching Learning-Based Optimization (TLBO), (2) Recently developed MAs, i.e., Harris Hawks Optimization (HHO), Manta Ray Foraging optimization (MRFO), and the original SMA, and (3) High-performance MAs, i.e., Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), and AGDE. The overall simulation results reveal that the SMA-AGDE ranked first among the compared algorithms, and so, over different function landscapes. Thus, the proposed SMA-AGDE is a promising optimization tool for global and combinatorial optimization problems and engineering design problems.
AbstractList The Slime Mould Algorithm (SMA) is a recent metaheuristic inspired by the oscillation of slime mould. Similar to other original metaheuristic algorithms (MAs), SMA may suffer from drawbacks, such as being trapped in minimum local regions and improper balance between exploitation and exploration phases. To overcome these weaknesses, this paper proposes a hybrid algorithm: SMA combined to Adaptive Guided Differential Evolution Algorithm (AGDE) (SMA-AGDE). The AGDE mutation method is employed to enhance the swarm agents' local search, increase the population's diversity, and help avoid premature convergence. The SMA-AGDE's performance is evaluated on the CEC'17 test suite, three engineering design problems – tension/compression spring, pressure vessel, and rolling element bearing – and two combinatorial optimization problems – bin packing and quadratic assignment. The SMA-AGDE is compared with three categories of optimization methods: (1) The well-studied MAs, i.e., Biogeography-Based Optimizer (BBO), Gravitational Search Algorithm (GSA), and Teaching Learning-Based Optimization (TLBO), (2) Recently developed MAs, i.e., Harris Hawks Optimization (HHO), Manta Ray Foraging optimization (MRFO), and the original SMA, and (3) High-performance MAs, i.e., Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), and AGDE. The overall simulation results reveal that the SMA-AGDE ranked first among the compared algorithms, and so, over different function landscapes. Thus, the proposed SMA-AGDE is a promising optimization tool for global and combinatorial optimization problems and engineering design problems.
•SMA-AGDE method is proposed for solving various optimization problems.•The algorithm performance is verified on CEC’17 benchmark.•The method performance is verified on 3 engineering and 2 combinatorial problems.•Efficiency of the proposed method is compared with many metaheuristics. The Slime Mould Algorithm (SMA) is a recent metaheuristic inspired by the oscillation of slime mould. Similar to other original metaheuristic algorithms (MAs), SMA may suffer from drawbacks, such as being trapped in minimum local regions and improper balance between exploitation and exploration phases. To overcome these weaknesses, this paper proposes a hybrid algorithm: SMA combined to Adaptive Guided Differential Evolution Algorithm (AGDE) (SMA-AGDE). The AGDE mutation method is employed to enhance the swarm agents’ local search, increase the population’s diversity, and help avoid premature convergence. The SMA-AGDE’s performance is evaluated on the CEC’17 test suite, three engineering design problems – tension/compression spring, pressure vessel, and rolling element bearing – and two combinatorial optimization problems – bin packing and quadratic assignment. The SMA-AGDE is compared with three categories of optimization methods: (1) The well-studied MAs, i.e., Biogeography-Based Optimizer (BBO), Gravitational Search Algorithm (GSA), and Teaching Learning-Based Optimization (TLBO), (2) Recently developed MAs, i.e., Harris Hawks Optimization (HHO), Manta Ray Foraging optimization (MRFO), and the original SMA, and (3) High-performance MAs, i.e., Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), and AGDE. The overall simulation results reveal that the SMA-AGDE ranked first among the compared algorithms, and so, over different function landscapes. Thus, the proposed SMA-AGDE is a promising optimization tool for global and combinatorial optimization problems and engineering design problems.
ArticleNumber 114689
Author Mohamed, Waleed M.
Shebl, Doaa
Blondin, Maude J.
Houssein, Essam H.
Mahdy, Mohamed A.
Author_xml – sequence: 1
  givenname: Essam H.
  surname: Houssein
  fullname: Houssein, Essam H.
  email: essam.halim@mu.edu.eg
  organization: Faculty of Computers and Information, Minia University, Minia, Egypt
– sequence: 2
  givenname: Mohamed A.
  surname: Mahdy
  fullname: Mahdy, Mohamed A.
  email: marafa.mahdy@fcis.bsu.edu.eg
  organization: Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef, Egypt
– sequence: 3
  givenname: Maude J.
  surname: Blondin
  fullname: Blondin, Maude J.
  email: maude.josee.blondin@usherbrooke.ca
  organization: Department of Electrical Engineering, Université de Sherbrooke, Sherbrooke, Canada
– sequence: 4
  givenname: Doaa
  surname: Shebl
  fullname: Shebl, Doaa
  email: dshebl@fcis.bsu.edu.eg
  organization: Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef, Egypt
– sequence: 5
  givenname: Waleed M.
  surname: Mohamed
  fullname: Mohamed, Waleed M.
  email: waleedmakram@minia.edu.eg
  organization: Faculty of Computers and Information, Minia University, Minia, Egypt
BookMark eNp9kD1vFDEQhi0UJC6BP0BliXoPe70ftkSDIkiQIqWB2vLH7DEn7_qwvReFPv8bX44CUaSxrfH7vDPzXpKLJS5AyHvOtpzx4eN-C_nBbFvW8i3n3SDVK7LhchTNMCpxQTZM9WPT8bF7Qy5z3jPGR8bGDXm6fbQJPc0BZ6BzXIOnJuxiwvJzpg_1pMabQ8Ej0N2KHjz1OE2QYCloAoVjDGvBuPxDTTFRF2eLiym1VFVm8XQXoq3PWL1m_G2emUOKNsCc35LXkwkZ3v29r8iPr1--X982d_c3364_3zVOtLI0MIAToGQ_jbzjzBjhp0FIGITy1nph-75zSgiueuFG2cqeWakm65iShtWfK_Lh7Fsb_1ohF72Pa1pqS932QvUD54JXlTyrXIo5J5i0w_I8cEkGg-ZMn0LXe30KXZ9C1-fQK9r-hx4SziY9vgx9OkNQVz8iJJ0dwuLAYwJXtI_4Ev4HLMWg4w
CitedBy_id crossref_primary_10_1016_j_cma_2024_117588
crossref_primary_10_1016_j_eswa_2024_123299
crossref_primary_10_1080_00207721_2022_2153635
crossref_primary_10_1155_2021_7523938
crossref_primary_10_3390_su151914222
crossref_primary_10_1007_s11042_024_19437_9
crossref_primary_10_1007_s00500_023_08430_3
crossref_primary_10_1007_s10614_025_10939_8
crossref_primary_10_1007_s00521_022_07445_5
crossref_primary_10_1016_j_eswa_2023_119877
crossref_primary_10_1007_s10586_025_05367_0
crossref_primary_10_1016_j_egyr_2021_11_138
crossref_primary_10_1016_j_swevo_2024_101754
crossref_primary_10_1155_2022_8011003
crossref_primary_10_1016_j_eswa_2021_115936
crossref_primary_10_1007_s00521_021_06273_3
crossref_primary_10_1155_2021_2298215
crossref_primary_10_1016_j_nexres_2025_100639
crossref_primary_10_3390_math9192439
crossref_primary_10_1016_j_eswa_2021_115253
crossref_primary_10_1007_s11227_024_06291_7
crossref_primary_10_1002_ett_4902
crossref_primary_10_3390_math10091567
crossref_primary_10_1007_s10462_022_10233_1
crossref_primary_10_1080_17445760_2024_2350010
crossref_primary_10_1002_er_7103
crossref_primary_10_1007_s42235_022_00185_1
crossref_primary_10_1016_j_euromechsol_2024_105385
crossref_primary_10_1007_s10489_023_05180_5
crossref_primary_10_1007_s42235_022_00307_9
crossref_primary_10_1002_int_22776
crossref_primary_10_1007_s42107_023_00572_x
crossref_primary_10_1007_s42107_023_00612_6
crossref_primary_10_3390_math11040979
crossref_primary_10_1155_2021_7981670
crossref_primary_10_1016_j_asoc_2024_112314
crossref_primary_10_1038_s41598_022_13516_3
crossref_primary_10_1002_cpe_7809
crossref_primary_10_1109_ACCESS_2021_3108447
crossref_primary_10_1109_ACCESS_2022_3197290
crossref_primary_10_1007_s10489_021_02795_4
crossref_primary_10_1007_s10462_023_10398_3
crossref_primary_10_1016_j_knosys_2024_111850
crossref_primary_10_1109_ACCESS_2023_3287322
crossref_primary_10_3389_fnbot_2023_1270860
crossref_primary_10_1007_s10462_021_10100_5
crossref_primary_10_1016_j_matcom_2021_08_013
crossref_primary_10_1038_s41598_025_12816_8
crossref_primary_10_1007_s13369_021_06513_7
crossref_primary_10_1007_s10586_024_04382_x
crossref_primary_10_1016_j_matcom_2023_11_019
crossref_primary_10_1016_j_eswa_2021_116432
crossref_primary_10_1016_j_aei_2024_102464
crossref_primary_10_3390_math9121316
crossref_primary_10_3390_electronics11203332
crossref_primary_10_1007_s11831_023_09883_3
crossref_primary_10_1016_j_eswa_2023_120058
crossref_primary_10_1142_S0129156425402669
crossref_primary_10_1016_j_vibspec_2025_103830
crossref_primary_10_3390_biomimetics9030138
crossref_primary_10_1007_s11042_022_14077_3
crossref_primary_10_1016_j_eswa_2023_122076
crossref_primary_10_1007_s00704_025_05360_y
crossref_primary_10_1155_2023_7228896
crossref_primary_10_1016_j_eswa_2024_124624
crossref_primary_10_1016_j_engappai_2021_104309
crossref_primary_10_3390_math12233726
crossref_primary_10_1016_j_matdes_2023_112184
crossref_primary_10_1016_j_energy_2022_124363
crossref_primary_10_1016_j_compbiomed_2023_106950
crossref_primary_10_1080_23311916_2022_2150121
crossref_primary_10_1007_s00500_024_09869_8
crossref_primary_10_1093_jcde_qwae057
crossref_primary_10_32604_cmc_2024_046606
crossref_primary_10_3390_biomimetics8060482
crossref_primary_10_1016_j_cma_2023_116582
crossref_primary_10_1016_j_jobe_2023_106584
crossref_primary_10_1007_s42235_024_00481_y
crossref_primary_10_1016_j_rineng_2025_104215
crossref_primary_10_3390_drones9030219
crossref_primary_10_1016_j_enganabound_2025_106262
crossref_primary_10_1016_j_eswa_2022_116552
crossref_primary_10_1016_j_eswa_2022_119025
crossref_primary_10_1016_j_jenvman_2023_118790
crossref_primary_10_1002_er_8114
crossref_primary_10_1016_j_egyr_2022_05_231
crossref_primary_10_1109_ACCESS_2022_3183627
crossref_primary_10_3390_math10071014
crossref_primary_10_1016_j_eswa_2023_121402
crossref_primary_10_1016_j_rineng_2024_102541
crossref_primary_10_3390_math10214063
crossref_primary_10_1007_s11269_022_03183_4
crossref_primary_10_1007_s42235_022_00223_y
crossref_primary_10_1155_2022_3785039
crossref_primary_10_1007_s00521_022_07277_3
crossref_primary_10_1007_s42107_025_01391_y
crossref_primary_10_3390_math12101470
crossref_primary_10_1038_s41598_022_24668_7
crossref_primary_10_3390_jmse11020308
crossref_primary_10_3390_wevj15070296
crossref_primary_10_1016_j_engappai_2022_104920
crossref_primary_10_1177_0958305X241241029
crossref_primary_10_1007_s10462_024_11069_7
crossref_primary_10_1371_journal_pone_0280512
crossref_primary_10_1016_j_eswa_2023_119898
crossref_primary_10_3390_sym14071293
crossref_primary_10_1007_s10489_022_03977_4
crossref_primary_10_1080_21642583_2022_2084650
crossref_primary_10_1016_j_swevo_2024_101656
crossref_primary_10_1007_s10462_023_10585_2
crossref_primary_10_1007_s00521_022_07034_6
crossref_primary_10_1007_s13042_025_02609_w
crossref_primary_10_1080_0305215X_2023_2260992
crossref_primary_10_1186_s40537_025_01129_2
crossref_primary_10_3390_drones7040257
crossref_primary_10_3233_JIFS_211408
crossref_primary_10_1109_ACCESS_2024_3351943
crossref_primary_10_1080_02626667_2023_2190896
crossref_primary_10_1007_s00500_023_09038_3
crossref_primary_10_1016_j_cma_2022_115764
crossref_primary_10_1016_j_rico_2025_100572
Cites_doi 10.1093/biomet/75.4.800
10.1093/biomet/75.2.383
10.1016/j.asoc.2016.02.018
10.1080/03052150310001624403
10.1007/s13042-017-0711-7
10.1016/j.engappai.2021.104155
10.1007/s00500-016-2471-9
10.1088/1742-6596/1617/1/012034
10.1109/TFUZZ.2020.3003506
10.1287/mnsc.9.4.586
10.1016/j.ins.2014.02.123
10.1007/978-3-030-64541-0_1
10.1080/08839514.2018.1508807
10.1016/0377-2217(91)90197-4
10.1109/MCI.2019.2954644
10.1016/j.asoc.2011.02.032
10.1016/j.ins.2018.10.005
10.5772/intechopen.72103
10.1109/MC.2016.292
10.1016/j.future.2019.07.015
10.1016/j.future.2020.03.055
10.1016/j.future.2018.06.008
10.1007/s10664-013-9249-9
10.1007/s00521-019-04611-0
10.1016/j.swevo.2016.12.005
10.1016/j.swevo.2019.04.008
10.1016/j.advengsoft.2017.05.014
10.1016/S0167-8191(05)80147-4
10.1016/j.asoc.2020.106642
10.3390/a10040128
10.1016/j.asoc.2019.01.001
10.1007/s10462-017-9605-z
10.1038/s41598-020-71502-z
10.1016/j.knosys.2020.105675
10.1109/TCYB.2017.2780274
10.3390/w12102692
10.1016/j.cor.2012.04.012
10.1016/j.future.2019.02.028
10.1007/s12293-016-0212-3
10.1016/j.ijleo.2020.165277
10.1016/j.eswa.2018.06.023
10.1016/j.swevo.2018.02.013
10.1109/CEC48606.2020.9185582
10.1016/j.asoc.2018.08.047
10.1162/106365603321828970
10.1016/j.asoc.2017.06.044
10.1016/j.jocs.2017.03.004
10.1016/j.cad.2010.12.015
10.1007/s00521-015-1923-y
10.1016/j.engappai.2020.103731
10.1016/j.asoc.2012.11.026
10.1016/j.ins.2009.03.004
10.1080/01621459.1993.10476358
10.1080/03610928008827904
10.2307/1907742
10.1016/j.eswa.2020.113364
10.5815/ijieeb.2012.02.02
10.1080/18756891.2015.1046324
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jul 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 15, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.114689
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_114689
S0957417421001305
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-e6ec3e985f71410aa3df638e639dbbd3b554c9331953c782850b89fbc098a0c93
ISICitedReferencesCount 120
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663144700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Mon Jul 14 10:33:40 EDT 2025
Sat Nov 29 07:07:45 EST 2025
Tue Nov 18 21:32:25 EST 2025
Fri Feb 23 02:46:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Exploration and exploitation
Combinatorial optimization problems
Global optimization problems
Engineering design problems
Metaheuristics
Slime mould algorithm (SMA)
Adaptive guided differential evolution algorithm (AGDE)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-e6ec3e985f71410aa3df638e639dbbd3b554c9331953c782850b89fbc098a0c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2539561131
PQPubID 2045477
ParticipantIDs proquest_journals_2539561131
crossref_citationtrail_10_1016_j_eswa_2021_114689
crossref_primary_10_1016_j_eswa_2021_114689
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_114689
PublicationCentury 2000
PublicationDate 2021-07-15
PublicationDateYYYYMMDD 2021-07-15
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Boussaïd, Chatterjee, Siarry, Ahmed-Nacer (b0030) 2012; 39
Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (b0120) 2020
Houssein, Mahdy, Eldin, Shebl, Mohamed, Abdel-Aty (b0160) 2020
Zubaidi, Abdulkareem, Hashim, Al-Bugharbee, Ridha, Gharghan, Al-Qaim, Muradov, Kot, Al-Khaddar (b0350) 2020; 12
Izci, Serdar Ekinci, Kayri (b0185) 2020
Neggaz, N., Houssein, E. H. & Hussain, K. (2020). An efficient henry gas solubility optimization for feature selection. Expert Systems with Applications, (p. 113364).
Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b0115) 2019; 101
Li, W., Wang, G. -G. & Alavi, A. H. (2020b). Learning-based elephant herding optimization algorithm for solving numerical optimization problems. Knowledge-Based Systems, (p. 105675).
Wilcoxon (b0310) 1992
Heidari, Pahlavani (b0135) 2017; 60
Rashedi, Nezamabadi-Pour, Saryazdi (b0260) 2009; 179
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics (pp. 65–70).
Wang (b0290) 2018; 10
Koopmans, T. C. & Beckmann, M. (1957). Assignment problems and the location of economic activities. Econometrica: Journal of the Econometric Society, (pp. 53–76).
Blondin (bib351) 2021
Tang, R., Fong, S. & Dey, N. (2018). Metaheuristics and chaos theory. Chaos Theory, (pp. 182–196).
Burkard, Karisch, Rendl (b0035) 1991; 55
Abdel-Basset, Manogaran, El-Shahat, Mirjalili (b0010) 2018; 73
Layeb, Chenche (b0215) 2012; 4
Yi, Xing, Wang, Dong, Vasilakos, Alavi, Wang (b0330) 2020; 509
Yang, Deb, Fong, He, Zhao (b0320) 2016; 49
Hashim, Houssein, Hussain, Mabrouk, Al-Atabany (b0110) 2020; 32
Abdel-Basset, M., Chang, V. & Mohamed, R. (2020). Hsma_woa: A hybrid novel slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images. Applied Soft Computing, (p. 106642).
Hochberg (b0140) 1988; 75
Hassan, Houssein, Mahdy, Kamel (b0125) 2021; 100
Arcuri, Fraser (b0015) 2013; 18
Scholl, A. & Klein, R. (2007). Bin packing. On line document at http://www. wiwi. uni-jena. de/Entscheidung/binpp/, last visited on October.
Wang, Deb, Cui (b0295) 2019; 31
Chakraborty*, I., Kumar, V., Nair, S. B. & Tiwari, R. (2003). Rolling element bearing design through genetic algorithms. Engineering Optimization, 35, 649–659.
Hommel (b0150) 1988; 75
Jensi, Jiji (b0195) 2016; 43
Blum, Puchinger, Raidl, Roli (b0025) 2011; 11
Houssein, Saad, Hashim, Shaban, Hassaballah (b0165) 2020; 94
Sun, Jia, Li, Jiang (b0275) 2020; 40
Yi, Deb, Dong, Alavi, Wang (b0325) 2018; 88
Hussain, Salleh, Cheng, Shi (b0175) 2019; 52
Wang, Guo, Gandomi, Hao, Wang (b0300) 2014; 274
Rao, Savsani, Vakharia (b0255) 2011; 43
Mohamed, Mohamed (b0245) 2019; 10
Gao, Wang, Pedrycz (b0085) 2020; 28
Li, S., Chen, H., Wang, M., Heidari, A. A. & Mirjalili, S. (2020a). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems.
Finner (b0080) 1993; 88
Hansen, Müller, Koumoutsakos (b0105) 2003; 11
Gao, Z. -M., Zhao, J., Yang, Y. & Tian, X .-J. (2020b). The hybrid grey wolf optimization-slime mould algorithm. In Journal of Physics: Conference Series (p. 012034). IOP Publishing volume 1617.
Jain, Singh, Rani (b0190) 2019; 44
Taillard (b0280) 1991; 17
Chandra, Singh (b0045) 2014; 5
Kumar, Raj, Premkumar, Raj (b0205) 2020; 223
Mavrovouniotis, Li, Yang (b0235) 2017; 33
Awad, N., Ali, M., Liang, J., Qu, B. & Suganthan, P. (2016). Problem definitions and evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization. Tech. Rep.
Sadollah, Bahreininejad, Eskandar, Hamdi (b0265) 2013; 13
Wang, Tan (b0305) 2017; 49
Dokeroglu, Sevinc, Cosar (b0065) 2019; 76
Gary, M. R. & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of np-completeness.
Mavrovouniotis, Yang, Van, Li, Polycarpou (b0240) 2020; 15
Ewees, Elaziz, Houssein (b0075) 2018; 112
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b0130) 2019; 97
Du, Dong, Li (b0070) 2017; 10
Del Ser, Osaba, Molina, Yang, Salcedo-Sanz, Camacho, Das, Suganthan, Coello, Herrera (b0055) 2019; 48
Zendaoui, Layeb (b0335) 2016
Lawler (b0210) 1963; 9
Zendaoui, Layeb (b0340) 2016
Ligeiro (b0230) 2017; 20
Hussain, Salleh, Cheng, Shi (b0170) 2019; 52
Houssein, Hosney, Elhoseny, Oliva, Mohamed, Hassaballah (b0155) 2020; 10
Dhiman, Kumar (b0060) 2017; 114
Chawla, Duhan (b0050) 2018; 32
Iman, Davenport (b0180) 1980; 9
Xiong, Molina, Ortiz, Herrera (b0315) 2015; 8
García-Martínez, Gutiérrez, Molina, Lozano, Herrera (b0095) 2017; 21
Zhao, H., Zhan, Z. -H. & Zhang, J. (2020). Adaptive guidance-based differential evolution with iterative feedback archive strategy for multimodal optimization problems. In 2020 IEEE congress on evolutionary computation (CEC) (pp. 1–8). IEEE.
Rashedi (10.1016/j.eswa.2021.114689_b0260) 2009; 179
10.1016/j.eswa.2021.114689_b0005
10.1016/j.eswa.2021.114689_b0285
10.1016/j.eswa.2021.114689_b0200
Wilcoxon (10.1016/j.eswa.2021.114689_b0310) 1992
Hashim (10.1016/j.eswa.2021.114689_b0115) 2019; 101
Boussaïd (10.1016/j.eswa.2021.114689_b0030) 2012; 39
Kumar (10.1016/j.eswa.2021.114689_b0205) 2020; 223
Rao (10.1016/j.eswa.2021.114689_b0255) 2011; 43
Sadollah (10.1016/j.eswa.2021.114689_b0265) 2013; 13
Hansen (10.1016/j.eswa.2021.114689_b0105) 2003; 11
Houssein (10.1016/j.eswa.2021.114689_b0160) 2020
Taillard (10.1016/j.eswa.2021.114689_b0280) 1991; 17
Heidari (10.1016/j.eswa.2021.114689_b0130) 2019; 97
10.1016/j.eswa.2021.114689_b0250
10.1016/j.eswa.2021.114689_b0090
Izci (10.1016/j.eswa.2021.114689_b0185) 2020
Heidari (10.1016/j.eswa.2021.114689_b0135) 2017; 60
Del Ser (10.1016/j.eswa.2021.114689_b0055) 2019; 48
Yi (10.1016/j.eswa.2021.114689_b0325) 2018; 88
Hussain (10.1016/j.eswa.2021.114689_b0175) 2019; 52
Yi (10.1016/j.eswa.2021.114689_b0330) 2020; 509
Xiong (10.1016/j.eswa.2021.114689_b0315) 2015; 8
Hashim (10.1016/j.eswa.2021.114689_b0120) 2020
Hommel (10.1016/j.eswa.2021.114689_b0150) 1988; 75
10.1016/j.eswa.2021.114689_b0020
Yang (10.1016/j.eswa.2021.114689_b0320) 2016; 49
García-Martínez (10.1016/j.eswa.2021.114689_b0095) 2017; 21
Ewees (10.1016/j.eswa.2021.114689_b0075) 2018; 112
10.1016/j.eswa.2021.114689_b0345
Sun (10.1016/j.eswa.2021.114689_b0275) 2020; 40
Hashim (10.1016/j.eswa.2021.114689_b0110) 2020; 32
Houssein (10.1016/j.eswa.2021.114689_b0155) 2020; 10
10.1016/j.eswa.2021.114689_b0225
Mohamed (10.1016/j.eswa.2021.114689_b0245) 2019; 10
10.1016/j.eswa.2021.114689_b0220
10.1016/j.eswa.2021.114689_b0145
10.1016/j.eswa.2021.114689_b0100
Lawler (10.1016/j.eswa.2021.114689_b0210) 1963; 9
Wang (10.1016/j.eswa.2021.114689_b0295) 2019; 31
Zubaidi (10.1016/j.eswa.2021.114689_b0350) 2020; 12
Mavrovouniotis (10.1016/j.eswa.2021.114689_b0235) 2017; 33
Wang (10.1016/j.eswa.2021.114689_b0290) 2018; 10
Hussain (10.1016/j.eswa.2021.114689_b0170) 2019; 52
Chandra (10.1016/j.eswa.2021.114689_b0045) 2014; 5
Mavrovouniotis (10.1016/j.eswa.2021.114689_b0240) 2020; 15
10.1016/j.eswa.2021.114689_b0270
Jain (10.1016/j.eswa.2021.114689_b0190) 2019; 44
Wang (10.1016/j.eswa.2021.114689_b0305) 2017; 49
Arcuri (10.1016/j.eswa.2021.114689_b0015) 2013; 18
Chawla (10.1016/j.eswa.2021.114689_b0050) 2018; 32
Jensi (10.1016/j.eswa.2021.114689_b0195) 2016; 43
Dhiman (10.1016/j.eswa.2021.114689_b0060) 2017; 114
Dokeroglu (10.1016/j.eswa.2021.114689_b0065) 2019; 76
Zendaoui (10.1016/j.eswa.2021.114689_b0340) 2016
Houssein (10.1016/j.eswa.2021.114689_b0165) 2020; 94
Wang (10.1016/j.eswa.2021.114689_b0300) 2014; 274
Finner (10.1016/j.eswa.2021.114689_b0080) 1993; 88
Zendaoui (10.1016/j.eswa.2021.114689_b0335) 2016
Abdel-Basset (10.1016/j.eswa.2021.114689_b0010) 2018; 73
Hochberg (10.1016/j.eswa.2021.114689_b0140) 1988; 75
Blondin (10.1016/j.eswa.2021.114689_bib351) 2021
Ligeiro (10.1016/j.eswa.2021.114689_b0230) 2017; 20
Du (10.1016/j.eswa.2021.114689_b0070) 2017; 10
Layeb (10.1016/j.eswa.2021.114689_b0215) 2012; 4
10.1016/j.eswa.2021.114689_b0040
Iman (10.1016/j.eswa.2021.114689_b0180) 1980; 9
Blum (10.1016/j.eswa.2021.114689_b0025) 2011; 11
Burkard (10.1016/j.eswa.2021.114689_b0035) 1991; 55
Hassan (10.1016/j.eswa.2021.114689_b0125) 2021; 100
Gao (10.1016/j.eswa.2021.114689_b0085) 2020; 28
References_xml – volume: 28
  start-page: 3265
  year: 2020
  end-page: 3275
  ident: b0085
  article-title: Solving fuzzy job-shop scheduling problem using de algorithm improved by a selection mechanism
  publication-title: IEEE Transactions on Fuzzy Systems
– year: 2020
  ident: b0160
  article-title: Optimizing quantum cloning circuit parameters based on adaptive guided differential evolution algorithm
  publication-title: Journal of Advanced Research
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b0260
  article-title: Gsa: A gravitational search algorithm
  publication-title: Information Sciences
– volume: 75
  start-page: 383
  year: 1988
  end-page: 386
  ident: b0150
  article-title: A stagewise rejective multiple test procedure based on a modified bonferroni test
  publication-title: Biometrika
– volume: 94
  year: 2020
  ident: b0165
  article-title: Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 31
  start-page: 1995
  year: 2019
  end-page: 2014
  ident: b0295
  article-title: Monarch butterfly optimization
  publication-title: Neural Computing and Applications
– start-page: 107
  year: 2016
  end-page: 120
  ident: b0335
  article-title: Adaptive cuckoo search algorithm for the bin packing problem
  publication-title: Modelling and implementation of complex systems
– volume: 12
  start-page: 2692
  year: 2020
  ident: b0350
  article-title: Hybridised artificial neural network model with slime mould algorithm: A novel methodology for prediction of urban stochastic water demand
  publication-title: Water
– volume: 100
  year: 2021
  ident: b0125
  article-title: An improved manta ray foraging optimizer for cost-effective emission dispatch problems
  publication-title: Engineering Applications of Artificial Intelligence
– reference: Zhao, H., Zhan, Z. -H. & Zhang, J. (2020). Adaptive guidance-based differential evolution with iterative feedback archive strategy for multimodal optimization problems. In 2020 IEEE congress on evolutionary computation (CEC) (pp. 1–8). IEEE.
– volume: 49
  start-page: 542
  year: 2017
  end-page: 555
  ident: b0305
  article-title: Improving metaheuristic algorithms with information feedback models
  publication-title: IEEE Transactions on Cybernetics
– reference: Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics (pp. 65–70).
– volume: 18
  start-page: 594
  year: 2013
  end-page: 623
  ident: b0015
  article-title: Parameter tuning or default values? An empirical investigation in search-based software engineering
  publication-title: Empirical Software Engineering
– volume: 76
  start-page: 595
  year: 2019
  end-page: 606
  ident: b0065
  article-title: Artificial bee colony optimization for the quadratic assignment problem
  publication-title: Applied Soft Computing
– reference: Abdel-Basset, M., Chang, V. & Mohamed, R. (2020). Hsma_woa: A hybrid novel slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images. Applied Soft Computing, (p. 106642).
– volume: 39
  start-page: 3293
  year: 2012
  end-page: 3304
  ident: b0030
  article-title: Biogeography-based optimization for constrained optimization problems
  publication-title: Computers & Operations Research
– volume: 101
  start-page: 646
  year: 2019
  end-page: 667
  ident: b0115
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Generation Computer Systems
– volume: 60
  start-page: 115
  year: 2017
  end-page: 134
  ident: b0135
  article-title: An efficient modified grey wolf optimizer with lévy flight for optimization tasks
  publication-title: Applied Soft Computing
– volume: 10
  start-page: 253
  year: 2019
  end-page: 277
  ident: b0245
  article-title: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization
  publication-title: International Journal of Machine Learning and Cybernetics
– start-page: 107
  year: 2016
  end-page: 120
  ident: b0340
  article-title: Adaptive cuckoo search algorithm for the bin packing problem
  publication-title: Modelling and implementation of complex systems
– volume: 88
  start-page: 571
  year: 2018
  end-page: 585
  ident: b0325
  article-title: An improved nsga-iii algorithm with adaptive mutation operator for big data optimization problems
  publication-title: Future Generation Computer Systems
– volume: 48
  start-page: 220
  year: 2019
  end-page: 250
  ident: b0055
  article-title: Bio-inspired computation: Where we stand and what’s next
  publication-title: Swarm and Evolutionary Computation
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: b0255
  article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Computer-Aided Design
– reference: Li, S., Chen, H., Wang, M., Heidari, A. A. & Mirjalili, S. (2020a). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems.
– reference: Li, W., Wang, G. -G. & Alavi, A. H. (2020b). Learning-based elephant herding optimization algorithm for solving numerical optimization problems. Knowledge-Based Systems, (p. 105675).
– reference: Scholl, A. & Klein, R. (2007). Bin packing. On line document at http://www. wiwi. uni-jena. de/Entscheidung/binpp/, last visited on October.
– volume: 43
  start-page: 248
  year: 2016
  end-page: 261
  ident: b0195
  article-title: An enhanced particle swarm optimization with levy flight for global optimization
  publication-title: Applied Soft Computing
– volume: 15
  start-page: 52
  year: 2020
  end-page: 63
  ident: b0240
  article-title: Ant colony optimization algorithms for dynamic optimization: A case study of the dynamic travelling salesperson problem [research frontier]
  publication-title: IEEE Computational Intelligence Magazine
– volume:
  start-page: 1
  year: 2020
  end-page: 21
  ident: b0120
  article-title: Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems
  publication-title: Applied Intelligence
– start-page: 196
  year: 1992
  end-page: 202
  ident: b0310
  article-title: Individual comparisons by ranking methods
  publication-title: Breakthroughs in statistics
– volume: 88
  start-page: 920
  year: 1993
  end-page: 923
  ident: b0080
  article-title: On a monotonicity problem in step-down multiple test procedures
  publication-title: Journal of the American Statistical Association
– reference: Neggaz, N., Houssein, E. H. & Hussain, K. (2020). An efficient henry gas solubility optimization for feature selection. Expert Systems with Applications, (p. 113364).
– volume: 55
  start-page: 115
  year: 1991
  end-page: 119
  ident: b0035
  article-title: Qaplib-a quadratic assignment problem library
  publication-title: European Journal of Operational Research
– reference: Gao, Z. -M., Zhao, J., Yang, Y. & Tian, X .-J. (2020b). The hybrid grey wolf optimization-slime mould algorithm. In Journal of Physics: Conference Series (p. 012034). IOP Publishing volume 1617.
– volume: 44
  start-page: 148
  year: 2019
  end-page: 175
  ident: b0190
  article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm
  publication-title: Swarm and Evolutionary Computation
– volume: 8
  start-page: 606
  year: 2015
  end-page: 636
  ident: b0315
  article-title: A walk into metaheuristics for engineering optimization: Principles, methods and recent trends
  publication-title: International Journal of Computational Intelligence Systems
– volume: 73
  start-page: 530
  year: 2018
  end-page: 546
  ident: b0010
  article-title: Integrating the whale algorithm with tabu search for quadratic assignment problem: A new approach for locating hospital departments
  publication-title: Applied Soft Computing
– volume: 114
  start-page: 48
  year: 2017
  end-page: 70
  ident: b0060
  article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Advances in Engineering Software
– volume: 21
  start-page: 5573
  year: 2017
  end-page: 5583
  ident: b0095
  article-title: Since cec 2005 competition on real-parameter optimisation: A decade of research, progress and comparative analysis’s weakness
  publication-title: Soft Computing
– reference: Chakraborty*, I., Kumar, V., Nair, S. B. & Tiwari, R. (2003). Rolling element bearing design through genetic algorithms. Engineering Optimization, 35, 649–659.
– volume: 75
  start-page: 800
  year: 1988
  end-page: 802
  ident: b0140
  article-title: A sharper bonferroni procedure for multiple tests of significance
  publication-title: Biometrika
– reference: Awad, N., Ali, M., Liang, J., Qu, B. & Suganthan, P. (2016). Problem definitions and evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization. Tech. Rep.
– volume: 40
  start-page: 1
  year: 2020
  end-page: 13
  ident: b0275
  article-title: Hybrid improved slime mould algorithm with adaptive
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 17
  start-page: 443
  year: 1991
  end-page: 455
  ident: b0280
  article-title: Robust taboo search for the quadratic assignment problem
  publication-title: Parallel Computing
– start-page: 1
  year: 2020
  end-page: 6
  ident: b0185
  article-title: Improved manta ray foraging optimization using opposition-based learning for optimization problems
  publication-title: International congress on human-computer interaction, optimization and robotic applications (HORA)
– volume: 52
  start-page: 2191
  year: 2019
  end-page: 2233
  ident: b0175
  article-title: Metaheuristic research: A comprehensive survey
  publication-title: Artificial Intelligence Review
– year: 2021
  ident: bib351
  article-title: Optimization Algorithms in Control Systems.
  publication-title: Controller Tuning Optimization Methods for Multi-Constraints and Nonlinear Systems
– volume: 13
  start-page: 2592
  year: 2013
  end-page: 2612
  ident: b0265
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Applied Soft Computing
– reference: Gary, M. R. & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of np-completeness.
– volume: 9
  start-page: 586
  year: 1963
  end-page: 599
  ident: b0210
  article-title: The quadratic assignment problem
  publication-title: Management Science
– volume: 52
  start-page: 2191
  year: 2019
  end-page: 2233
  ident: b0170
  article-title: Metaheuristic research: A comprehensive survey
  publication-title: Artificial Intelligence Review
– reference: Koopmans, T. C. & Beckmann, M. (1957). Assignment problems and the location of economic activities. Econometrica: Journal of the Econometric Society, (pp. 53–76).
– volume: 32
  start-page: 10759
  year: 2020
  end-page: 10771
  ident: b0110
  article-title: A modified henry gas solubility optimization for solving motif discovery problem
  publication-title: Neural Computing and Applications
– volume: 20
  start-page: 1
  year: 2017
  end-page: 7
  ident: b0230
  article-title: Linked markovian quantum tunnels: An approximation technique for solving the bin packing problem
  publication-title: Journal of Computational Science
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b0130
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Generation Computer Systems
– volume: 10
  start-page: 151
  year: 2018
  end-page: 164
  ident: b0290
  article-title: Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems
  publication-title: Memetic Computing
– volume: 223
  year: 2020
  ident: b0205
  article-title: A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters
  publication-title: Optik
– volume: 4
  start-page: 8
  year: 2012
  ident: b0215
  article-title: A novel grasp algorithm for solving the bin packing problem
  publication-title: International Journal of Information Engineering and Electronic Business
– volume: 509
  start-page: 470
  year: 2020
  end-page: 487
  ident: b0330
  article-title: Behavior of crossover operators in nsga-iii for large-scale optimization problems
  publication-title: Information Sciences
– volume: 49
  start-page: 52
  year: 2016
  end-page: 59
  ident: b0320
  article-title: From swarm intelligence to metaheuristics: Nature-inspired optimization algorithms
  publication-title: Computer
– volume: 11
  start-page: 1
  year: 2003
  end-page: 18
  ident: b0105
  article-title: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es)
  publication-title: Evolutionary Computation
– volume: 32
  start-page: 802
  year: 2018
  end-page: 821
  ident: b0050
  article-title: Levy flights in metaheuristics optimization algorithms – a review
  publication-title: Applied Artificial Intelligence
– volume: 10
  start-page: 128
  year: 2017
  ident: b0070
  article-title: Truss structure optimization with subset simulation and augmented lagrangian multiplier method
  publication-title: Algorithms
– volume: 10
  start-page: 1
  year: 2020
  end-page: 22
  ident: b0155
  article-title: Hybrid harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics
  publication-title: Scientific RepoRtS
– volume: 11
  start-page: 4135
  year: 2011
  end-page: 4151
  ident: b0025
  article-title: Hybrid metaheuristics in combinatorial optimization: A survey
  publication-title: Applied Soft Computing
– volume: 274
  start-page: 17
  year: 2014
  end-page: 34
  ident: b0300
  article-title: Chaotic krill herd algorithm
  publication-title: Information Sciences
– volume: 5
  start-page: 5368
  year: 2014
  end-page: 5373
  ident: b0045
  article-title: Firefly algorithm to solve two dimensional bin packing problem
  publication-title: International Journal of Computer Science and Information Technologies
– reference: Tang, R., Fong, S. & Dey, N. (2018). Metaheuristics and chaos theory. Chaos Theory, (pp. 182–196).
– volume: 112
  start-page: 156
  year: 2018
  end-page: 172
  ident: b0075
  article-title: Improved grasshopper optimization algorithm using opposition-based learning
  publication-title: Expert Systems with Applications
– volume: 9
  start-page: 571
  year: 1980
  end-page: 595
  ident: b0180
  article-title: Approximations of the critical region of the fbietkan statistic
  publication-title: Communications in Statistics-Theory and Methods
– volume: 33
  start-page: 1
  year: 2017
  end-page: 17
  ident: b0235
  article-title: A survey of swarm intelligence for dynamic optimization: Algorithms and applications
  publication-title: Swarm and Evolutionary Computation
– volume: 75
  start-page: 800
  year: 1988
  ident: 10.1016/j.eswa.2021.114689_b0140
  article-title: A sharper bonferroni procedure for multiple tests of significance
  publication-title: Biometrika
  doi: 10.1093/biomet/75.4.800
– volume: 75
  start-page: 383
  year: 1988
  ident: 10.1016/j.eswa.2021.114689_b0150
  article-title: A stagewise rejective multiple test procedure based on a modified bonferroni test
  publication-title: Biometrika
  doi: 10.1093/biomet/75.2.383
– volume: 43
  start-page: 248
  year: 2016
  ident: 10.1016/j.eswa.2021.114689_b0195
  article-title: An enhanced particle swarm optimization with levy flight for global optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.02.018
– ident: 10.1016/j.eswa.2021.114689_b0040
  doi: 10.1080/03052150310001624403
– volume: 10
  start-page: 253
  year: 2019
  ident: 10.1016/j.eswa.2021.114689_b0245
  article-title: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-017-0711-7
– volume: 100
  year: 2021
  ident: 10.1016/j.eswa.2021.114689_b0125
  article-title: An improved manta ray foraging optimizer for cost-effective emission dispatch problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2021.104155
– volume: 21
  start-page: 5573
  year: 2017
  ident: 10.1016/j.eswa.2021.114689_b0095
  article-title: Since cec 2005 competition on real-parameter optimisation: A decade of research, progress and comparative analysis’s weakness
  publication-title: Soft Computing
  doi: 10.1007/s00500-016-2471-9
– ident: 10.1016/j.eswa.2021.114689_b0090
  doi: 10.1088/1742-6596/1617/1/012034
– volume: 28
  start-page: 3265
  year: 2020
  ident: 10.1016/j.eswa.2021.114689_b0085
  article-title: Solving fuzzy job-shop scheduling problem using de algorithm improved by a selection mechanism
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2020.3003506
– volume: 9
  start-page: 586
  year: 1963
  ident: 10.1016/j.eswa.2021.114689_b0210
  article-title: The quadratic assignment problem
  publication-title: Management Science
  doi: 10.1287/mnsc.9.4.586
– volume: 274
  start-page: 17
  year: 2014
  ident: 10.1016/j.eswa.2021.114689_b0300
  article-title: Chaotic krill herd algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.02.123
– year: 2021
  ident: 10.1016/j.eswa.2021.114689_bib351
  article-title: Optimization Algorithms in Control Systems.
  publication-title: Controller Tuning Optimization Methods for Multi-Constraints and Nonlinear Systems
  doi: 10.1007/978-3-030-64541-0_1
– volume: 32
  start-page: 802
  year: 2018
  ident: 10.1016/j.eswa.2021.114689_b0050
  article-title: Levy flights in metaheuristics optimization algorithms – a review
  publication-title: Applied Artificial Intelligence
  doi: 10.1080/08839514.2018.1508807
– volume: 55
  start-page: 115
  year: 1991
  ident: 10.1016/j.eswa.2021.114689_b0035
  article-title: Qaplib-a quadratic assignment problem library
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(91)90197-4
– volume: 15
  start-page: 52
  year: 2020
  ident: 10.1016/j.eswa.2021.114689_b0240
  article-title: Ant colony optimization algorithms for dynamic optimization: A case study of the dynamic travelling salesperson problem [research frontier]
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2019.2954644
– volume: 11
  start-page: 4135
  year: 2011
  ident: 10.1016/j.eswa.2021.114689_b0025
  article-title: Hybrid metaheuristics in combinatorial optimization: A survey
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2011.02.032
– volume: 509
  start-page: 470
  year: 2020
  ident: 10.1016/j.eswa.2021.114689_b0330
  article-title: Behavior of crossover operators in nsga-iii for large-scale optimization problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.10.005
– volume: 40
  start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.114689_b0275
  article-title: Hybrid improved slime mould algorithm with adaptive β hill climbing for numerical optimization
  publication-title: Journal of Intelligent & Fuzzy Systems
– ident: 10.1016/j.eswa.2021.114689_b0285
  doi: 10.5772/intechopen.72103
– volume: 49
  start-page: 52
  year: 2016
  ident: 10.1016/j.eswa.2021.114689_b0320
  article-title: From swarm intelligence to metaheuristics: Nature-inspired optimization algorithms
  publication-title: Computer
  doi: 10.1109/MC.2016.292
– volume: 101
  start-page: 646
  year: 2019
  ident: 10.1016/j.eswa.2021.114689_b0115
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.07.015
– ident: 10.1016/j.eswa.2021.114689_b0220
  doi: 10.1016/j.future.2020.03.055
– volume: 88
  start-page: 571
  year: 2018
  ident: 10.1016/j.eswa.2021.114689_b0325
  article-title: An improved nsga-iii algorithm with adaptive mutation operator for big data optimization problems
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2018.06.008
– volume: 18
  start-page: 594
  year: 2013
  ident: 10.1016/j.eswa.2021.114689_b0015
  article-title: Parameter tuning or default values? An empirical investigation in search-based software engineering
  publication-title: Empirical Software Engineering
  doi: 10.1007/s10664-013-9249-9
– volume: 32
  start-page: 10759
  year: 2020
  ident: 10.1016/j.eswa.2021.114689_b0110
  article-title: A modified henry gas solubility optimization for solving motif discovery problem
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-019-04611-0
– volume: 33
  start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2021.114689_b0235
  article-title: A survey of swarm intelligence for dynamic optimization: Algorithms and applications
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2016.12.005
– volume: 48
  start-page: 220
  year: 2019
  ident: 10.1016/j.eswa.2021.114689_b0055
  article-title: Bio-inspired computation: Where we stand and what’s next
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2019.04.008
– volume: 114
  start-page: 48
  year: 2017
  ident: 10.1016/j.eswa.2021.114689_b0060
  article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.05.014
– volume: 17
  start-page: 443
  year: 1991
  ident: 10.1016/j.eswa.2021.114689_b0280
  article-title: Robust taboo search for the quadratic assignment problem
  publication-title: Parallel Computing
  doi: 10.1016/S0167-8191(05)80147-4
– ident: 10.1016/j.eswa.2021.114689_b0005
  doi: 10.1016/j.asoc.2020.106642
– start-page: 107
  year: 2016
  ident: 10.1016/j.eswa.2021.114689_b0335
  article-title: Adaptive cuckoo search algorithm for the bin packing problem
– start-page: 107
  year: 2016
  ident: 10.1016/j.eswa.2021.114689_b0340
  article-title: Adaptive cuckoo search algorithm for the bin packing problem
– volume: 10
  start-page: 128
  year: 2017
  ident: 10.1016/j.eswa.2021.114689_b0070
  article-title: Truss structure optimization with subset simulation and augmented lagrangian multiplier method
  publication-title: Algorithms
  doi: 10.3390/a10040128
– ident: 10.1016/j.eswa.2021.114689_b0100
– ident: 10.1016/j.eswa.2021.114689_b0145
– volume: 76
  start-page: 595
  year: 2019
  ident: 10.1016/j.eswa.2021.114689_b0065
  article-title: Artificial bee colony optimization for the quadratic assignment problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.01.001
– volume: 52
  start-page: 2191
  year: 2019
  ident: 10.1016/j.eswa.2021.114689_b0170
  article-title: Metaheuristic research: A comprehensive survey
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-017-9605-z
– volume: 52
  start-page: 2191
  year: 2019
  ident: 10.1016/j.eswa.2021.114689_b0175
  article-title: Metaheuristic research: A comprehensive survey
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-017-9605-z
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.114689_b0155
  article-title: Hybrid harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics
  publication-title: Scientific RepoRtS
  doi: 10.1038/s41598-020-71502-z
– year: 2020
  ident: 10.1016/j.eswa.2021.114689_b0160
  article-title: Optimizing quantum cloning circuit parameters based on adaptive guided differential evolution algorithm
  publication-title: Journal of Advanced Research
– volume: 5
  start-page: 5368
  year: 2014
  ident: 10.1016/j.eswa.2021.114689_b0045
  article-title: Firefly algorithm to solve two dimensional bin packing problem
  publication-title: International Journal of Computer Science and Information Technologies
– ident: 10.1016/j.eswa.2021.114689_b0270
– ident: 10.1016/j.eswa.2021.114689_b0225
  doi: 10.1016/j.knosys.2020.105675
– volume: 49
  start-page: 542
  year: 2017
  ident: 10.1016/j.eswa.2021.114689_b0305
  article-title: Improving metaheuristic algorithms with information feedback models
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2017.2780274
– volume: 12
  start-page: 2692
  year: 2020
  ident: 10.1016/j.eswa.2021.114689_b0350
  article-title: Hybridised artificial neural network model with slime mould algorithm: A novel methodology for prediction of urban stochastic water demand
  publication-title: Water
  doi: 10.3390/w12102692
– volume: 39
  start-page: 3293
  year: 2012
  ident: 10.1016/j.eswa.2021.114689_b0030
  article-title: Biogeography-based optimization for constrained optimization problems
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2012.04.012
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.eswa.2021.114689_b0130
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.02.028
– volume: 10
  start-page: 151
  year: 2018
  ident: 10.1016/j.eswa.2021.114689_b0290
  article-title: Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems
  publication-title: Memetic Computing
  doi: 10.1007/s12293-016-0212-3
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.114689_b0185
  article-title: Improved manta ray foraging optimization using opposition-based learning for optimization problems
– volume: 223
  year: 2020
  ident: 10.1016/j.eswa.2021.114689_b0205
  article-title: A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.165277
– volume: 112
  start-page: 156
  year: 2018
  ident: 10.1016/j.eswa.2021.114689_b0075
  article-title: Improved grasshopper optimization algorithm using opposition-based learning
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.06.023
– volume: 44
  start-page: 148
  year: 2019
  ident: 10.1016/j.eswa.2021.114689_b0190
  article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.02.013
– ident: 10.1016/j.eswa.2021.114689_b0345
  doi: 10.1109/CEC48606.2020.9185582
– volume: 73
  start-page: 530
  year: 2018
  ident: 10.1016/j.eswa.2021.114689_b0010
  article-title: Integrating the whale algorithm with tabu search for quadratic assignment problem: A new approach for locating hospital departments
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.08.047
– volume: 11
  start-page: 1
  year: 2003
  ident: 10.1016/j.eswa.2021.114689_b0105
  article-title: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es)
  publication-title: Evolutionary Computation
  doi: 10.1162/106365603321828970
– volume: 60
  start-page: 115
  year: 2017
  ident: 10.1016/j.eswa.2021.114689_b0135
  article-title: An efficient modified grey wolf optimizer with lévy flight for optimization tasks
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.06.044
– volume: 20
  start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2021.114689_b0230
  article-title: Linked markovian quantum tunnels: An approximation technique for solving the bin packing problem
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2017.03.004
– volume: 43
  start-page: 303
  year: 2011
  ident: 10.1016/j.eswa.2021.114689_b0255
  article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Computer-Aided Design
  doi: 10.1016/j.cad.2010.12.015
– ident: 10.1016/j.eswa.2021.114689_b0020
– volume: 31
  start-page: 1995
  year: 2019
  ident: 10.1016/j.eswa.2021.114689_b0295
  article-title: Monarch butterfly optimization
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1923-y
– volume:
  start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.114689_b0120
  article-title: Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems
  publication-title: Applied Intelligence
– volume: 94
  year: 2020
  ident: 10.1016/j.eswa.2021.114689_b0165
  article-title: Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103731
– volume: 13
  start-page: 2592
  year: 2013
  ident: 10.1016/j.eswa.2021.114689_b0265
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.11.026
– volume: 179
  start-page: 2232
  year: 2009
  ident: 10.1016/j.eswa.2021.114689_b0260
  article-title: Gsa: A gravitational search algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.03.004
– start-page: 196
  year: 1992
  ident: 10.1016/j.eswa.2021.114689_b0310
  article-title: Individual comparisons by ranking methods
– volume: 88
  start-page: 920
  year: 1993
  ident: 10.1016/j.eswa.2021.114689_b0080
  article-title: On a monotonicity problem in step-down multiple test procedures
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1993.10476358
– volume: 9
  start-page: 571
  year: 1980
  ident: 10.1016/j.eswa.2021.114689_b0180
  article-title: Approximations of the critical region of the fbietkan statistic
  publication-title: Communications in Statistics-Theory and Methods
  doi: 10.1080/03610928008827904
– ident: 10.1016/j.eswa.2021.114689_b0200
  doi: 10.2307/1907742
– ident: 10.1016/j.eswa.2021.114689_b0250
  doi: 10.1016/j.eswa.2020.113364
– volume: 4
  start-page: 8
  year: 2012
  ident: 10.1016/j.eswa.2021.114689_b0215
  article-title: A novel grasp algorithm for solving the bin packing problem
  publication-title: International Journal of Information Engineering and Electronic Business
  doi: 10.5815/ijieeb.2012.02.02
– volume: 8
  start-page: 606
  year: 2015
  ident: 10.1016/j.eswa.2021.114689_b0315
  article-title: A walk into metaheuristics for engineering optimization: Principles, methods and recent trends
  publication-title: International Journal of Computational Intelligence Systems
  doi: 10.1080/18756891.2015.1046324
SSID ssj0017007
Score 2.630409
Snippet •SMA-AGDE method is proposed for solving various optimization problems.•The algorithm performance is verified on CEC’17 benchmark.•The method performance is...
The Slime Mould Algorithm (SMA) is a recent metaheuristic inspired by the oscillation of slime mould. Similar to other original metaheuristic algorithms (MAs),...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114689
SubjectTerms Adaptive algorithms
Adaptive guided differential evolution algorithm (AGDE)
Algorithms
Combinatorial analysis
Combinatorial optimization problems
Compression springs
Compression tests
Covariance matrix
Design engineering
Design optimization
Engineering design problems
Evolutionary algorithms
Evolutionary computation
Exploration and exploitation
Global optimization
Global optimization problems
Heuristic methods
Machine learning
Metaheuristics
Mutation
Optimization
Performance evaluation
Pressure vessels
Roller bearings
Search algorithms
Slime
Slime mould algorithm (SMA)
Title Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems
URI https://dx.doi.org/10.1016/j.eswa.2021.114689
https://www.proquest.com/docview/2539561131
Volume 174
WOSCitedRecordID wos000663144700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKxgMvfKNtDOQH3qJU-Wycx4KKyiQmpA2pb5HjOGunJqmatGw_gH_Dj-Q6106zIiZA4iWq4ji2ck7t62ufewl5l-VuKCJYpqaMh3YgHMfmQZ7ZHlexYYKR9Bkmm4jOz9lsFn8ZDH4YLcx2GZUlu7mJV_8VargHYCvp7F_A3b0UbsBvAB2uADtc_wj46a0SYVlgPxbSKlQGa4svr6r1opkXWsqW8VV7Yuhqs8jA4DRJUhrlPZdb3bteLXUUEboKi2i1RF_o8AI6lkgF7yq0mtPS-WnqOw5_FU250TGjjZqut2_eMava1LXOvTmpa15Y0-HOYT7H2eBzNecwgVvjruj9slLKHBQebTJpnXVFF3OZLnGZwHnfv-G5ynGKCk90uhnhze6UE3ovIztwMcHPUOLYzSLfHkWYcLEb3PGRXyYK9FlcD2X9TUWf8tw2aDJmM9oLwH2hGlNteW67zxs-IIdeFMYwhh6OP01mZ92uVeSgPN90Tou08Dzhfku_M4T2TILWzrl8Sh7rBQodI7GekYEsn5MnJvkH1XPBC_IdeUZbntGWZ7RjDFUgU8MzijyjfZ7Rjme9WsAzeodnFHhGkWe0zzNqePaSfP04ufwwtXVOD1v4HmtsOZLClzEL80idMObcz3KYAiQYylmaZn4K5q2IfV_t7opIhVd0UhbnqXBixh0oeUUOyqqUR4SCsZ4LMIDTgLNAZl4aeznjMndkLKTw2DFxzQdOhA54r_KuLBNzsvE6UaAkCpQEQTkmVldnheFe7n06NLgl2mBFQzQBmt1b79SAnOiRo0680Fcic9d3T_7xta_Jo90f6JQcNOuNfEMeim2zqNdvNVl_AmAazNY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+slime+mould+algorithm+with+adaptive+guided+differential+evolution+algorithm+for+combinatorial+and+global+optimization+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Houssein%2C+Essam+H.&rft.au=Mahdy%2C+Mohamed+A.&rft.au=Blondin%2C+Maude+J.&rft.au=Shebl%2C+Doaa&rft.date=2021-07-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=174&rft_id=info:doi/10.1016%2Fj.eswa.2021.114689&rft.externalDocID=S0957417421001305
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon