An adaptive hybrid fractal model for short-term load forecasting in power systems

•Short-term load forecasting (STLF) of power loads involves fractal features, due to complexity of power systems.•Composite linear fractal interpolation function (CLFIF) modeling better captures irregularities and fluctuations of power loads.•Iterative learning (IL) and chimp optimization algorithm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electric power systems research Ročník 207; s. 107858
Hlavní autoři: Li, Xiaolan, Zhou, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.06.2022
Elsevier Science Ltd
Témata:
ISSN:0378-7796, 1873-2046
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Short-term load forecasting (STLF) of power loads involves fractal features, due to complexity of power systems.•Composite linear fractal interpolation function (CLFIF) modeling better captures irregularities and fluctuations of power loads.•Iterative learning (IL) and chimp optimization algorithm (ChOA) are used for adaptive parametrization of CLFIF.•Hybrid CLFIF-IL-ChOA modeling is proposed for STLF, which obtains high accuracy without further relevant data.•Comparisons in between CLFIF-IL-ChOA and others are included; effectiveness of CLFIF-IL-ChOA is verified. This paper develops a hybrid short-term load forecasting (STLF) modeling with adaptive parametrization, based on composite linear fractal interpolation function (CLFIF), iterative learning (IL) and chimp optimization algorithm (ChOA). More precisely, after selecting similar days in power load data, an amendatory CLFIF model is constructed for an-hour-ahead prediction in terms of hourly load curves. Then, iterative learning based on ChOA optimizes the parameters of the amendatory CLFIF model with higher accuracy. Moreover, to confirm effectiveness of the CLFIF-IL-ChOA model, numerical examples are tested on the historical power load data from PJM and ENTSOE. The numerical results show that the proposed method can obtain higher accuracy, compared to some common methods about time series analysis.
AbstractList •Short-term load forecasting (STLF) of power loads involves fractal features, due to complexity of power systems.•Composite linear fractal interpolation function (CLFIF) modeling better captures irregularities and fluctuations of power loads.•Iterative learning (IL) and chimp optimization algorithm (ChOA) are used for adaptive parametrization of CLFIF.•Hybrid CLFIF-IL-ChOA modeling is proposed for STLF, which obtains high accuracy without further relevant data.•Comparisons in between CLFIF-IL-ChOA and others are included; effectiveness of CLFIF-IL-ChOA is verified. This paper develops a hybrid short-term load forecasting (STLF) modeling with adaptive parametrization, based on composite linear fractal interpolation function (CLFIF), iterative learning (IL) and chimp optimization algorithm (ChOA). More precisely, after selecting similar days in power load data, an amendatory CLFIF model is constructed for an-hour-ahead prediction in terms of hourly load curves. Then, iterative learning based on ChOA optimizes the parameters of the amendatory CLFIF model with higher accuracy. Moreover, to confirm effectiveness of the CLFIF-IL-ChOA model, numerical examples are tested on the historical power load data from PJM and ENTSOE. The numerical results show that the proposed method can obtain higher accuracy, compared to some common methods about time series analysis.
This paper develops a hybrid short-term load forecasting (STLF) modeling with adaptive parametrization, based on composite linear fractal interpolation function (CLFIF), iterative learning (IL) and chimp optimization algorithm (ChOA). More precisely, after selecting similar days in power load data, an amendatory CLFIF model is constructed for an-hour-ahead prediction in terms of hourly load curves. Then, iterative learning based on ChOA optimizes the parameters of the amendatory CLFIF model with higher accuracy. Moreover, to confirm effectiveness of the CLFIF-IL-ChOA model, numerical examples are tested on the historical power load data from PJM and ENTSOE. The numerical results show that the proposed method can obtain higher accuracy, compared to some common methods about time series analysis.
ArticleNumber 107858
Author Li, Xiaolan
Zhou, Jun
Author_xml – sequence: 1
  givenname: Xiaolan
  surname: Li
  fullname: Li, Xiaolan
  email: lixiaolan@hhu.edu.cn
– sequence: 2
  givenname: Jun
  surname: Zhou
  fullname: Zhou, Jun
  email: zhouj@lzu.edu.cn
BookMark eNp9kF1LwzAUhoNMcJv-Aa8CXncm6Zqm4M0YfsFABL0OaXLqUtqmJtlk_96WeuXFrg68vM85nGeBZp3rAKFbSlaUUH5fr6APfsUIY0OQi0xcoDkVeZowsuYzNCdpLpI8L_gVWoRQE0J4kWdz9L7psDKqj_YIeH8qvTW48kpH1eDWGWhw5TwOe-djEsG3uHHKjBloFaLtvrDtcO9-YCidQoQ2XKPLSjUBbv7mEn0-PX5sX5Ld2_PrdrNLdMpETIBy4FnJeKlLAiojWrC1qRjogoIglRGamlTQSlOapxVZE26oErwwOis4TdMlupv29t59HyBEWbuD74aTkvGCZ4MGQoeWmFrauxA8VFLbqKJ1XfTKNpISOQqUtRwFylGgnAQOKPuH9t62yp_OQw8TBMPrRwteBm2h02DsoCxK4-w5_BcV9Ixs
CitedBy_id crossref_primary_10_1007_s10614_025_11026_8
crossref_primary_10_32604_cmes_2023_025396
crossref_primary_10_3390_s22124363
crossref_primary_10_1016_j_energy_2024_131459
crossref_primary_10_1088_1742_6596_2781_1_012002
Cites_doi 10.1016/S0196-8904(02)00225-X
10.1109/TPWRS.2005.860944
10.1109/59.99410
10.1109/59.780934
10.1016/S0378-4754(99)00119-6
10.1016/j.apenergy.2018.04.075
10.1142/S0129065704002078
10.3390/en11051282
10.3390/en13092370
10.1016/j.eswa.2020.113338
10.1142/S0217984920501146
10.1016/j.apenergy.2020.116415
10.1016/j.ijepes.2012.06.009
10.1016/j.eswa.2009.08.019
10.1016/j.ijepes.2014.12.087
10.1016/j.asoc.2011.07.001
10.1016/S0378-7796(03)00150-0
10.1002/2050-7038.12103
10.1016/j.energy.2016.08.023
10.1016/j.eswa.2007.09.031
10.1016/j.energy.2013.04.027
10.1002/2050-7038.12709
10.1016/j.energy.2020.117514
10.1016/S0378-7796(02)00097-4
10.1016/j.solener.2013.12.006
10.1109/78.143444
10.1016/j.energy.2017.05.126
10.1016/j.epsr.2019.106191
10.3390/en11071899
10.1016/j.enconman.2013.02.010
10.1016/j.chaos.2012.06.009
10.1016/j.neucom.2006.05.020
10.1016/j.energy.2017.12.156
10.1016/j.epsr.2016.08.031
10.1016/j.epsr.2015.09.001
10.1016/j.ijepes.2012.09.002
10.1007/BF01893434
10.1016/j.energy.2017.12.083
10.1109/59.41700
10.1109/TPWRS.2004.835632
10.1016/j.apenergy.2017.03.034
10.1109/TPWRS.2007.907583
10.1016/j.energy.2019.116847
10.14257/ijca.2015.8.8.19
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier Science Ltd. Jun 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jun 2022
DBID AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1016/j.epsr.2022.107858
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2046
ExternalDocumentID 10_1016_j_epsr_2022_107858
S0378779622000888
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c328t-e16e65b26bcb0ea50c824df2ec91e80fd8c1d381fc1173f0406d1a869dc596133
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793768600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7796
IngestDate Sun Nov 09 07:12:19 EST 2025
Tue Nov 18 21:24:53 EST 2025
Sat Nov 29 07:10:46 EST 2025
Fri Feb 23 02:41:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chimp optimization algorithm
Adaptive
Composite linear fractal interpolation function
Short-term load forecasting
Iterative learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-e16e65b26bcb0ea50c824df2ec91e80fd8c1d381fc1173f0406d1a869dc596133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2696510701
PQPubID 2047565
ParticipantIDs proquest_journals_2696510701
crossref_citationtrail_10_1016_j_epsr_2022_107858
crossref_primary_10_1016_j_epsr_2022_107858
elsevier_sciencedirect_doi_10_1016_j_epsr_2022_107858
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Electric power systems research
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Salmi, Kiljander, Pakkala (bib0036) 2020; 13
Tarsitano, Amerise (bib0009) 2017; 133
Tavassoli-Hojati, Ghaderi, Iranmanesh (bib0030) 2020; 199
Zheng, Gu, Jin, Peng, Zhu (bib0007) 2020; 30
Chen, Xu, Chu, Li, Wu, Ni, Bao, Wang (bib0049) 2017; 195
Kang, Xia, Liu (bib0006) 2017
Hsu, Chen (bib0051) 2003; 44
Song, Cattani, Chi (bib0046) 2020; 194
Mazel, Hayes (bib0042) 1992; 40
Dudek (bib0014) 2016; 130
Sun, Zhang (bib0032) 2018; 11
Wang, Jia, Zhao, Wu, Dong (bib0043) 2012; 45
Aly (bib0039) 2020; 182
Niu, Shi, Wu (bib0018) 2012; 12
Zhou, Li, Ren (bib0047) 2020
Zamo, Mestre, Arbogast, Pannekoucke (bib0013) 2014; 105
Wu, Wang, Lu, Dong, Lu (bib0012) 2013; 70
Fang, Shen, Li (bib0035) 2020; 34
Hooshmand, Amooshahi, Parastegari (bib0031) 2013; 45
Fan, Peng, Hong (bib0002) 2018; 224
Dong, Yang, Reindl, Walsh (bib0016) 2013; 55
Hu, Qu, Wang (bib0038) 2021; 285
Barnsley (bib0041) 1986; 2
Tian, Noore (bib0024) 2004; 14
Mastorocostas, Theocharis, Kiartzis, Bakirtzis (bib0028) 2000; 51
He, Xu, Wan, Yang (bib0001) 2016; 114
Kelo, Dudul (bib0020) 2012; 43
Zhai (bib0045) 2015; 69
Karimi, Karami, Gholami, Khatibzadehazad, Moslemi (bib0003) 2018; 144
Barman, Choudhury, Sutradhar (bib0004) 2018; 145
Taylor, McSharry (bib0010) 2007; 22
Boroojeni, Amini, Bahrami, Iyengar, Sarwat, Karabasoglu (bib0011) 2017; 142
Hwan, Kim (bib0027) 2001; volume 1
Niu, Wang, Wu (bib0025) 2010; 37
Kim, Yu, Song (bib0022) 2002; 63
Khishe, Mosavi (bib0048) 2020; 149
Xiao, Ye, Zhong, Sun (bib0021) 2009; 36
Moghram, Rahman (bib0019) 1989; 4
Srinivasan, Tan, Chang, Chan (bib0023) 1999; 14
Papalexopoulos, Hesterberg (bib0015) 1990; 5
Manderbrot (bib0040) 1982
Massaoudi, Refaat, Chihi (bib0034) 2020
Jiang (bib0026) 2015; 8
Lin, Xue, Hu, Huang (bib0005) 2018; 11
Fan, Chen (bib0008) 2006; 21
Palma (bib0050) 2016
Ulagammai, Venkatesh, Kannan, Padhy (bib0033) 2007; 70
Li, Zhou (bib0044) 2021; 31
Wang, Zheng, Wang (bib0037) 2021
Al-Hamadi, Soliman (bib0017) 2004; 68
Song, Baek, Hong, Jang (bib0029) 2005; 20
Manderbrot (10.1016/j.epsr.2022.107858_bib0040) 1982
Srinivasan (10.1016/j.epsr.2022.107858_bib0023) 1999; 14
Moghram (10.1016/j.epsr.2022.107858_bib0019) 1989; 4
Zhai (10.1016/j.epsr.2022.107858_bib0045) 2015; 69
He (10.1016/j.epsr.2022.107858_bib0001) 2016; 114
Kelo (10.1016/j.epsr.2022.107858_bib0020) 2012; 43
Hwan (10.1016/j.epsr.2022.107858_bib0027) 2001; volume 1
Dudek (10.1016/j.epsr.2022.107858_bib0014) 2016; 130
Wang (10.1016/j.epsr.2022.107858_bib0043) 2012; 45
Mastorocostas (10.1016/j.epsr.2022.107858_bib0028) 2000; 51
Niu (10.1016/j.epsr.2022.107858_bib0025) 2010; 37
Khishe (10.1016/j.epsr.2022.107858_bib0048) 2020; 149
Wu (10.1016/j.epsr.2022.107858_bib0012) 2013; 70
Taylor (10.1016/j.epsr.2022.107858_bib0010) 2007; 22
Papalexopoulos (10.1016/j.epsr.2022.107858_bib0015) 1990; 5
Fan (10.1016/j.epsr.2022.107858_bib0008) 2006; 21
Palma (10.1016/j.epsr.2022.107858_bib0050) 2016
Barman (10.1016/j.epsr.2022.107858_bib0004) 2018; 145
Fan (10.1016/j.epsr.2022.107858_bib0002) 2018; 224
Boroojeni (10.1016/j.epsr.2022.107858_bib0011) 2017; 142
Tian (10.1016/j.epsr.2022.107858_bib0024) 2004; 14
Ulagammai (10.1016/j.epsr.2022.107858_bib0033) 2007; 70
Tavassoli-Hojati (10.1016/j.epsr.2022.107858_bib0030) 2020; 199
Li (10.1016/j.epsr.2022.107858_sbref0044) 2021; 31
Hooshmand (10.1016/j.epsr.2022.107858_bib0031) 2013; 45
Xiao (10.1016/j.epsr.2022.107858_bib0021) 2009; 36
Aly (10.1016/j.epsr.2022.107858_bib0039) 2020; 182
Kim (10.1016/j.epsr.2022.107858_bib0022) 2002; 63
Hsu (10.1016/j.epsr.2022.107858_bib0051) 2003; 44
Karimi (10.1016/j.epsr.2022.107858_bib0003) 2018; 144
Chen (10.1016/j.epsr.2022.107858_bib0049) 2017; 195
Salmi (10.1016/j.epsr.2022.107858_bib0036) 2020; 13
Massaoudi (10.1016/j.epsr.2022.107858_bib0034) 2020
Song (10.1016/j.epsr.2022.107858_bib0029) 2005; 20
Fang (10.1016/j.epsr.2022.107858_bib0035) 2020; 34
Lin (10.1016/j.epsr.2022.107858_bib0005) 2018; 11
Zhou (10.1016/j.epsr.2022.107858_bib0047) 2020
Mazel (10.1016/j.epsr.2022.107858_bib0042) 1992; 40
Tarsitano (10.1016/j.epsr.2022.107858_bib0009) 2017; 133
Zamo (10.1016/j.epsr.2022.107858_bib0013) 2014; 105
Sun (10.1016/j.epsr.2022.107858_bib0032) 2018; 11
Jiang (10.1016/j.epsr.2022.107858_bib0026) 2015; 8
Hu (10.1016/j.epsr.2022.107858_bib0038) 2021; 285
Barnsley (10.1016/j.epsr.2022.107858_bib0041) 1986; 2
Al-Hamadi (10.1016/j.epsr.2022.107858_bib0017) 2004; 68
Song (10.1016/j.epsr.2022.107858_bib0046) 2020; 194
Kang (10.1016/j.epsr.2022.107858_bib0006) 2017
Zheng (10.1016/j.epsr.2022.107858_sbref0007) 2020; 30
Niu (10.1016/j.epsr.2022.107858_bib0018) 2012; 12
Dong (10.1016/j.epsr.2022.107858_bib0016) 2013; 55
Wang (10.1016/j.epsr.2022.107858_bib0037) 2021
References_xml – volume: 14
  start-page: 1100
  year: 1999
  end-page: 1105
  ident: bib0023
  article-title: Parallel neural network-fuzzy expert system strategy for short-term load forecasting : system implementation and performance evaluation
  publication-title: IEEE Trans. Power Syst.
– year: 2021
  ident: bib0037
  article-title: Household electricity load forecasting based on multitask convolutional neural network with profile encoding
  publication-title: Math. Probl. Eng.
– volume: 70
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib0012
  article-title: Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model
  publication-title: Energy Convers. Manag.
– volume: 70
  start-page: 2659
  year: 2007
  end-page: 2667
  ident: bib0033
  article-title: Application of bacterial foraging technique trained artificial and wavelet neural networks in load forecasting
  publication-title: Neurocomputing
– volume: 149
  start-page: 113338
  year: 2020
  ident: bib0048
  article-title: Chimp optimization algorithm
  publication-title: Expert Syst. Appl.
– volume: 11
  start-page: 1899
  year: 2018
  ident: bib0005
  article-title: Modular predictor for day-ahead load forecasting and feature selection for different hours
  publication-title: Energies
– volume: volume 1
  start-page: 112
  year: 2001
  end-page: 116
  ident: bib0027
  article-title: A short-term load forecasting expert system
  publication-title: Proceedings of the 5th Russia-Korean International Symposium on Science and Technology-Proceedings: KORUS 2001
– volume: 105
  start-page: 792
  year: 2014
  end-page: 803
  ident: bib0013
  article-title: A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, Part I : deterministic forecast of hourly production
  publication-title: Sol. Energy
– volume: 130
  start-page: 139
  year: 2016
  end-page: 147
  ident: bib0014
  article-title: Pattern-based local linear regression models for short-term load forecasting
  publication-title: Electr. Power Syst. Res.
– volume: 14
  start-page: 329
  year: 2004
  end-page: 335
  ident: bib0024
  article-title: A novel approach for short-term load forecasting using support vector machines
  publication-title: Int. J. Neural Syst.
– volume: 12
  start-page: 1822
  year: 2012
  end-page: 1827
  ident: bib0018
  article-title: Short-term load forecasting using Bayesian neural networks learned by hybrid Monte Carlo algorithm
  publication-title: Appl. Soft Comput.
– volume: 224
  start-page: 13
  year: 2018
  end-page: 33
  ident: bib0002
  article-title: Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model
  publication-title: Appl. Energy
– volume: 20
  start-page: 96
  year: 2005
  end-page: 101
  ident: bib0029
  article-title: Short-term load forecasting for the holidays using fuzzy linear regression method
  publication-title: IEEE Trans. Power Syst.
– year: 1982
  ident: bib0040
  article-title: The Fractal Geometry of Nature
– volume: 51
  start-page: 221
  year: 2000
  end-page: 232
  ident: bib0028
  article-title: A hybrid fuzzy modeling method for short-term load forecasting
  publication-title: Math. Comput. Simul.
– volume: 195
  start-page: 659
  year: 2017
  end-page: 670
  ident: bib0049
  article-title: Short-term electrical load forecasting using the support vector regression (SVR) model to calculate the demand response baseline for office buildings
  publication-title: Appl. Energy
– volume: 44
  start-page: 1941
  year: 2003
  end-page: 1949
  ident: bib0051
  article-title: Regional load forecasting in Taiwan - applications of artificial neural networks
  publication-title: Energy Convers. Manag.
– volume: 43
  start-page: 1063
  year: 2012
  end-page: 1071
  ident: bib0020
  article-title: A wavelet Elman neural network for short-term electrical load prediction under the influence of temperature
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 22
  start-page: 2213
  year: 2007
  end-page: 2219
  ident: bib0010
  article-title: Short-term load forecasting methods: an evaluation based on european data
  publication-title: IEEE Trans. Power Syst.
– volume: 45
  start-page: 1277
  year: 2012
  end-page: 1287
  ident: bib0043
  article-title: Application of the largest Lyapunov exponent and non-linear fractal extrapolation algorithm to short-term load forecasting
  publication-title: Chaos Solitons Fractals
– volume: 69
  start-page: 241
  year: 2015
  end-page: 245
  ident: bib0045
  article-title: A new method for short-term load forecasting based on fractal interpretation and wavelet analysis
  publication-title: Int. J. Electr. Power Energy Syst.
– year: 2016
  ident: bib0050
  article-title: Time Series Analysis
– volume: 199
  start-page: 117514
  year: 2020
  ident: bib0030
  article-title: A self-partitioning local neuro fuzzy model for short-term load forecasting in smart grids
  publication-title: Energy
– volume: 36
  start-page: 273
  year: 2009
  end-page: 279
  ident: bib0021
  article-title: BP neural network with rough set for short term load forecasting
  publication-title: Expert Syst. Appl.
– volume: 8
  start-page: 181
  year: 2015
  end-page: 188
  ident: bib0026
  article-title: Study on short-term load forecasting method based on the PSO and SVM model
  publication-title: Int. J. Control Autom.
– volume: 2
  start-page: 303
  year: 1986
  end-page: 329
  ident: bib0041
  article-title: Fractal functions and interpolation
  publication-title: Constr. Approx.
– volume: 114
  start-page: 498
  year: 2016
  end-page: 512
  ident: bib0001
  article-title: Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function
  publication-title: Energy
– volume: 285
  start-page: 116415
  year: 2021
  ident: bib0038
  article-title: Short-term load forecasting using multimodal evolutionary algorithm and random vector functional link network based ensemble learning
  publication-title: Appl. Energy
– volume: 182
  start-page: 106191
  year: 2020
  ident: bib0039
  article-title: A proposed intelligent short-term load forecasting hybrid models of ANN, WNN and KF based on clustering techniques for smart grid
  publication-title: Electr. Power Syst. Res.
– volume: 133
  start-page: 108
  year: 2017
  end-page: 114
  ident: bib0009
  article-title: Short-term load forecasting using a two-stage sarimax model
  publication-title: Energy
– start-page: 118874
  year: 2020
  ident: bib0034
  article-title: A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for short-term load forecasting
  publication-title: Energy
– volume: 21
  start-page: 392
  year: 2006
  end-page: 401
  ident: bib0008
  article-title: Short-term load forecasting based on an adaptive hybrid method
  publication-title: IEEE Trans. Power Syst.
– volume: 194
  start-page: 116847
  year: 2020
  ident: bib0046
  article-title: Multifractional Brownian motion and quantum-behaved particle swarm optimization for short term power load forecasting: an integrated approach
  publication-title: Energy
– volume: 55
  start-page: 1104
  year: 2013
  end-page: 1113
  ident: bib0016
  article-title: Short-term solar irradiance forecasting using exponential smoothing state space model
  publication-title: Energy
– volume: 31
  start-page: e12709
  year: 2021
  ident: bib0044
  article-title: Short-term power load fitting/forecasting based on composite modified fractal interpolation approaches
  publication-title: Int. Trans. Electr. Energy Syst.
– volume: 37
  start-page: 2531
  year: 2010
  end-page: 2539
  ident: bib0025
  article-title: Power load forecasting using support vector machine and ant colony optimization
  publication-title: Expert Syst. Appl.
– volume: 13
  start-page: 2370
  year: 2020
  ident: bib0036
  article-title: Stacked boosters network architecture for short-term load forecasting in buildings
  publication-title: Energies
– year: 2020
  ident: bib0047
  article-title: Power-load fault diagnosis by fractal similarity analysis
  publication-title: Proceedings of the 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference, September 20-23, 2020, Nanjing, China
– volume: 68
  start-page: 47
  year: 2004
  end-page: 59
  ident: bib0017
  article-title: Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model
  publication-title: Electr. Power Syst. Res.
– volume: 5
  start-page: 1535
  year: 1990
  end-page: 1547
  ident: bib0015
  article-title: A regression-based approach to short-term system load forecasting
  publication-title: IEEE Trans. Power Syst.
– volume: 63
  start-page: 169
  year: 2002
  end-page: 176
  ident: bib0022
  article-title: Kohonen neural network and wavelet transform based approach to short-term load forecasting
  publication-title: Electr. Power Syst. Res.
– volume: 45
  start-page: 313
  year: 2013
  end-page: 324
  ident: bib0031
  article-title: A hybrid intelligent algorithm based short-term load forecasting approach
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 40
  start-page: 1724
  year: 1992
  end-page: 1734
  ident: bib0042
  article-title: Using iterated function systems to model discrete sequences
  publication-title: IEEE Trans. Signal Process.
– volume: 34
  start-page: 2050114
  year: 2020
  ident: bib0035
  article-title: An efficient power load forecasting model based on the optimized combination
  publication-title: Mod. Phys. Lett. B
– year: 2017
  ident: bib0006
  article-title: Power System Load Forecasting
– volume: 144
  start-page: 928
  year: 2018
  end-page: 940
  ident: bib0003
  article-title: Priority index considering temperature and date proximity for selection of similar days in knowledge-based short term load forecasting method
  publication-title: Energy
– volume: 142
  start-page: 58
  year: 2017
  end-page: 73
  ident: bib0011
  article-title: A novel multi-time-scale modeling for electric power demand forecasting: from short-term to medium-term horizon
  publication-title: Electr. Power Syst. Res.
– volume: 145
  start-page: 710
  year: 2018
  end-page: 720
  ident: bib0004
  article-title: A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India
  publication-title: Energy
– volume: 11
  start-page: 1282
  year: 2018
  ident: bib0032
  article-title: A hybrid BA-ELM model based on factor analysis and similar-day approach for short-term load forecasting
  publication-title: Energies
– volume: 30
  year: 2020
  ident: bib0007
  article-title: Load forecasting under data corruption based on anomaly detection and combined robust regression
  publication-title: Int. Trans. Electr. Energy Syst.
– volume: 4
  start-page: 1484
  year: 1989
  end-page: 1491
  ident: bib0019
  article-title: Analysis and evaluation of five short-term load forecasting techniques
  publication-title: IEEE Trans. Power Syst.
– volume: 44
  start-page: 1941
  issue: 12
  year: 2003
  ident: 10.1016/j.epsr.2022.107858_bib0051
  article-title: Regional load forecasting in Taiwan - applications of artificial neural networks
  publication-title: Energy Convers. Manag.
  doi: 10.1016/S0196-8904(02)00225-X
– volume: 21
  start-page: 392
  issue: 1
  year: 2006
  ident: 10.1016/j.epsr.2022.107858_bib0008
  article-title: Short-term load forecasting based on an adaptive hybrid method
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2005.860944
– volume: 5
  start-page: 1535
  issue: 4
  year: 1990
  ident: 10.1016/j.epsr.2022.107858_bib0015
  article-title: A regression-based approach to short-term system load forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.99410
– volume: 14
  start-page: 1100
  issue: 3
  year: 1999
  ident: 10.1016/j.epsr.2022.107858_bib0023
  article-title: Parallel neural network-fuzzy expert system strategy for short-term load forecasting : system implementation and performance evaluation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.780934
– volume: 51
  start-page: 221
  issue: 3-4
  year: 2000
  ident: 10.1016/j.epsr.2022.107858_bib0028
  article-title: A hybrid fuzzy modeling method for short-term load forecasting
  publication-title: Math. Comput. Simul.
  doi: 10.1016/S0378-4754(99)00119-6
– start-page: 118874
  year: 2020
  ident: 10.1016/j.epsr.2022.107858_bib0034
  article-title: A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for short-term load forecasting
  publication-title: Energy
– volume: 224
  start-page: 13
  year: 2018
  ident: 10.1016/j.epsr.2022.107858_bib0002
  article-title: Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.04.075
– volume: 14
  start-page: 329
  issue: 5
  year: 2004
  ident: 10.1016/j.epsr.2022.107858_bib0024
  article-title: A novel approach for short-term load forecasting using support vector machines
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065704002078
– volume: volume 1
  start-page: 112
  year: 2001
  ident: 10.1016/j.epsr.2022.107858_bib0027
  article-title: A short-term load forecasting expert system
– volume: 11
  start-page: 1282
  issue: 5
  year: 2018
  ident: 10.1016/j.epsr.2022.107858_bib0032
  article-title: A hybrid BA-ELM model based on factor analysis and similar-day approach for short-term load forecasting
  publication-title: Energies
  doi: 10.3390/en11051282
– volume: 13
  start-page: 2370
  issue: 9
  year: 2020
  ident: 10.1016/j.epsr.2022.107858_bib0036
  article-title: Stacked boosters network architecture for short-term load forecasting in buildings
  publication-title: Energies
  doi: 10.3390/en13092370
– volume: 149
  start-page: 113338
  year: 2020
  ident: 10.1016/j.epsr.2022.107858_bib0048
  article-title: Chimp optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113338
– volume: 34
  start-page: 2050114
  issue: 16
  year: 2020
  ident: 10.1016/j.epsr.2022.107858_bib0035
  article-title: An efficient power load forecasting model based on the optimized combination
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984920501146
– volume: 285
  start-page: 116415
  year: 2021
  ident: 10.1016/j.epsr.2022.107858_bib0038
  article-title: Short-term load forecasting using multimodal evolutionary algorithm and random vector functional link network based ensemble learning
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.116415
– volume: 43
  start-page: 1063
  issue: 1
  year: 2012
  ident: 10.1016/j.epsr.2022.107858_bib0020
  article-title: A wavelet Elman neural network for short-term electrical load prediction under the influence of temperature
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2012.06.009
– volume: 37
  start-page: 2531
  issue: 3
  year: 2010
  ident: 10.1016/j.epsr.2022.107858_bib0025
  article-title: Power load forecasting using support vector machine and ant colony optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.08.019
– volume: 69
  start-page: 241
  year: 2015
  ident: 10.1016/j.epsr.2022.107858_bib0045
  article-title: A new method for short-term load forecasting based on fractal interpretation and wavelet analysis
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.12.087
– volume: 12
  start-page: 1822
  issue: 6
  year: 2012
  ident: 10.1016/j.epsr.2022.107858_bib0018
  article-title: Short-term load forecasting using Bayesian neural networks learned by hybrid Monte Carlo algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.07.001
– volume: 68
  start-page: 47
  issue: 1
  year: 2004
  ident: 10.1016/j.epsr.2022.107858_bib0017
  article-title: Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/S0378-7796(03)00150-0
– volume: 30
  issue: 7
  year: 2020
  ident: 10.1016/j.epsr.2022.107858_sbref0007
  article-title: Load forecasting under data corruption based on anomaly detection and combined robust regression
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/2050-7038.12103
– volume: 114
  start-page: 498
  issue: 1
  year: 2016
  ident: 10.1016/j.epsr.2022.107858_bib0001
  article-title: Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.023
– volume: 36
  start-page: 273
  issue: 1
  year: 2009
  ident: 10.1016/j.epsr.2022.107858_bib0021
  article-title: BP neural network with rough set for short term load forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.09.031
– volume: 55
  start-page: 1104
  year: 2013
  ident: 10.1016/j.epsr.2022.107858_bib0016
  article-title: Short-term solar irradiance forecasting using exponential smoothing state space model
  publication-title: Energy
  doi: 10.1016/j.energy.2013.04.027
– year: 2020
  ident: 10.1016/j.epsr.2022.107858_bib0047
  article-title: Power-load fault diagnosis by fractal similarity analysis
– volume: 31
  start-page: e12709
  year: 2021
  ident: 10.1016/j.epsr.2022.107858_sbref0044
  article-title: Short-term power load fitting/forecasting based on composite modified fractal interpolation approaches
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/2050-7038.12709
– volume: 199
  start-page: 117514
  year: 2020
  ident: 10.1016/j.epsr.2022.107858_bib0030
  article-title: A self-partitioning local neuro fuzzy model for short-term load forecasting in smart grids
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117514
– volume: 63
  start-page: 169
  issue: 3
  year: 2002
  ident: 10.1016/j.epsr.2022.107858_bib0022
  article-title: Kohonen neural network and wavelet transform based approach to short-term load forecasting
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/S0378-7796(02)00097-4
– volume: 105
  start-page: 792
  year: 2014
  ident: 10.1016/j.epsr.2022.107858_bib0013
  article-title: A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, Part I : deterministic forecast of hourly production
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.12.006
– volume: 40
  start-page: 1724
  issue: 7
  year: 1992
  ident: 10.1016/j.epsr.2022.107858_bib0042
  article-title: Using iterated function systems to model discrete sequences
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.143444
– volume: 133
  start-page: 108
  year: 2017
  ident: 10.1016/j.epsr.2022.107858_bib0009
  article-title: Short-term load forecasting using a two-stage sarimax model
  publication-title: Energy
  doi: 10.1016/j.energy.2017.05.126
– year: 2017
  ident: 10.1016/j.epsr.2022.107858_bib0006
– volume: 182
  start-page: 106191
  year: 2020
  ident: 10.1016/j.epsr.2022.107858_bib0039
  article-title: A proposed intelligent short-term load forecasting hybrid models of ANN, WNN and KF based on clustering techniques for smart grid
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2019.106191
– volume: 11
  start-page: 1899
  issue: 7
  year: 2018
  ident: 10.1016/j.epsr.2022.107858_bib0005
  article-title: Modular predictor for day-ahead load forecasting and feature selection for different hours
  publication-title: Energies
  doi: 10.3390/en11071899
– volume: 70
  start-page: 1
  year: 2013
  ident: 10.1016/j.epsr.2022.107858_bib0012
  article-title: Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.02.010
– volume: 45
  start-page: 1277
  issue: 9-10
  year: 2012
  ident: 10.1016/j.epsr.2022.107858_bib0043
  article-title: Application of the largest Lyapunov exponent and non-linear fractal extrapolation algorithm to short-term load forecasting
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2012.06.009
– volume: 70
  start-page: 2659
  issue: 16-18
  year: 2007
  ident: 10.1016/j.epsr.2022.107858_bib0033
  article-title: Application of bacterial foraging technique trained artificial and wavelet neural networks in load forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.05.020
– year: 1982
  ident: 10.1016/j.epsr.2022.107858_bib0040
– volume: 145
  start-page: 710
  year: 2018
  ident: 10.1016/j.epsr.2022.107858_bib0004
  article-title: A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.156
– volume: 142
  start-page: 58
  year: 2017
  ident: 10.1016/j.epsr.2022.107858_bib0011
  article-title: A novel multi-time-scale modeling for electric power demand forecasting: from short-term to medium-term horizon
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2016.08.031
– volume: 130
  start-page: 139
  year: 2016
  ident: 10.1016/j.epsr.2022.107858_bib0014
  article-title: Pattern-based local linear regression models for short-term load forecasting
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2015.09.001
– volume: 45
  start-page: 313
  issue: 1
  year: 2013
  ident: 10.1016/j.epsr.2022.107858_bib0031
  article-title: A hybrid intelligent algorithm based short-term load forecasting approach
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2012.09.002
– volume: 2
  start-page: 303
  issue: 1
  year: 1986
  ident: 10.1016/j.epsr.2022.107858_bib0041
  article-title: Fractal functions and interpolation
  publication-title: Constr. Approx.
  doi: 10.1007/BF01893434
– volume: 144
  start-page: 928
  year: 2018
  ident: 10.1016/j.epsr.2022.107858_bib0003
  article-title: Priority index considering temperature and date proximity for selection of similar days in knowledge-based short term load forecasting method
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.083
– volume: 4
  start-page: 1484
  issue: 4
  year: 1989
  ident: 10.1016/j.epsr.2022.107858_bib0019
  article-title: Analysis and evaluation of five short-term load forecasting techniques
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.41700
– volume: 20
  start-page: 96
  issue: 1
  year: 2005
  ident: 10.1016/j.epsr.2022.107858_bib0029
  article-title: Short-term load forecasting for the holidays using fuzzy linear regression method
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2004.835632
– year: 2016
  ident: 10.1016/j.epsr.2022.107858_bib0050
– volume: 195
  start-page: 659
  year: 2017
  ident: 10.1016/j.epsr.2022.107858_bib0049
  article-title: Short-term electrical load forecasting using the support vector regression (SVR) model to calculate the demand response baseline for office buildings
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.03.034
– volume: 22
  start-page: 2213
  issue: 4
  year: 2007
  ident: 10.1016/j.epsr.2022.107858_bib0010
  article-title: Short-term load forecasting methods: an evaluation based on european data
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2007.907583
– year: 2021
  ident: 10.1016/j.epsr.2022.107858_bib0037
  article-title: Household electricity load forecasting based on multitask convolutional neural network with profile encoding
  publication-title: Math. Probl. Eng.
– volume: 194
  start-page: 116847
  year: 2020
  ident: 10.1016/j.epsr.2022.107858_bib0046
  article-title: Multifractional Brownian motion and quantum-behaved particle swarm optimization for short term power load forecasting: an integrated approach
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116847
– volume: 8
  start-page: 181
  issue: 8
  year: 2015
  ident: 10.1016/j.epsr.2022.107858_bib0026
  article-title: Study on short-term load forecasting method based on the PSO and SVM model
  publication-title: Int. J. Control Autom.
  doi: 10.14257/ijca.2015.8.8.19
SSID ssj0006975
Score 2.3880477
Snippet •Short-term load forecasting (STLF) of power loads involves fractal features, due to complexity of power systems.•Composite linear fractal interpolation...
This paper develops a hybrid short-term load forecasting (STLF) modeling with adaptive parametrization, based on composite linear fractal interpolation...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107858
SubjectTerms Adaptive
Algorithms
Chimp optimization algorithm
Composite linear fractal interpolation function
Electricity distribution
Forecasting
Fractal models
Fractals
Interpolation
Iterative learning
Iterative methods
Machine learning
Model accuracy
Numerical analysis
Optimization
Optimization algorithms
Parameterization
Short-term load forecasting
Time series
Title An adaptive hybrid fractal model for short-term load forecasting in power systems
URI https://dx.doi.org/10.1016/j.epsr.2022.107858
https://www.proquest.com/docview/2696510701
Volume 207
WOSCitedRecordID wos000793768600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTQ_toaQvmjQtOvRmXFayLUvHJaS0IYQWUlh6EbIssRsW7xJvQvLvM3rY-ygJzaEXY4QkhD5pHmLmG4S-5CYThbY8ZXWl0twwBXIw1ynhRqtMVCbXnsT1rDw_55OJ-DkY9Fn8N_OyafjtrVj-V6ihDcB2qbNPgLufFBrgH0CHL8AO338CftwkqlZLHxI0vXMJWYl1qVAuTcSVvfGBhe0UzO7UieVkvlC1a4Nda1cxw2XpaqdFlud26_HeV82Z6e0eSaQM6p-Wz3yMwGSmwHHuT9-f6eI6JII0m28N4Kb2MVFdjhX4nGUZatB28pOGsrVRAoI7yQMZ-1_CObwTXIKebR0TK6Vf1523mbB3NFQfN9iFpF1KN4d0c8gwxzO0R8tC8CHaG_84mZz22pgJT7bcrzwmToUYv92VPGSc7Khpb3tc7KNX0WnA4wD2azQwzRv0coNK8i36NW5wBzsOsOMIO_awY4AYr2HHDna8ATueNdiDiiOo79DvbycXx9_TWC4j1Rnlq9QQZlhRUVbpamRUMdKc5rWlRgti-MjWXJMaDDSrCSkzC9Kb1URxJmpdCLDqsvdo2Cwa8wFha4UliuYVNeC-W14pRiqbW8ZzQYlhB4h0-yR15JJ3JU3m8mGEDlDSj1kGJpVHexfd9stoCwYbT8JpenTcUYeVjJeylZQJBrqnHJHDJy3iI3qxvgVHaLi6ujaf0HN9s5q1V5_jSbsHcjuL3g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+hybrid+fractal+model+for+short-term+load+forecasting+in+power+systems&rft.jtitle=Electric+power+systems+research&rft.au=Li%2C+Xiaolan&rft.au=Zhou%2C+Jun&rft.date=2022-06-01&rft.issn=0378-7796&rft.volume=207&rft.spage=107858&rft_id=info:doi/10.1016%2Fj.epsr.2022.107858&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsr_2022_107858
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon