Handling the impact of feature uncertainties on SVM: A robust approach based on Sobol sensitivity analysis

•A new approach is proposed to evaluate the impact of feature uncertainties on SVM.•Sobol analysis is applied to quantify of the impact of each feature uncertainties on SVM.•Feature weights based on Sobol indices are introduced to improve the SVM robustness. This paper addresses the problem of class...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 189; s. 115691
Hlavní autoři: Zouhri, Wahb, Homri, Lazhar, Dantan, Jean-Yves
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 01.03.2022
Elsevier BV
Témata:
ISSN:0957-4174, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A new approach is proposed to evaluate the impact of feature uncertainties on SVM.•Sobol analysis is applied to quantify of the impact of each feature uncertainties on SVM.•Feature weights based on Sobol indices are introduced to improve the SVM robustness. This paper addresses the problem of classification when target data are subject to feature uncertainties. A robust approach based on Sobol sensitivity analysis is proposed to improve the robustness of support vector machine (SVM) models. SVM is a supervised machine learning method for pattern recognition whose performance depends on the definition of its hyperparameters and the quality of data. The proposed approach analyzes the impact of the uncertainties on the predictive performance of SVM based on Sobol’ sensitivity analysis. Afterwards, a new parameter is introduced to improve the robustness of SVM to the impact of uncertainties. The efficiency of this approach is evaluated by applying it to six real-world datasets. The results are then discussed and analyzed.
AbstractList •A new approach is proposed to evaluate the impact of feature uncertainties on SVM.•Sobol analysis is applied to quantify of the impact of each feature uncertainties on SVM.•Feature weights based on Sobol indices are introduced to improve the SVM robustness. This paper addresses the problem of classification when target data are subject to feature uncertainties. A robust approach based on Sobol sensitivity analysis is proposed to improve the robustness of support vector machine (SVM) models. SVM is a supervised machine learning method for pattern recognition whose performance depends on the definition of its hyperparameters and the quality of data. The proposed approach analyzes the impact of the uncertainties on the predictive performance of SVM based on Sobol’ sensitivity analysis. Afterwards, a new parameter is introduced to improve the robustness of SVM to the impact of uncertainties. The efficiency of this approach is evaluated by applying it to six real-world datasets. The results are then discussed and analyzed.
This paper addresses the problem of classification when target data are subject to feature uncertainties. A robust approach based on Sobol sensitivity analysis is proposed to improve the robustness of support vector machine (SVM) models. SVM is a supervised machine learning method for pattern recognition whose performance depends on the definition of its hyperparameters and the quality of data. The proposed approach analyzes the impact of the uncertainties on the predictive performance of SVM based on Sobol' sensitivity analysis. Afterwards, a new parameter is introduced to improve the robustness of SVM to the impact of uncertainties. The efficiency of this approach is evaluated by applying it to six real-world datasets. The results are then discussed and analyzed.
ArticleNumber 115691
Author Homri, Lazhar
Zouhri, Wahb
Dantan, Jean-Yves
Author_xml – sequence: 1
  givenname: Wahb
  surname: Zouhri
  fullname: Zouhri, Wahb
  email: wahb.zouhri@ensam.eu
– sequence: 2
  givenname: Lazhar
  surname: Homri
  fullname: Homri, Lazhar
  email: lazhar.homri@ensam.eu
– sequence: 3
  givenname: Jean-Yves
  surname: Dantan
  fullname: Dantan, Jean-Yves
  email: jean-yves.dantan@ensam.eu
BookMark eNp9kE1P3DAQhq2KSl1o_0BPljhn60k2sYO4IFQKEohDP67WxB4XR8He2g5o_32zLCcOnObwzjN65zlmRyEGYuwriDUI6L6Na8rPuK5FDWuAtuvhA1uBkk3Vyb45YivRt7LagNx8Ysc5j0KAFEKu2HiNwU4-_OXlgbh_3KIpPDruCMuciM_BUCroQ_GUeQz855-7M37BUxzmXDhutymieeADZrIveRzixDOF7It_8mXHMeC0yz5_Zh8dTpm-vM4T9vvq-6_L6-r2_sfN5cVtZZpalYpaZwYryZAi2ypVO4GoYFDOdgaEG5ZYOHLQNy25xmxq2wiJvR2aXnVgmhN2eri7VPs3Uy56jHNaSmRddyC7vgaxWbbqw5ZJMedETm-Tf8S00yD03qke9d6p3jvVB6cLpN5AxhcsPoaS0E_vo-cHlJbXnzwlnY2nxa71iUzRNvr38P8XH5aZ
CitedBy_id crossref_primary_10_1007_s41060_024_00520_1
crossref_primary_10_1016_j_energy_2025_136635
crossref_primary_10_3389_fphys_2024_1473125
crossref_primary_10_1016_j_procs_2024_04_306
crossref_primary_10_1007_s00521_022_07603_9
crossref_primary_10_3390_diagnostics13040806
crossref_primary_10_3390_app14188572
crossref_primary_10_2166_hydro_2024_304
crossref_primary_10_1016_j_eswa_2022_117654
crossref_primary_10_1016_j_jiec_2022_12_034
crossref_primary_10_1016_j_compstruct_2025_119050
crossref_primary_10_1016_j_eswa_2023_123035
crossref_primary_10_1016_j_eswa_2023_120085
crossref_primary_10_1007_s40430_025_05776_7
crossref_primary_10_1016_j_ress_2025_111460
crossref_primary_10_1007_s11581_024_06015_0
crossref_primary_10_1007_s12008_021_00807_8
crossref_primary_10_1016_j_rse_2025_114923
crossref_primary_10_3390_su15021132
crossref_primary_10_1155_2022_8952996
crossref_primary_10_3390_jof8090978
crossref_primary_10_1016_j_ast_2025_110071
crossref_primary_10_1016_j_knosys_2025_113920
crossref_primary_10_1109_TII_2023_3262856
crossref_primary_10_1016_j_saa_2022_121785
crossref_primary_10_1016_j_seta_2025_104195
crossref_primary_10_1063_5_0213253
crossref_primary_10_1016_j_eswa_2025_127663
crossref_primary_10_1093_jcde_qwae088
crossref_primary_10_3390_math13060996
Cites_doi 10.1016/j.mbs.2020.108306
10.1016/j.eswa.2010.12.017
10.1016/j.measurement.2010.10.004
10.1007/s40745-014-0022-8
10.1109/TNNLS.2013.2292894
10.1016/j.ifacol.2018.08.110
10.1051/ijmqe/2015023
10.1016/j.eswa.2004.08.009
10.1007/s10107-010-0415-1
10.1007/s00170-017-0394-y
10.1080/00207543.2017.1324223
10.1016/S0305-0483(01)00026-3
10.1109/ASRU.2005.1566508
10.1016/0004-3702(94)00094-8
10.1016/j.ins.2017.11.035
10.1016/j.eswa.2019.06.050
10.1007/s13042-019-01044-y
10.1016/j.asoc.2014.02.002
10.1016/j.neucom.2014.03.037
10.1016/j.eswa.2017.03.050
10.1016/j.eswa.2017.06.016
10.1002/9781119721871.ch7
10.1016/j.eswa.2010.06.003
10.1142/S0218213017500142
10.1016/j.bspc.2018.07.010
10.1016/j.envsoft.2012.03.014
10.7763/IJCTE.2009.V1.9
10.1016/j.eswa.2011.02.094
10.1016/j.neunet.2014.06.011
10.1016/j.jclepro.2018.07.164
10.1007/s10618-005-0012-8
10.1016/j.ins.2019.06.005
10.1016/j.eij.2014.12.003
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Mar 1, 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 1, 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.115691
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_115691
S0957417421010769
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSH
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AAYWO
AAYXX
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-e5fcbd7ece8ed5882f0aa81b8fd6c10fbfcb0fef1935ef3c42d307a9db39861c3
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000717676900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Fri Jul 25 03:56:26 EDT 2025
Sat Nov 29 07:04:47 EST 2025
Tue Nov 18 21:12:14 EST 2025
Sun Apr 06 06:53:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Support vector machines
Sobol sensitivity analysis
Uncertainty
Robust classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-e5fcbd7ece8ed5882f0aa81b8fd6c10fbfcb0fef1935ef3c42d307a9db39861c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2617692104
PQPubID 2045477
ParticipantIDs proquest_journals_2617692104
crossref_primary_10_1016_j_eswa_2021_115691
crossref_citationtrail_10_1016_j_eswa_2021_115691
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115691
PublicationCentury 2000
PublicationDate 2022-03-01
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Frénay, Verleysen (b0055) 2013; 25
Yang, Tan, He (b0215) 2014; 140
Zendehboudi, Baseer, Saidur (b0220) 2018; 199
Li, Chan, Fu, Krishnan (b0095) 2014
Osuna, Freund, Girosit (b0120) 1997
Zhu, Wu, Chen (b0225) 2006; 12
Li, Niu, Peng, Li, Yang, Wu (b0100) 2018; 51
Tay, Cao (b0175) 2001; 29
Wu (b0205) 2011; 38
Wei, Feng, Hong, Qu, Tan (b0200) 2017; 55
El Ghaoui, L., Lanckriet, G. R. G., & Natsoulis, G. (2003). Robust classification with interval data, p. 19.
Mantovani, Rossi, Alcobaça, Vanschoren, de Carvalho (b0115) 2019; 501
Cortes (b0035) 1995; 20
Cholette, Borghesani, Di Gialleonardo, Braghin (b0030) 2017; 81
Tomar, Agarwal (b0180) 2015; 16
Utkin, Zhuk (b0185) 2017; 26
Rostami, Dantan, Homri (b0150) 2015; 6
Hatch, A. O., Stolcke, A., & Peskin, B. (2005). Combining feature sets with support vector machines: Application to speaker recognition. In IEEE Workshop on Automatic Speech Recognition and Understanding, 2005. (pp. 75-79). IEEE. doi: 10.1109/ASRU.2005.1566508.
Sharma, Seal (b0155) 2019; 137
Özdemir, Ö. & Çavuş, M. (2016). Performance of the Inverse Transformation Method for Extreme ValueDistributions. Xth International Statistics Days Conference (ISDC’2016), Giresun, Turkey. 8.
Apsemidis, A., & Psarakis, S. (2020). Support Vector Machines: A Review and Applications in Statistical Process Monitoring. Data Analysis and Applications 3: Computational, Classification, Financial, Statistical and Stochastic Methods, 5, 123-144.
Glen, Isaacs (b0060) 2012; 37
Choi, Lee, Lee (b0025) 2016
Hickey (b0080) 1996; 82
Le Thi, Vo, Dinh (b0085) 2014; 59
Wang, Pardalos (b0195) 2014; 1
Wu, Law (b0210) 2011; 38
Qian, Mahdi (b0135) 2020; 323
Han, Davis (b0065) 2011; 34
López, Maldonado, Carrasco (b0105) 2018; 429
Pant, Trafalis, Barker (b0130) 2011
Ben-Tal, Bhadra, Bhattacharyya, Nath (b0015) 2011; 127
Heo, Gader (b0075) 2009
Radhika, Shashi (b0140) 2009; 1
Baccarini, Rocha e Silva, de Menezes, Caminhas (b0010) 2011; 38
Singla, Ghosh, Shukla (b0165) 2020; 11
Leung (b0090) 2011; 1
Cui, Wang (b0040) 2011; 44
Zou, X., Zhao, X., Li, G., Li, Z., and Sun, T. (2017). Sensitivity analysis using a variance-based method for a three-axis diamond turning machine, Int J Adv Manuf Technol, vol. 92, no. 9–12, pp. 4429–4443. doi: 10.1007/s00170-017-0394-y.[datasets + codes] : https://cloud.ensam.eu/index.php/s/FE5yhJp4Xequ5Zt.
Lu, Cai, Zhang (b0110) 2009
Wang, J. Y. (2002). Application of support vector machines in bioinformatics. National Taiwan University, p. 65, 2002.
Dias, Neto (b0045) 2017; 87
Raghavendra, S., N and Deka, P. C. (2014). Support vector machine applications in the field of hydrology: a review. Applied soft computing, 19, 372-386., doi: 10.1016/j.asoc.2014.02.002.
Shin, Lee, Kim (b0160) 2005; 28
Bi, J., & Zhang, T. (2005). Support vector classification with input data uncertainty. In Advances in neural information processing systems (pp. 161-168).
Tavakoli, Benussi, Lopes, Osorio, de Almeida (b0170) 2018; 46
Frénay (10.1016/j.eswa.2021.115691_b0055) 2013; 25
10.1016/j.eswa.2021.115691_b0005
Zhu (10.1016/j.eswa.2021.115691_b0225) 2006; 12
10.1016/j.eswa.2021.115691_b0145
10.1016/j.eswa.2021.115691_b0125
10.1016/j.eswa.2021.115691_b0020
Cholette (10.1016/j.eswa.2021.115691_b0030) 2017; 81
Singla (10.1016/j.eswa.2021.115691_b0165) 2020; 11
Radhika (10.1016/j.eswa.2021.115691_b0140) 2009; 1
Tomar (10.1016/j.eswa.2021.115691_b0180) 2015; 16
Cortes (10.1016/j.eswa.2021.115691_b0035) 1995; 20
Tavakoli (10.1016/j.eswa.2021.115691_b0170) 2018; 46
Dias (10.1016/j.eswa.2021.115691_b0045) 2017; 87
Le Thi (10.1016/j.eswa.2021.115691_b0085) 2014; 59
Han (10.1016/j.eswa.2021.115691_b0065) 2011; 34
Ben-Tal (10.1016/j.eswa.2021.115691_b0015) 2011; 127
Sharma (10.1016/j.eswa.2021.115691_b0155) 2019; 137
Cui (10.1016/j.eswa.2021.115691_b0040) 2011; 44
Mantovani (10.1016/j.eswa.2021.115691_b0115) 2019; 501
Li (10.1016/j.eswa.2021.115691_b0095) 2014
Pant (10.1016/j.eswa.2021.115691_b0130) 2011
Yang (10.1016/j.eswa.2021.115691_b0215) 2014; 140
Baccarini (10.1016/j.eswa.2021.115691_b0010) 2011; 38
Hickey (10.1016/j.eswa.2021.115691_b0080) 1996; 82
Shin (10.1016/j.eswa.2021.115691_b0160) 2005; 28
Choi (10.1016/j.eswa.2021.115691_b0025) 2016
Li (10.1016/j.eswa.2021.115691_b0100) 2018; 51
Lu (10.1016/j.eswa.2021.115691_b0110) 2009
10.1016/j.eswa.2021.115691_b0230
Leung (10.1016/j.eswa.2021.115691_b0090) 2011; 1
Wei (10.1016/j.eswa.2021.115691_b0200) 2017; 55
Osuna (10.1016/j.eswa.2021.115691_b0120) 1997
10.1016/j.eswa.2021.115691_b0070
Wu (10.1016/j.eswa.2021.115691_b0210) 2011; 38
Zendehboudi (10.1016/j.eswa.2021.115691_b0220) 2018; 199
Rostami (10.1016/j.eswa.2021.115691_b0150) 2015; 6
Wang (10.1016/j.eswa.2021.115691_b0195) 2014; 1
10.1016/j.eswa.2021.115691_b0050
López (10.1016/j.eswa.2021.115691_b0105) 2018; 429
Tay (10.1016/j.eswa.2021.115691_b0175) 2001; 29
10.1016/j.eswa.2021.115691_b0190
Heo (10.1016/j.eswa.2021.115691_b0075) 2009
Utkin (10.1016/j.eswa.2021.115691_b0185) 2017; 26
Wu (10.1016/j.eswa.2021.115691_b0205) 2011; 38
Glen (10.1016/j.eswa.2021.115691_b0060) 2012; 37
Qian (10.1016/j.eswa.2021.115691_b0135) 2020; 323
References_xml – volume: 46
  start-page: 121
  year: 2018
  end-page: 130
  ident: b0170
  article-title: Robust hand gesture recognition with a double channel surface EMG wearable armband and SVM classifier
  publication-title: Biomedical Signal Processing and Control
– reference: Bi, J., & Zhang, T. (2005). Support vector classification with input data uncertainty. In Advances in neural information processing systems (pp. 161-168).
– volume: 16
  start-page: 55
  year: 2015
  end-page: 69
  ident: b0180
  article-title: Twin support vector machine: A review from 2007 to 2014
  publication-title: Egyptian Informatics Journal
– start-page: 221
  year: 2014
  end-page: 268
  ident: b0095
  publication-title: Support Vector Machines Applications
– volume: 1
  start-page: 55
  year: 2009
  ident: b0140
  article-title: Atmospheric temperature prediction using support vector machines
  publication-title: International journal of computer theory and engineering
– volume: 55
  start-page: 5597
  year: 2017
  end-page: 5608
  ident: b0200
  article-title: Product quality improvement method in manufacturing process based on kernel optimisation algorithm
  publication-title: International Journal of Production Research
– volume: 59
  start-page: 36
  year: 2014
  end-page: 50
  ident: b0085
  article-title: Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms
  publication-title: Neural Networks
– start-page: 431
  year: 2009
  end-page: 436
  ident: b0075
  publication-title: Fuzzy SVM for noisy data: A robust membership calculation method
– reference: Zou, X., Zhao, X., Li, G., Li, Z., and Sun, T. (2017). Sensitivity analysis using a variance-based method for a three-axis diamond turning machine, Int J Adv Manuf Technol, vol. 92, no. 9–12, pp. 4429–4443. doi: 10.1007/s00170-017-0394-y.[datasets + codes] : https://cloud.ensam.eu/index.php/s/FE5yhJp4Xequ5Zt.
– volume: 137
  start-page: 100
  year: 2019
  end-page: 116
  ident: b0155
  article-title: Modeling uncertain data using Monte Carlo integration method for clustering
  publication-title: Expert Systems with Applications
– volume: 501
  start-page: 193
  year: 2019
  end-page: 221
  ident: b0115
  article-title: A metalearning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers
  publication-title: Information Sciences
– reference: Özdemir, Ö. & Çavuş, M. (2016). Performance of the Inverse Transformation Method for Extreme ValueDistributions. Xth International Statistics Days Conference (ISDC’2016), Giresun, Turkey. 8.
– volume: 12
  start-page: 275
  year: 2006
  end-page: 308
  ident: b0225
  article-title: Bridging local and global data cleansing: Identifying class noise in large, distributed data datasets
  publication-title: Data mining and Knowledge discovery
– volume: 25
  start-page: 845
  year: 2013
  end-page: 869
  ident: b0055
  article-title: Classification in the presence of label noise: A survey
  publication-title: IEEE transactions on neural networks and learning systems
– volume: 81
  start-page: 39
  year: 2017
  end-page: 52
  ident: b0030
  article-title: Using support vector machines for the computationally efficient identification of acceptable design parameters in computer-aided engineering applications
  publication-title: Expert Systems with Applications
– volume: 38
  start-page: 39
  year: 2011
  end-page: 46
  ident: b0205
  article-title: Fuzzy robust ν-support vector machine with penalizing hybrid noises on symmetric triangular fuzzy number space
  publication-title: Expert Systems with Applications
– start-page: 147
  year: 2009
  end-page: 150
  ident: b0110
  publication-title: Forecasting agriculture water consumption based on PSO and SVM
– volume: 127
  start-page: 145
  year: 2011
  end-page: 173
  ident: b0015
  article-title: Chance constrained uncertain classification via robust optimization
  publication-title: Mathematical programming
– reference: Raghavendra, S., N and Deka, P. C. (2014). Support vector machine applications in the field of hydrology: a review. Applied soft computing, 19, 372-386., doi: 10.1016/j.asoc.2014.02.002.
– volume: 6
  start-page: 401
  year: 2015
  ident: b0150
  article-title: Review of data mining applications for quality assessment in manufacturing industry: Support vector machines
  publication-title: International Journal of Metrology and Quality Engineering
– volume: 87
  start-page: 157
  year: 2017
  end-page: 169
  ident: b0045
  article-title: Training soft margin support vector machines by simulated annealing: A dual approach
  publication-title: Expert Systems with Applications
– volume: 323
  start-page: 108306
  year: 2020
  ident: b0135
  article-title: Sensitivity analysis methods in the biomedical sciences
  publication-title: Mathematical Biosciences
– volume: 1
  start-page: 316
  year: 2011
  end-page: 329
  ident: b0090
  article-title: Mining uncertain data
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– reference: Apsemidis, A., & Psarakis, S. (2020). Support Vector Machines: A Review and Applications in Statistical Process Monitoring. Data Analysis and Applications 3: Computational, Classification, Financial, Statistical and Stochastic Methods, 5, 123-144.
– volume: 20
  start-page: 1
  year: 1995
  end-page: 25
  ident: b0035
  publication-title: WSupport-vector network. Machine learning
– volume: 37
  start-page: 157
  year: 2012
  end-page: 166
  ident: b0060
  article-title: Estimating Sobol sensitivity indices using correlations
  publication-title: Environmental Modelling & Software
– volume: 26
  start-page: 1750014
  year: 2017
  ident: b0185
  article-title: Interval SVM-Based Classification Algorithm Using the Uncertainty Trick
  publication-title: International Journal on Artificial Intelligence Tools
– volume: 38
  start-page: 6980
  year: 2011
  end-page: 6984
  ident: b0010
  article-title: SVM practical industrial application for mechanical faults diagnostic
  publication-title: Expert Systems with Applications
– volume: 82
  start-page: 157
  year: 1996
  end-page: 179
  ident: b0080
  article-title: Noise modelling and evaluating learning from examples
  publication-title: Artificial Intelligence
– volume: 140
  start-page: 41
  year: 2014
  end-page: 52
  ident: b0215
  article-title: A robust least squares support vector machine for regression and classification with noise
  publication-title: Neurocomputing
– volume: 44
  start-page: 281
  year: 2011
  end-page: 289
  ident: b0040
  article-title: A novel approach of analog circuit fault diagnosis using support vector machines classifier
  publication-title: Measurement
– volume: 429
  start-page: 377
  year: 2018
  end-page: 389
  ident: b0105
  article-title: Double regularization methods for robust feature selection and SVM classification via DC programming
  publication-title: Information Sciences
– reference: El Ghaoui, L., Lanckriet, G. R. G., & Natsoulis, G. (2003). Robust classification with interval data, p. 19.
– volume: 51
  start-page: 726
  year: 2018
  end-page: 731
  ident: b0100
  article-title: Classification of peanut images based on multifeatures and SVM
  publication-title: IFAC-PapersOnLine
– volume: 11
  start-page: 1359
  year: 2020
  end-page: 1385
  ident: b0165
  article-title: A survey of robust optimization based machine learning with special reference to support vector machines
  publication-title: International Journal of Machine Learning and Cybernetics
– volume: 1
  start-page: 293
  year: 2014
  end-page: 309
  ident: b0195
  article-title: A survey of support vector machines with uncertainties
  publication-title: Annals of Data Science
– volume: 29
  start-page: 309
  year: 2001
  end-page: 317
  ident: b0175
  article-title: Application of support vector machines in financial time series forecasting
  publication-title: omega
– start-page: 4438
  year: 2016
  end-page: 4442
  ident: b0025
  publication-title: Weighted SVM with classification uncertainty for small training samples
– reference: Hatch, A. O., Stolcke, A., & Peskin, B. (2005). Combining feature sets with support vector machines: Application to speaker recognition. In IEEE Workshop on Automatic Speech Recognition and Understanding, 2005. (pp. 75-79). IEEE. doi: 10.1109/ASRU.2005.1566508.
– start-page: 130
  year: 1997
  end-page: 136
  ident: b0120
  publication-title: June). Training support vector machines: an application to face detection
– start-page: 369
  year: 2011
  end-page: 374
  ident: b0130
  publication-title: Support vector machine classification of uncertain and imbalanced data using robust optimization
– volume: 28
  start-page: 127
  year: 2005
  end-page: 135
  ident: b0160
  article-title: An application of support vector machines in bankruptcy prediction model
  publication-title: Expert systems with applications
– reference: Wang, J. Y. (2002). Application of support vector machines in bioinformatics. National Taiwan University, p. 65, 2002.
– volume: 34
  start-page: 1017
  year: 2011
  end-page: 1023
  ident: b0065
  article-title: Density-based multifeature background subtraction with support vector machine
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 38
  start-page: 12085
  year: 2011
  end-page: 12093
  ident: b0210
  article-title: The complex fuzzy system forecasting model based on fuzzy SVM with triangular fuzzy number input and output
  publication-title: Expert Systems with Applications
– volume: 199
  start-page: 272
  year: 2018
  end-page: 285
  ident: b0220
  article-title: Application of support vector machine models for forecasting solar and wind energy resources: A review
  publication-title: Journal of Cleaner Production
– volume: 323
  start-page: 108306
  year: 2020
  ident: 10.1016/j.eswa.2021.115691_b0135
  article-title: Sensitivity analysis methods in the biomedical sciences
  publication-title: Mathematical Biosciences
  doi: 10.1016/j.mbs.2020.108306
– volume: 20
  start-page: 1
  year: 1995
  ident: 10.1016/j.eswa.2021.115691_b0035
  publication-title: WSupport-vector network. Machine learning
– volume: 1
  start-page: 316
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2021.115691_b0090
  article-title: Mining uncertain data
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 38
  start-page: 6980
  issue: 6
  year: 2011
  ident: 10.1016/j.eswa.2021.115691_b0010
  article-title: SVM practical industrial application for mechanical faults diagnostic
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.12.017
– volume: 44
  start-page: 281
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2021.115691_b0040
  article-title: A novel approach of analog circuit fault diagnosis using support vector machines classifier
  publication-title: Measurement
  doi: 10.1016/j.measurement.2010.10.004
– volume: 1
  start-page: 293
  issue: 3–4
  year: 2014
  ident: 10.1016/j.eswa.2021.115691_b0195
  article-title: A survey of support vector machines with uncertainties
  publication-title: Annals of Data Science
  doi: 10.1007/s40745-014-0022-8
– volume: 25
  start-page: 845
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2021.115691_b0055
  article-title: Classification in the presence of label noise: A survey
  publication-title: IEEE transactions on neural networks and learning systems
  doi: 10.1109/TNNLS.2013.2292894
– volume: 51
  start-page: 726
  issue: 17
  year: 2018
  ident: 10.1016/j.eswa.2021.115691_b0100
  article-title: Classification of peanut images based on multifeatures and SVM
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.08.110
– volume: 6
  start-page: 401
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2021.115691_b0150
  article-title: Review of data mining applications for quality assessment in manufacturing industry: Support vector machines
  publication-title: International Journal of Metrology and Quality Engineering
  doi: 10.1051/ijmqe/2015023
– volume: 28
  start-page: 127
  issue: 1
  year: 2005
  ident: 10.1016/j.eswa.2021.115691_b0160
  article-title: An application of support vector machines in bankruptcy prediction model
  publication-title: Expert systems with applications
  doi: 10.1016/j.eswa.2004.08.009
– start-page: 4438
  year: 2016
  ident: 10.1016/j.eswa.2021.115691_b0025
– volume: 127
  start-page: 145
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2021.115691_b0015
  article-title: Chance constrained uncertain classification via robust optimization
  publication-title: Mathematical programming
  doi: 10.1007/s10107-010-0415-1
– start-page: 369
  year: 2011
  ident: 10.1016/j.eswa.2021.115691_b0130
– ident: 10.1016/j.eswa.2021.115691_b0230
  doi: 10.1007/s00170-017-0394-y
– volume: 55
  start-page: 5597
  issue: 19
  year: 2017
  ident: 10.1016/j.eswa.2021.115691_b0200
  article-title: Product quality improvement method in manufacturing process based on kernel optimisation algorithm
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2017.1324223
– ident: 10.1016/j.eswa.2021.115691_b0020
– volume: 29
  start-page: 309
  issue: 4
  year: 2001
  ident: 10.1016/j.eswa.2021.115691_b0175
  article-title: Application of support vector machines in financial time series forecasting
  publication-title: omega
  doi: 10.1016/S0305-0483(01)00026-3
– volume: 34
  start-page: 1017
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2021.115691_b0065
  article-title: Density-based multifeature background subtraction with support vector machine
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: 10.1016/j.eswa.2021.115691_b0070
  doi: 10.1109/ASRU.2005.1566508
– volume: 82
  start-page: 157
  issue: 1–2
  year: 1996
  ident: 10.1016/j.eswa.2021.115691_b0080
  article-title: Noise modelling and evaluating learning from examples
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(94)00094-8
– volume: 429
  start-page: 377
  year: 2018
  ident: 10.1016/j.eswa.2021.115691_b0105
  article-title: Double regularization methods for robust feature selection and SVM classification via DC programming
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.11.035
– volume: 137
  start-page: 100
  year: 2019
  ident: 10.1016/j.eswa.2021.115691_b0155
  article-title: Modeling uncertain data using Monte Carlo integration method for clustering
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.06.050
– volume: 11
  start-page: 1359
  issue: 7
  year: 2020
  ident: 10.1016/j.eswa.2021.115691_b0165
  article-title: A survey of robust optimization based machine learning with special reference to support vector machines
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-019-01044-y
– ident: 10.1016/j.eswa.2021.115691_b0145
  doi: 10.1016/j.asoc.2014.02.002
– volume: 140
  start-page: 41
  year: 2014
  ident: 10.1016/j.eswa.2021.115691_b0215
  article-title: A robust least squares support vector machine for regression and classification with noise
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.03.037
– start-page: 147
  year: 2009
  ident: 10.1016/j.eswa.2021.115691_b0110
– ident: 10.1016/j.eswa.2021.115691_b0190
– volume: 81
  start-page: 39
  year: 2017
  ident: 10.1016/j.eswa.2021.115691_b0030
  article-title: Using support vector machines for the computationally efficient identification of acceptable design parameters in computer-aided engineering applications
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.03.050
– volume: 87
  start-page: 157
  year: 2017
  ident: 10.1016/j.eswa.2021.115691_b0045
  article-title: Training soft margin support vector machines by simulated annealing: A dual approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.06.016
– ident: 10.1016/j.eswa.2021.115691_b0005
  doi: 10.1002/9781119721871.ch7
– volume: 38
  start-page: 39
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2021.115691_b0205
  article-title: Fuzzy robust ν-support vector machine with penalizing hybrid noises on symmetric triangular fuzzy number space
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.06.003
– volume: 26
  start-page: 1750014
  issue: 04
  year: 2017
  ident: 10.1016/j.eswa.2021.115691_b0185
  article-title: Interval SVM-Based Classification Algorithm Using the Uncertainty Trick
  publication-title: International Journal on Artificial Intelligence Tools
  doi: 10.1142/S0218213017500142
– ident: 10.1016/j.eswa.2021.115691_b0050
– volume: 46
  start-page: 121
  year: 2018
  ident: 10.1016/j.eswa.2021.115691_b0170
  article-title: Robust hand gesture recognition with a double channel surface EMG wearable armband and SVM classifier
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2018.07.010
– volume: 37
  start-page: 157
  year: 2012
  ident: 10.1016/j.eswa.2021.115691_b0060
  article-title: Estimating Sobol sensitivity indices using correlations
  publication-title: Environmental Modelling & Software
  doi: 10.1016/j.envsoft.2012.03.014
– ident: 10.1016/j.eswa.2021.115691_b0125
– start-page: 130
  year: 1997
  ident: 10.1016/j.eswa.2021.115691_b0120
– volume: 1
  start-page: 55
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2021.115691_b0140
  article-title: Atmospheric temperature prediction using support vector machines
  publication-title: International journal of computer theory and engineering
  doi: 10.7763/IJCTE.2009.V1.9
– start-page: 221
  year: 2014
  ident: 10.1016/j.eswa.2021.115691_b0095
– start-page: 431
  year: 2009
  ident: 10.1016/j.eswa.2021.115691_b0075
– volume: 38
  start-page: 12085
  issue: 10
  year: 2011
  ident: 10.1016/j.eswa.2021.115691_b0210
  article-title: The complex fuzzy system forecasting model based on fuzzy SVM with triangular fuzzy number input and output
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.02.094
– volume: 59
  start-page: 36
  year: 2014
  ident: 10.1016/j.eswa.2021.115691_b0085
  article-title: Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.06.011
– volume: 199
  start-page: 272
  year: 2018
  ident: 10.1016/j.eswa.2021.115691_b0220
  article-title: Application of support vector machine models for forecasting solar and wind energy resources: A review
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2018.07.164
– volume: 12
  start-page: 275
  issue: 2–3
  year: 2006
  ident: 10.1016/j.eswa.2021.115691_b0225
  article-title: Bridging local and global data cleansing: Identifying class noise in large, distributed data datasets
  publication-title: Data mining and Knowledge discovery
  doi: 10.1007/s10618-005-0012-8
– volume: 501
  start-page: 193
  year: 2019
  ident: 10.1016/j.eswa.2021.115691_b0115
  article-title: A metalearning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.06.005
– volume: 16
  start-page: 55
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2021.115691_b0180
  article-title: Twin support vector machine: A review from 2007 to 2014
  publication-title: Egyptian Informatics Journal
  doi: 10.1016/j.eij.2014.12.003
SSID ssj0017007
Score 2.530421
Snippet •A new approach is proposed to evaluate the impact of feature uncertainties on SVM.•Sobol analysis is applied to quantify of the impact of each feature...
This paper addresses the problem of classification when target data are subject to feature uncertainties. A robust approach based on Sobol sensitivity analysis...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115691
SubjectTerms Impact analysis
Machine learning
Parameter sensitivity
Pattern recognition
Performance prediction
Robust classification
Robustness
Sensitivity analysis
Sobol sensitivity analysis
Support vector machines
Uncertainty
Title Handling the impact of feature uncertainties on SVM: A robust approach based on Sobol sensitivity analysis
URI https://dx.doi.org/10.1016/j.eswa.2021.115691
https://www.proquest.com/docview/2617692104
Volume 189
WOSCitedRecordID wos000717676900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgMvfCMGA_mBt8pTvp3wVqGhMYkJiQHlybIdW11VkqlJy4T44znHdtIWbWIPvERV4lhW75fz3fnudwi9MQ6OyhUlPA80STLNCddSkSgyTCCxiGUmu2YT9Owsn06LT6PRb18Ls17QqsqvrorL_ypquAfCNqWztxB3PyncgN8gdLiC2OH6T4I_MbwJvghqKILUqqPwHMM-ZrMADJOqOSr4_PWjLU9f1mLVDCzjY7PBld2IWtSLcWNS3V2vCe6oTLbi-oY0uXXU0L5obuN4vA9R16uZLW__xmeih1X9Y-kKtX_NeJ8xDKBsbYj2VPGKfF-rrTgFuLh9olYfcKQkCW1PnkH3FhvaE6zTzPbu-kux2xjD_Eg1Pw1bVBQeDYO3WbR3drc-59Cns82ZmYOZOZid4w7aj2hagFrfn3w4np72p1A0sOX2fuWu6MrmB-6u5DrDZmeL7-yW84fovnM48MQC5REaqeoxeuCbeWCn25-guccNBtxgixtca-xwg7dwg-sKA27e4gm2qMEeNbhDTffcoAZvoAZ71DxFX94fn787Ia4RB5FxlLdEpVqKkioJX3WZgk-mA87B38l1mckw0AIeB1ppcAZSpWOZRCVsHbwoRVzkWSjjZ2ivqiv1HOE0kqpMwMgshU7iiHOqw6zICi4FFaA2DlDo_0UmHUu9aZayYNfL7wCN-3cuLUfLjaNTLxzmrExrPTLA2o3vHXpJMve5N8z0M8iKKAySF7daxEt0b_hGDtFeu1ypV-iuXLcXzfK1w-EfD_ysig
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Handling+the+impact+of+feature+uncertainties+on+SVM%3A+A+robust+approach+based+on+Sobol+sensitivity+analysis&rft.jtitle=Expert+systems+with+applications&rft.au=Zouhri%2C+Wahb&rft.au=Homri%2C+Lazhar&rft.au=Dantan%2C+Jean-Yves&rft.date=2022-03-01&rft.issn=0957-4174&rft.volume=189&rft.spage=115691&rft_id=info:doi/10.1016%2Fj.eswa.2021.115691&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2021_115691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon