An integrated approach for real-time hazard mitigation in complex industrial processes

•Optimization of safety-threshold for complex industrial processes.•Consider joint probabilities of multiple process variables leading to an accident.•Enables dynamic risk assessment based on multiple real-time process variables. Modern engineering systems give paramount importance to safety in orde...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Reliability engineering & system safety Ročník 188; s. 297 - 309
Hlavní autoři: Rebello, Sinda, Yu, Hongyang, Ma, Lin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Barking Elsevier Ltd 01.08.2019
Elsevier BV
Témata:
ISSN:0951-8320, 1879-0836
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Optimization of safety-threshold for complex industrial processes.•Consider joint probabilities of multiple process variables leading to an accident.•Enables dynamic risk assessment based on multiple real-time process variables. Modern engineering systems give paramount importance to safety in order to avoid or mitigate hazardous accidents which can lead to huge economic losses, environmental contamination, and human injuries. This paper proposes an integrated approach that uses both Hidden Markov Model and Bayesian Network to estimate an optimum safety-threshold for complex industrial processes. In order to estimate the safety threshold, the proposed approach considers different cost factors and the joint probabilities of multiple process variables leading to an accident. In addition to the system level threshold, it also estimates the safety-threshold for components. This helps in identifying the component that needs maintenance to enhance system performance and safety. Furthermore, it proposes a dynamic risk assessment methodology based on multiple real-time process variables. The optimum safety-thresholds are estimated using Genetic Algorithm which aims at minimizing the system running cost over a finite time horizon. A case study on Tennessee Eastman Chemical Process is presented to demonstrate the proposed methodology for optimizing process safety-threshold.
AbstractList Modern engineering systems give paramount importance to safety in order to avoid or mitigate hazardous accidents which can lead to huge economic losses, environmental contamination, and human injuries. This paper proposes an integrated approach that uses both Hidden Markov Model and Bayesian Network to estimate an optimum safety-threshold for complex industrial processes. In order to estimate the safety threshold, the proposed approach considers different cost factors and the joint probabilities of multiple process variables leading to an accident. In addition to the system level threshold, it also estimates the safety-threshold for components. This helps in identifying the component that needs maintenance to enhance system performance and safety. Furthermore, it proposes a dynamic risk assessment methodology based on multiple real-time process variables. The optimum safety-thresholds are estimated using Genetic Algorithm which aims at minimizing the system running cost over a finite time horizon. A case study on Tennessee Eastman Chemical Process is presented to demonstrate the proposed methodology for optimizing process safety-threshold.
•Optimization of safety-threshold for complex industrial processes.•Consider joint probabilities of multiple process variables leading to an accident.•Enables dynamic risk assessment based on multiple real-time process variables. Modern engineering systems give paramount importance to safety in order to avoid or mitigate hazardous accidents which can lead to huge economic losses, environmental contamination, and human injuries. This paper proposes an integrated approach that uses both Hidden Markov Model and Bayesian Network to estimate an optimum safety-threshold for complex industrial processes. In order to estimate the safety threshold, the proposed approach considers different cost factors and the joint probabilities of multiple process variables leading to an accident. In addition to the system level threshold, it also estimates the safety-threshold for components. This helps in identifying the component that needs maintenance to enhance system performance and safety. Furthermore, it proposes a dynamic risk assessment methodology based on multiple real-time process variables. The optimum safety-thresholds are estimated using Genetic Algorithm which aims at minimizing the system running cost over a finite time horizon. A case study on Tennessee Eastman Chemical Process is presented to demonstrate the proposed methodology for optimizing process safety-threshold.
Author Ma, Lin
Rebello, Sinda
Yu, Hongyang
Author_xml – sequence: 1
  givenname: Sinda
  orcidid: 0000-0001-5462-9937
  surname: Rebello
  fullname: Rebello, Sinda
  email: sinda.rebello@hdr.qut.edu.au
– sequence: 2
  givenname: Hongyang
  surname: Yu
  fullname: Yu, Hongyang
– sequence: 3
  givenname: Lin
  surname: Ma
  fullname: Ma, Lin
BookMark eNp9kE1LAzEQhoMo2Fb_gKcFz7tOdjfdBLyU4hcUvKjXkCazbZb9qEkq6q83az15KAzMwMwz78w7Jaf90CMhVxQyCnR-02QOvc9yoCKDIkZ1QiaUVyIFXsxPyQQEoykvcjgnU-8bACgFqybkbdEntg-4cSqgSdRu5walt0k9uMShatNgO0y26ls5k3Q22I0KdhiZRA_drsXPWJq9D86qNomwjnegvyBntWo9Xv7lGXm9v3tZPqar54en5WKV6iLnIUXKCsbjJRrKek5jMmtc84oWAgw1DGoUeV0BZ1TERilwrQxnleJ1qVnNixm5PuyNyu979EE2w971UVLmeQm0hIqNU_lhSrvBe4e13DnbKfclKcjRP9nI0T85-iehiFFFiP-DtA2_zwenbHscvT2gGF__sOik1xZ7jcY61EGawR7DfwCHFI8F
CitedBy_id crossref_primary_10_3390_jmse12060907
crossref_primary_10_1016_j_jlp_2021_104713
crossref_primary_10_1016_j_knosys_2024_111404
crossref_primary_10_1016_j_dajour_2022_100069
crossref_primary_10_1016_j_ress_2020_107067
crossref_primary_10_1017_S0373463321000291
crossref_primary_10_1016_j_ssci_2024_106559
crossref_primary_10_1016_j_ress_2019_106646
crossref_primary_10_1016_j_ress_2024_109940
crossref_primary_10_1016_j_ress_2022_109084
crossref_primary_10_1088_1757_899X_537_6_062076
crossref_primary_10_3390_math12243961
crossref_primary_10_3390_jmse9020139
Cites_doi 10.1016/S0951-8320(00)00077-6
10.1016/j.jlp.2009.04.006
10.1016/j.ress.2015.02.011
10.1016/j.ress.2018.07.002
10.1021/ie503530v
10.1016/j.ress.2015.11.010
10.1016/j.ymssp.2011.09.029
10.1016/j.ssci.2010.01.007
10.1016/j.ress.2014.01.015
10.1002/aic.14013
10.1111/j.1539-6924.1999.tb00391.x
10.1016/0098-1354(93)80018-I
10.1016/j.ress.2011.03.012
10.1002/cjce.22480
10.1016/j.ress.2005.03.006
10.1109/5.18626
10.1002/aic.14661
10.1016/j.ejor.2011.12.010
10.1016/0951-8320(95)00097-6
10.1109/TR.2012.2194175
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Aug 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2019
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2019.03.037
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
EndPage 309
ExternalDocumentID 10_1016_j_ress_2019_03_037
S0951832018311955
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
SOI
ID FETCH-LOGICAL-c328t-e15358495c04f615c0dbeb871390d1d50fe92f708519beb49ebad857a8f4c5f83
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470341400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Wed Aug 13 05:45:25 EDT 2025
Sat Nov 29 07:08:58 EST 2025
Tue Nov 18 22:00:44 EST 2025
Fri Feb 23 02:28:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Process monitoring
System safety
Safety-threshold optimization
Genetic algorithm
Bayesian network
Industrial hazard
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-e15358495c04f615c0dbeb871390d1d50fe92f708519beb49ebad857a8f4c5f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5462-9937
PQID 2240140758
PQPubID 2045406
PageCount 13
ParticipantIDs proquest_journals_2240140758
crossref_primary_10_1016_j_ress_2019_03_037
crossref_citationtrail_10_1016_j_ress_2019_03_037
elsevier_sciencedirect_doi_10_1016_j_ress_2019_03_037
PublicationCentury 2000
PublicationDate August 2019
2019-08-00
20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Sun, Zuo, Wang, Pecht (bib0018) 2012; 28
Rasmekomen, Parlikad (bib0015) 2016; 148
Yu, Rashid (bib0024) 2013; 59
Downs, Vogel (bib0004) 1993; 17
Hulst (bib0008) 2006
Yu, Khan, Garaniya (bib0023) 2016; 94
Downs, Vogel (bib0005) 1993; 17
Bier, Yi (bib0001) 1995; 50
Khakzad, Khan, Amyotte (bib0010) 2011; 96
Rebello, Yu, Ma (bib0016) 2018; 180
Medjaher, Tobon-Mejia, Zerhouni (bib0012) 2012; 61
Yu, Khan, Garaniya (bib0022) 2015; 139
Gran, Helminen (bib0006) 2001
Bier, Haimes, Lambert, Matalas, Zimmerman (bib0002) 1999; 19
Bobbio, Portinale, Minichino, Ciancamerla (bib0003) 2001; 71
Yu, Khan, Garaniya (bib0021) 2015; 54
Weber, Jouffe (bib0020) 2006; 91
Qiu, Sun, Cao, Wang, Feng, Yang, Infield (bib0013) 2014; 2014
Rabiner (bib0014) 1989; 77
Sammaknejad, Huang, Xiong, Fatehi, Xu, Espejo (bib0017) 2015; 61
Hu, Zhang, Ma, Liang (bib0007) 2010; 48
Khakzad, Khan, Paltrinieri (bib0011) 2014; 126
Wang (bib0019) 2012; 218
Kalantarnia, Khan, Hawboldt (bib0009) 2009; 22
Bobbio (10.1016/j.ress.2019.03.037_bib0003) 2001; 71
Hulst (10.1016/j.ress.2019.03.037_bib0008) 2006
Medjaher (10.1016/j.ress.2019.03.037_bib0012) 2012; 61
Yu (10.1016/j.ress.2019.03.037_bib0021) 2015; 54
Bier (10.1016/j.ress.2019.03.037_bib0001) 1995; 50
Kalantarnia (10.1016/j.ress.2019.03.037_bib0009) 2009; 22
Khakzad (10.1016/j.ress.2019.03.037_bib0010) 2011; 96
Sun (10.1016/j.ress.2019.03.037_bib0018) 2012; 28
Sammaknejad (10.1016/j.ress.2019.03.037_bib0017) 2015; 61
Yu (10.1016/j.ress.2019.03.037_bib0022) 2015; 139
Rebello (10.1016/j.ress.2019.03.037_bib0016) 2018; 180
Weber (10.1016/j.ress.2019.03.037_bib0020) 2006; 91
Bier (10.1016/j.ress.2019.03.037_bib0002) 1999; 19
Yu (10.1016/j.ress.2019.03.037_bib0024) 2013; 59
Wang (10.1016/j.ress.2019.03.037_bib0019) 2012; 218
Rasmekomen (10.1016/j.ress.2019.03.037_bib0015) 2016; 148
Downs (10.1016/j.ress.2019.03.037_bib0004) 1993; 17
Gran (10.1016/j.ress.2019.03.037_bib0006) 2001
Khakzad (10.1016/j.ress.2019.03.037_bib0011) 2014; 126
Qiu (10.1016/j.ress.2019.03.037_bib0013) 2014; 2014
Rabiner (10.1016/j.ress.2019.03.037_bib0014) 1989; 77
Yu (10.1016/j.ress.2019.03.037_bib0023) 2016; 94
Downs (10.1016/j.ress.2019.03.037_bib0005) 1993; 17
Hu (10.1016/j.ress.2019.03.037_bib0007) 2010; 48
References_xml – volume: 22
  start-page: 600
  year: 2009
  end-page: 606
  ident: bib0009
  article-title: Dynamic risk assessment using failure assessment and Bayesian theory
  publication-title: J Loss Prevent Process Ind
– volume: 59
  start-page: 2348
  year: 2013
  end-page: 2365
  ident: bib0024
  article-title: A novel dynamic bayesian network-based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis
  publication-title: AIChE J
– volume: 17
  start-page: 245
  year: 1993
  end-page: 255
  ident: bib0004
  article-title: A plant-wide industrial process problem control
  publication-title: Comput Chem Eng
– volume: 218
  start-page: 726
  year: 2012
  end-page: 734
  ident: bib0019
  article-title: A simulation-based multivariate Bayesian control chart for real time condition-based maintenance of complex systems
  publication-title: Eur J Oper Res
– volume: 19
  start-page: 83
  year: 1999
  end-page: 94
  ident: bib0002
  article-title: A survey of approaches for assessing and managing the risk of extremes
  publication-title: Risk Anal
– volume: 91
  start-page: 149
  year: 2006
  end-page: 162
  ident: bib0020
  article-title: Complex system reliability modelling with dynamic object oriented Bayesian networks (DOOBN)
  publication-title: Reliab Eng Syst Saf
– volume: 94
  start-page: 1295
  year: 2016
  end-page: 1307
  ident: bib0023
  article-title: Risk-based process system monitoring using self-organizing map integrated with loss functions
  publication-title: Can J Chem Eng
– volume: 96
  start-page: 925
  year: 2011
  end-page: 932
  ident: bib0010
  article-title: Safety analysis in process facilities: comparison of fault tree and Bayesian network approaches
  publication-title: Reliab Eng Syst Saf
– volume: 126
  start-page: 116
  year: 2014
  end-page: 125
  ident: bib0011
  article-title: On the application of near accident data to risk analysis of major accidents
  publication-title: Reliab Eng Syst Saf
– year: 2006
  ident: bib0008
  article-title: Modeling physiological processes with dynamic Bayesian networks
  publication-title: Faculty of electrical engineering, mathematics, and computer science
– volume: 2014
  year: 2014
  ident: bib0013
  article-title: Model based wind turbine gearbox fault detection on SCADA Data
  publication-title: IET conference publications
– volume: 148
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib0015
  article-title: Condition-based maintenance of multi-component systems with degradation state-rate interactions
  publication-title: Reliab Eng Syst Saf
– start-page: 35
  year: 2001
  end-page: 45
  ident: bib0006
  article-title: A Bayesian belief network for reliability assessment
  publication-title: Computer safety, reliability and security
– volume: 61
  start-page: 292
  year: 2012
  end-page: 302
  ident: bib0012
  article-title: Remaining useful life estimation of critical components with application to bearings
  publication-title: Reliab IEEE Trans
– volume: 71
  start-page: 249
  year: 2001
  end-page: 260
  ident: bib0003
  article-title: Improving the analysis of dependable systems by mapping fault trees into Bayesian networks
  publication-title: Reliab Eng Syst Saf
– volume: 61
  start-page: 477
  year: 2015
  end-page: 493
  ident: bib0017
  article-title: Operating condition diagnosis based on HMM with adaptive transition probabilities in presence of missing observations
  publication-title: AIChE J
– volume: 28
  start-page: 585
  year: 2012
  end-page: 596
  ident: bib0018
  article-title: Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance
  publication-title: Mech Syst Signal Process
– volume: 54
  start-page: 2724
  year: 2015
  end-page: 2742
  ident: bib0021
  article-title: Modified independent component analysis and Bayesian network-based two-stage fault diagnosis of process operations
  publication-title: Ind Eng Chem Res
– volume: 50
  start-page: 241
  year: 1995
  end-page: 251
  ident: bib0001
  article-title: The performance of precursor-based estimators for rare event frequencies
  publication-title: Reliab Eng Syst Saf
– volume: 77
  start-page: 257
  year: 1989
  end-page: 286
  ident: bib0014
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proc IEEE
– volume: 48
  start-page: 580
  year: 2010
  end-page: 597
  ident: bib0007
  article-title: An integrated method for safety pre-warning of complex system
  publication-title: Saf Sci
– volume: 17
  start-page: 245
  year: 1993
  end-page: 255
  ident: bib0005
  article-title: A plant-wide industrial process control problem
  publication-title: Comput Chem Eng
– volume: 139
  start-page: 82
  year: 2015
  end-page: 96
  ident: bib0022
  article-title: Risk-based fault detection using self-organizing map
  publication-title: Reliab Eng Syst Saf
– volume: 180
  start-page: 124
  year: 2018
  end-page: 135
  ident: bib0016
  article-title: An integrated approach for system functional reliability assessment using Dynamic Bayesian Network and Hidden Markov Model
  publication-title: Reliab Eng Syst Saf
– volume: 71
  start-page: 249
  issue: 3
  year: 2001
  ident: 10.1016/j.ress.2019.03.037_bib0003
  article-title: Improving the analysis of dependable systems by mapping fault trees into Bayesian networks
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/S0951-8320(00)00077-6
– start-page: 35
  year: 2001
  ident: 10.1016/j.ress.2019.03.037_bib0006
  article-title: A Bayesian belief network for reliability assessment
– volume: 22
  start-page: 600
  issue: 5
  year: 2009
  ident: 10.1016/j.ress.2019.03.037_bib0009
  article-title: Dynamic risk assessment using failure assessment and Bayesian theory
  publication-title: J Loss Prevent Process Ind
  doi: 10.1016/j.jlp.2009.04.006
– volume: 139
  start-page: 82
  year: 2015
  ident: 10.1016/j.ress.2019.03.037_bib0022
  article-title: Risk-based fault detection using self-organizing map
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.02.011
– volume: 180
  start-page: 124
  year: 2018
  ident: 10.1016/j.ress.2019.03.037_bib0016
  article-title: An integrated approach for system functional reliability assessment using Dynamic Bayesian Network and Hidden Markov Model
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.07.002
– volume: 54
  start-page: 2724
  issue: 10
  year: 2015
  ident: 10.1016/j.ress.2019.03.037_bib0021
  article-title: Modified independent component analysis and Bayesian network-based two-stage fault diagnosis of process operations
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie503530v
– year: 2006
  ident: 10.1016/j.ress.2019.03.037_bib0008
  article-title: Modeling physiological processes with dynamic Bayesian networks
– volume: 2014
  year: 2014
  ident: 10.1016/j.ress.2019.03.037_bib0013
  article-title: Model based wind turbine gearbox fault detection on SCADA Data
– volume: 148
  start-page: 1
  year: 2016
  ident: 10.1016/j.ress.2019.03.037_bib0015
  article-title: Condition-based maintenance of multi-component systems with degradation state-rate interactions
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.11.010
– volume: 28
  start-page: 585
  year: 2012
  ident: 10.1016/j.ress.2019.03.037_bib0018
  article-title: Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2011.09.029
– volume: 48
  start-page: 580
  issue: 5
  year: 2010
  ident: 10.1016/j.ress.2019.03.037_bib0007
  article-title: An integrated method for safety pre-warning of complex system
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2010.01.007
– volume: 126
  start-page: 116
  year: 2014
  ident: 10.1016/j.ress.2019.03.037_bib0011
  article-title: On the application of near accident data to risk analysis of major accidents
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2014.01.015
– volume: 59
  start-page: 2348
  issue: 7
  year: 2013
  ident: 10.1016/j.ress.2019.03.037_bib0024
  article-title: A novel dynamic bayesian network-based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis
  publication-title: AIChE J
  doi: 10.1002/aic.14013
– volume: 19
  start-page: 83
  issue: 1
  year: 1999
  ident: 10.1016/j.ress.2019.03.037_bib0002
  article-title: A survey of approaches for assessing and managing the risk of extremes
  publication-title: Risk Anal
  doi: 10.1111/j.1539-6924.1999.tb00391.x
– volume: 17
  start-page: 245
  issue: 3
  year: 1993
  ident: 10.1016/j.ress.2019.03.037_bib0004
  article-title: A plant-wide industrial process problem control
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(93)80018-I
– volume: 96
  start-page: 925
  issue: 8
  year: 2011
  ident: 10.1016/j.ress.2019.03.037_bib0010
  article-title: Safety analysis in process facilities: comparison of fault tree and Bayesian network approaches
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2011.03.012
– volume: 94
  start-page: 1295
  issue: 7
  year: 2016
  ident: 10.1016/j.ress.2019.03.037_bib0023
  article-title: Risk-based process system monitoring using self-organizing map integrated with loss functions
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.22480
– volume: 91
  start-page: 149
  issue: 2
  year: 2006
  ident: 10.1016/j.ress.2019.03.037_bib0020
  article-title: Complex system reliability modelling with dynamic object oriented Bayesian networks (DOOBN)
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2005.03.006
– volume: 77
  start-page: 257
  issue: 2
  year: 1989
  ident: 10.1016/j.ress.2019.03.037_bib0014
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proc IEEE
  doi: 10.1109/5.18626
– volume: 61
  start-page: 477
  issue: 2
  year: 2015
  ident: 10.1016/j.ress.2019.03.037_bib0017
  article-title: Operating condition diagnosis based on HMM with adaptive transition probabilities in presence of missing observations
  publication-title: AIChE J
  doi: 10.1002/aic.14661
– volume: 17
  start-page: 245
  issue: 3
  year: 1993
  ident: 10.1016/j.ress.2019.03.037_bib0005
  article-title: A plant-wide industrial process control problem
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(93)80018-I
– volume: 218
  start-page: 726
  issue: 3
  year: 2012
  ident: 10.1016/j.ress.2019.03.037_bib0019
  article-title: A simulation-based multivariate Bayesian control chart for real time condition-based maintenance of complex systems
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2011.12.010
– volume: 50
  start-page: 241
  issue: 3
  year: 1995
  ident: 10.1016/j.ress.2019.03.037_bib0001
  article-title: The performance of precursor-based estimators for rare event frequencies
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/0951-8320(95)00097-6
– volume: 61
  start-page: 292
  issue: 2
  year: 2012
  ident: 10.1016/j.ress.2019.03.037_bib0012
  article-title: Remaining useful life estimation of critical components with application to bearings
  publication-title: Reliab IEEE Trans
  doi: 10.1109/TR.2012.2194175
SSID ssj0004957
Score 2.3411276
SecondaryResourceType review_article
Snippet •Optimization of safety-threshold for complex industrial processes.•Consider joint probabilities of multiple process variables leading to an accident.•Enables...
Modern engineering systems give paramount importance to safety in order to avoid or mitigate hazardous accidents which can lead to huge economic losses,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 297
SubjectTerms Accidents
Bayesian analysis
Bayesian network
Contamination
Economic impact
Genetic algorithm
Genetic algorithms
Hazard mitigation
Industrial hazard
Markov chains
Optimization
Organic chemistry
Process monitoring
Process variables
Real time
Real variables
Reliability engineering
Risk assessment
Safety
Safety-threshold optimization
System safety
Title An integrated approach for real-time hazard mitigation in complex industrial processes
URI https://dx.doi.org/10.1016/j.ress.2019.03.037
https://www.proquest.com/docview/2240140758
Volume 188
WOSCitedRecordID wos000470341400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLZG4cAOaOOHBnSTD9yqTE6T1PaxQkUwTdWkAepOUeLYUFRCRVvU8tfz_CvpiqjGYVIVWUljpX1f_D4_v_cZoRMFLDeXMC3hQnSCmEfQYh0SMAneAGxOlamtuv5J-302GPBfLpgzMdsJ0LJk8zkf_1dTwzkwti6dfYe5q07hBLTB6HAEs8PxnwzfLWsNiKLSDDfphEAQR4HeTb51mz3r-MH90Eps2HxHk14u59CstvMY2zoCl2johbzlaGjlvRctWesZGhRZZejWJFNOYMSs5sjcr_H8Xo4B_JkZz_dQ3iwy50FNcNwFC5YjEroIivmIhA8thgGMFOTvUZYtj5M2Kde53MgoJLwezW1g4e67DjzoLDyrRxvR2nf59foVl1YlGvoctrtU95HqPlISwYduoM02TThroM3uRW_woy6m5VYe1v8IV2llkwJXn-QtNrPi1w1ZufyEdtwsA3ctOj6jD7LcRR-XtCf30HW3xDVOsMcJBpzgCifY4gTXOIF7sMMJrnGCK5zso6uz3uXpeeA22QhE1GbTQILLAxLKE0FiBfRWkCKXOUyjI06KsEiIkrytqGbmHC7EXOZZwRKaMRWLRLHoADXKh1J-QVgXMocdCjOGRK__F1mHFIrIOIu0zGEuDlHo_6xUOAV6vRHKKH3bTIeoVd0ztvora7-deBukjkFaZpgCpNbe1_QGS92rDNeB7IYxUGp29K6HOEbb9VvRRI3p40x-RVviaTqcPH5zcHsBDjudbA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+approach+for+real-time+hazard+mitigation+in+complex+industrial+processes&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Rebello%2C+Sinda&rft.au=Yu%2C+Hongyang&rft.au=Ma%2C+Lin&rft.date=2019-08-01&rft.issn=0951-8320&rft.volume=188&rft.spage=297&rft.epage=309&rft_id=info:doi/10.1016%2Fj.ress.2019.03.037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2019_03_037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon