An integrated approach for real-time hazard mitigation in complex industrial processes
•Optimization of safety-threshold for complex industrial processes.•Consider joint probabilities of multiple process variables leading to an accident.•Enables dynamic risk assessment based on multiple real-time process variables. Modern engineering systems give paramount importance to safety in orde...
Uloženo v:
| Vydáno v: | Reliability engineering & system safety Ročník 188; s. 297 - 309 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Barking
Elsevier Ltd
01.08.2019
Elsevier BV |
| Témata: | |
| ISSN: | 0951-8320, 1879-0836 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Optimization of safety-threshold for complex industrial processes.•Consider joint probabilities of multiple process variables leading to an accident.•Enables dynamic risk assessment based on multiple real-time process variables.
Modern engineering systems give paramount importance to safety in order to avoid or mitigate hazardous accidents which can lead to huge economic losses, environmental contamination, and human injuries. This paper proposes an integrated approach that uses both Hidden Markov Model and Bayesian Network to estimate an optimum safety-threshold for complex industrial processes. In order to estimate the safety threshold, the proposed approach considers different cost factors and the joint probabilities of multiple process variables leading to an accident. In addition to the system level threshold, it also estimates the safety-threshold for components. This helps in identifying the component that needs maintenance to enhance system performance and safety. Furthermore, it proposes a dynamic risk assessment methodology based on multiple real-time process variables. The optimum safety-thresholds are estimated using Genetic Algorithm which aims at minimizing the system running cost over a finite time horizon. A case study on Tennessee Eastman Chemical Process is presented to demonstrate the proposed methodology for optimizing process safety-threshold. |
|---|---|
| AbstractList | Modern engineering systems give paramount importance to safety in order to avoid or mitigate hazardous accidents which can lead to huge economic losses, environmental contamination, and human injuries. This paper proposes an integrated approach that uses both Hidden Markov Model and Bayesian Network to estimate an optimum safety-threshold for complex industrial processes. In order to estimate the safety threshold, the proposed approach considers different cost factors and the joint probabilities of multiple process variables leading to an accident. In addition to the system level threshold, it also estimates the safety-threshold for components. This helps in identifying the component that needs maintenance to enhance system performance and safety. Furthermore, it proposes a dynamic risk assessment methodology based on multiple real-time process variables. The optimum safety-thresholds are estimated using Genetic Algorithm which aims at minimizing the system running cost over a finite time horizon. A case study on Tennessee Eastman Chemical Process is presented to demonstrate the proposed methodology for optimizing process safety-threshold. •Optimization of safety-threshold for complex industrial processes.•Consider joint probabilities of multiple process variables leading to an accident.•Enables dynamic risk assessment based on multiple real-time process variables. Modern engineering systems give paramount importance to safety in order to avoid or mitigate hazardous accidents which can lead to huge economic losses, environmental contamination, and human injuries. This paper proposes an integrated approach that uses both Hidden Markov Model and Bayesian Network to estimate an optimum safety-threshold for complex industrial processes. In order to estimate the safety threshold, the proposed approach considers different cost factors and the joint probabilities of multiple process variables leading to an accident. In addition to the system level threshold, it also estimates the safety-threshold for components. This helps in identifying the component that needs maintenance to enhance system performance and safety. Furthermore, it proposes a dynamic risk assessment methodology based on multiple real-time process variables. The optimum safety-thresholds are estimated using Genetic Algorithm which aims at minimizing the system running cost over a finite time horizon. A case study on Tennessee Eastman Chemical Process is presented to demonstrate the proposed methodology for optimizing process safety-threshold. |
| Author | Ma, Lin Rebello, Sinda Yu, Hongyang |
| Author_xml | – sequence: 1 givenname: Sinda orcidid: 0000-0001-5462-9937 surname: Rebello fullname: Rebello, Sinda email: sinda.rebello@hdr.qut.edu.au – sequence: 2 givenname: Hongyang surname: Yu fullname: Yu, Hongyang – sequence: 3 givenname: Lin surname: Ma fullname: Ma, Lin |
| BookMark | eNp9kE1LAzEQhoMo2Fb_gKcFz7tOdjfdBLyU4hcUvKjXkCazbZb9qEkq6q83az15KAzMwMwz78w7Jaf90CMhVxQyCnR-02QOvc9yoCKDIkZ1QiaUVyIFXsxPyQQEoykvcjgnU-8bACgFqybkbdEntg-4cSqgSdRu5walt0k9uMShatNgO0y26ls5k3Q22I0KdhiZRA_drsXPWJq9D86qNomwjnegvyBntWo9Xv7lGXm9v3tZPqar54en5WKV6iLnIUXKCsbjJRrKek5jMmtc84oWAgw1DGoUeV0BZ1TERilwrQxnleJ1qVnNixm5PuyNyu979EE2w971UVLmeQm0hIqNU_lhSrvBe4e13DnbKfclKcjRP9nI0T85-iehiFFFiP-DtA2_zwenbHscvT2gGF__sOik1xZ7jcY61EGawR7DfwCHFI8F |
| CitedBy_id | crossref_primary_10_3390_jmse12060907 crossref_primary_10_1016_j_jlp_2021_104713 crossref_primary_10_1016_j_knosys_2024_111404 crossref_primary_10_1016_j_dajour_2022_100069 crossref_primary_10_1016_j_ress_2020_107067 crossref_primary_10_1017_S0373463321000291 crossref_primary_10_1016_j_ssci_2024_106559 crossref_primary_10_1016_j_ress_2019_106646 crossref_primary_10_1016_j_ress_2024_109940 crossref_primary_10_1016_j_ress_2022_109084 crossref_primary_10_1088_1757_899X_537_6_062076 crossref_primary_10_3390_math12243961 crossref_primary_10_3390_jmse9020139 |
| Cites_doi | 10.1016/S0951-8320(00)00077-6 10.1016/j.jlp.2009.04.006 10.1016/j.ress.2015.02.011 10.1016/j.ress.2018.07.002 10.1021/ie503530v 10.1016/j.ress.2015.11.010 10.1016/j.ymssp.2011.09.029 10.1016/j.ssci.2010.01.007 10.1016/j.ress.2014.01.015 10.1002/aic.14013 10.1111/j.1539-6924.1999.tb00391.x 10.1016/0098-1354(93)80018-I 10.1016/j.ress.2011.03.012 10.1002/cjce.22480 10.1016/j.ress.2005.03.006 10.1109/5.18626 10.1002/aic.14661 10.1016/j.ejor.2011.12.010 10.1016/0951-8320(95)00097-6 10.1109/TR.2012.2194175 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Aug 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2019 |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 SOI |
| DOI | 10.1016/j.ress.2019.03.037 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0836 |
| EndPage | 309 |
| ExternalDocumentID | 10_1016_j_ress_2019_03_037 S0951832018311955 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7ST 7TB 8FD AGCQF C1K FR3 SOI |
| ID | FETCH-LOGICAL-c328t-e15358495c04f615c0dbeb871390d1d50fe92f708519beb49ebad857a8f4c5f83 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470341400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0951-8320 |
| IngestDate | Wed Aug 13 05:45:25 EDT 2025 Sat Nov 29 07:08:58 EST 2025 Tue Nov 18 22:00:44 EST 2025 Fri Feb 23 02:28:00 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Process monitoring System safety Safety-threshold optimization Genetic algorithm Bayesian network Industrial hazard |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-e15358495c04f615c0dbeb871390d1d50fe92f708519beb49ebad857a8f4c5f83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5462-9937 |
| PQID | 2240140758 |
| PQPubID | 2045406 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2240140758 crossref_primary_10_1016_j_ress_2019_03_037 crossref_citationtrail_10_1016_j_ress_2019_03_037 elsevier_sciencedirect_doi_10_1016_j_ress_2019_03_037 |
| PublicationCentury | 2000 |
| PublicationDate | August 2019 2019-08-00 20190801 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Barking |
| PublicationPlace_xml | – name: Barking |
| PublicationTitle | Reliability engineering & system safety |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Sun, Zuo, Wang, Pecht (bib0018) 2012; 28 Rasmekomen, Parlikad (bib0015) 2016; 148 Yu, Rashid (bib0024) 2013; 59 Downs, Vogel (bib0004) 1993; 17 Hulst (bib0008) 2006 Yu, Khan, Garaniya (bib0023) 2016; 94 Downs, Vogel (bib0005) 1993; 17 Bier, Yi (bib0001) 1995; 50 Khakzad, Khan, Amyotte (bib0010) 2011; 96 Rebello, Yu, Ma (bib0016) 2018; 180 Medjaher, Tobon-Mejia, Zerhouni (bib0012) 2012; 61 Yu, Khan, Garaniya (bib0022) 2015; 139 Gran, Helminen (bib0006) 2001 Bier, Haimes, Lambert, Matalas, Zimmerman (bib0002) 1999; 19 Bobbio, Portinale, Minichino, Ciancamerla (bib0003) 2001; 71 Yu, Khan, Garaniya (bib0021) 2015; 54 Weber, Jouffe (bib0020) 2006; 91 Qiu, Sun, Cao, Wang, Feng, Yang, Infield (bib0013) 2014; 2014 Rabiner (bib0014) 1989; 77 Sammaknejad, Huang, Xiong, Fatehi, Xu, Espejo (bib0017) 2015; 61 Hu, Zhang, Ma, Liang (bib0007) 2010; 48 Khakzad, Khan, Paltrinieri (bib0011) 2014; 126 Wang (bib0019) 2012; 218 Kalantarnia, Khan, Hawboldt (bib0009) 2009; 22 Bobbio (10.1016/j.ress.2019.03.037_bib0003) 2001; 71 Hulst (10.1016/j.ress.2019.03.037_bib0008) 2006 Medjaher (10.1016/j.ress.2019.03.037_bib0012) 2012; 61 Yu (10.1016/j.ress.2019.03.037_bib0021) 2015; 54 Bier (10.1016/j.ress.2019.03.037_bib0001) 1995; 50 Kalantarnia (10.1016/j.ress.2019.03.037_bib0009) 2009; 22 Khakzad (10.1016/j.ress.2019.03.037_bib0010) 2011; 96 Sun (10.1016/j.ress.2019.03.037_bib0018) 2012; 28 Sammaknejad (10.1016/j.ress.2019.03.037_bib0017) 2015; 61 Yu (10.1016/j.ress.2019.03.037_bib0022) 2015; 139 Rebello (10.1016/j.ress.2019.03.037_bib0016) 2018; 180 Weber (10.1016/j.ress.2019.03.037_bib0020) 2006; 91 Bier (10.1016/j.ress.2019.03.037_bib0002) 1999; 19 Yu (10.1016/j.ress.2019.03.037_bib0024) 2013; 59 Wang (10.1016/j.ress.2019.03.037_bib0019) 2012; 218 Rasmekomen (10.1016/j.ress.2019.03.037_bib0015) 2016; 148 Downs (10.1016/j.ress.2019.03.037_bib0004) 1993; 17 Gran (10.1016/j.ress.2019.03.037_bib0006) 2001 Khakzad (10.1016/j.ress.2019.03.037_bib0011) 2014; 126 Qiu (10.1016/j.ress.2019.03.037_bib0013) 2014; 2014 Rabiner (10.1016/j.ress.2019.03.037_bib0014) 1989; 77 Yu (10.1016/j.ress.2019.03.037_bib0023) 2016; 94 Downs (10.1016/j.ress.2019.03.037_bib0005) 1993; 17 Hu (10.1016/j.ress.2019.03.037_bib0007) 2010; 48 |
| References_xml | – volume: 22 start-page: 600 year: 2009 end-page: 606 ident: bib0009 article-title: Dynamic risk assessment using failure assessment and Bayesian theory publication-title: J Loss Prevent Process Ind – volume: 59 start-page: 2348 year: 2013 end-page: 2365 ident: bib0024 article-title: A novel dynamic bayesian network-based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis publication-title: AIChE J – volume: 17 start-page: 245 year: 1993 end-page: 255 ident: bib0004 article-title: A plant-wide industrial process problem control publication-title: Comput Chem Eng – volume: 218 start-page: 726 year: 2012 end-page: 734 ident: bib0019 article-title: A simulation-based multivariate Bayesian control chart for real time condition-based maintenance of complex systems publication-title: Eur J Oper Res – volume: 19 start-page: 83 year: 1999 end-page: 94 ident: bib0002 article-title: A survey of approaches for assessing and managing the risk of extremes publication-title: Risk Anal – volume: 91 start-page: 149 year: 2006 end-page: 162 ident: bib0020 article-title: Complex system reliability modelling with dynamic object oriented Bayesian networks (DOOBN) publication-title: Reliab Eng Syst Saf – volume: 94 start-page: 1295 year: 2016 end-page: 1307 ident: bib0023 article-title: Risk-based process system monitoring using self-organizing map integrated with loss functions publication-title: Can J Chem Eng – volume: 96 start-page: 925 year: 2011 end-page: 932 ident: bib0010 article-title: Safety analysis in process facilities: comparison of fault tree and Bayesian network approaches publication-title: Reliab Eng Syst Saf – volume: 126 start-page: 116 year: 2014 end-page: 125 ident: bib0011 article-title: On the application of near accident data to risk analysis of major accidents publication-title: Reliab Eng Syst Saf – year: 2006 ident: bib0008 article-title: Modeling physiological processes with dynamic Bayesian networks publication-title: Faculty of electrical engineering, mathematics, and computer science – volume: 2014 year: 2014 ident: bib0013 article-title: Model based wind turbine gearbox fault detection on SCADA Data publication-title: IET conference publications – volume: 148 start-page: 1 year: 2016 end-page: 10 ident: bib0015 article-title: Condition-based maintenance of multi-component systems with degradation state-rate interactions publication-title: Reliab Eng Syst Saf – start-page: 35 year: 2001 end-page: 45 ident: bib0006 article-title: A Bayesian belief network for reliability assessment publication-title: Computer safety, reliability and security – volume: 61 start-page: 292 year: 2012 end-page: 302 ident: bib0012 article-title: Remaining useful life estimation of critical components with application to bearings publication-title: Reliab IEEE Trans – volume: 71 start-page: 249 year: 2001 end-page: 260 ident: bib0003 article-title: Improving the analysis of dependable systems by mapping fault trees into Bayesian networks publication-title: Reliab Eng Syst Saf – volume: 61 start-page: 477 year: 2015 end-page: 493 ident: bib0017 article-title: Operating condition diagnosis based on HMM with adaptive transition probabilities in presence of missing observations publication-title: AIChE J – volume: 28 start-page: 585 year: 2012 end-page: 596 ident: bib0018 article-title: Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance publication-title: Mech Syst Signal Process – volume: 54 start-page: 2724 year: 2015 end-page: 2742 ident: bib0021 article-title: Modified independent component analysis and Bayesian network-based two-stage fault diagnosis of process operations publication-title: Ind Eng Chem Res – volume: 50 start-page: 241 year: 1995 end-page: 251 ident: bib0001 article-title: The performance of precursor-based estimators for rare event frequencies publication-title: Reliab Eng Syst Saf – volume: 77 start-page: 257 year: 1989 end-page: 286 ident: bib0014 article-title: A tutorial on hidden Markov models and selected applications in speech recognition publication-title: Proc IEEE – volume: 48 start-page: 580 year: 2010 end-page: 597 ident: bib0007 article-title: An integrated method for safety pre-warning of complex system publication-title: Saf Sci – volume: 17 start-page: 245 year: 1993 end-page: 255 ident: bib0005 article-title: A plant-wide industrial process control problem publication-title: Comput Chem Eng – volume: 139 start-page: 82 year: 2015 end-page: 96 ident: bib0022 article-title: Risk-based fault detection using self-organizing map publication-title: Reliab Eng Syst Saf – volume: 180 start-page: 124 year: 2018 end-page: 135 ident: bib0016 article-title: An integrated approach for system functional reliability assessment using Dynamic Bayesian Network and Hidden Markov Model publication-title: Reliab Eng Syst Saf – volume: 71 start-page: 249 issue: 3 year: 2001 ident: 10.1016/j.ress.2019.03.037_bib0003 article-title: Improving the analysis of dependable systems by mapping fault trees into Bayesian networks publication-title: Reliab Eng Syst Saf doi: 10.1016/S0951-8320(00)00077-6 – start-page: 35 year: 2001 ident: 10.1016/j.ress.2019.03.037_bib0006 article-title: A Bayesian belief network for reliability assessment – volume: 22 start-page: 600 issue: 5 year: 2009 ident: 10.1016/j.ress.2019.03.037_bib0009 article-title: Dynamic risk assessment using failure assessment and Bayesian theory publication-title: J Loss Prevent Process Ind doi: 10.1016/j.jlp.2009.04.006 – volume: 139 start-page: 82 year: 2015 ident: 10.1016/j.ress.2019.03.037_bib0022 article-title: Risk-based fault detection using self-organizing map publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.02.011 – volume: 180 start-page: 124 year: 2018 ident: 10.1016/j.ress.2019.03.037_bib0016 article-title: An integrated approach for system functional reliability assessment using Dynamic Bayesian Network and Hidden Markov Model publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.07.002 – volume: 54 start-page: 2724 issue: 10 year: 2015 ident: 10.1016/j.ress.2019.03.037_bib0021 article-title: Modified independent component analysis and Bayesian network-based two-stage fault diagnosis of process operations publication-title: Ind Eng Chem Res doi: 10.1021/ie503530v – year: 2006 ident: 10.1016/j.ress.2019.03.037_bib0008 article-title: Modeling physiological processes with dynamic Bayesian networks – volume: 2014 year: 2014 ident: 10.1016/j.ress.2019.03.037_bib0013 article-title: Model based wind turbine gearbox fault detection on SCADA Data – volume: 148 start-page: 1 year: 2016 ident: 10.1016/j.ress.2019.03.037_bib0015 article-title: Condition-based maintenance of multi-component systems with degradation state-rate interactions publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.11.010 – volume: 28 start-page: 585 year: 2012 ident: 10.1016/j.ress.2019.03.037_bib0018 article-title: Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2011.09.029 – volume: 48 start-page: 580 issue: 5 year: 2010 ident: 10.1016/j.ress.2019.03.037_bib0007 article-title: An integrated method for safety pre-warning of complex system publication-title: Saf Sci doi: 10.1016/j.ssci.2010.01.007 – volume: 126 start-page: 116 year: 2014 ident: 10.1016/j.ress.2019.03.037_bib0011 article-title: On the application of near accident data to risk analysis of major accidents publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2014.01.015 – volume: 59 start-page: 2348 issue: 7 year: 2013 ident: 10.1016/j.ress.2019.03.037_bib0024 article-title: A novel dynamic bayesian network-based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis publication-title: AIChE J doi: 10.1002/aic.14013 – volume: 19 start-page: 83 issue: 1 year: 1999 ident: 10.1016/j.ress.2019.03.037_bib0002 article-title: A survey of approaches for assessing and managing the risk of extremes publication-title: Risk Anal doi: 10.1111/j.1539-6924.1999.tb00391.x – volume: 17 start-page: 245 issue: 3 year: 1993 ident: 10.1016/j.ress.2019.03.037_bib0004 article-title: A plant-wide industrial process problem control publication-title: Comput Chem Eng doi: 10.1016/0098-1354(93)80018-I – volume: 96 start-page: 925 issue: 8 year: 2011 ident: 10.1016/j.ress.2019.03.037_bib0010 article-title: Safety analysis in process facilities: comparison of fault tree and Bayesian network approaches publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2011.03.012 – volume: 94 start-page: 1295 issue: 7 year: 2016 ident: 10.1016/j.ress.2019.03.037_bib0023 article-title: Risk-based process system monitoring using self-organizing map integrated with loss functions publication-title: Can J Chem Eng doi: 10.1002/cjce.22480 – volume: 91 start-page: 149 issue: 2 year: 2006 ident: 10.1016/j.ress.2019.03.037_bib0020 article-title: Complex system reliability modelling with dynamic object oriented Bayesian networks (DOOBN) publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2005.03.006 – volume: 77 start-page: 257 issue: 2 year: 1989 ident: 10.1016/j.ress.2019.03.037_bib0014 article-title: A tutorial on hidden Markov models and selected applications in speech recognition publication-title: Proc IEEE doi: 10.1109/5.18626 – volume: 61 start-page: 477 issue: 2 year: 2015 ident: 10.1016/j.ress.2019.03.037_bib0017 article-title: Operating condition diagnosis based on HMM with adaptive transition probabilities in presence of missing observations publication-title: AIChE J doi: 10.1002/aic.14661 – volume: 17 start-page: 245 issue: 3 year: 1993 ident: 10.1016/j.ress.2019.03.037_bib0005 article-title: A plant-wide industrial process control problem publication-title: Comput Chem Eng doi: 10.1016/0098-1354(93)80018-I – volume: 218 start-page: 726 issue: 3 year: 2012 ident: 10.1016/j.ress.2019.03.037_bib0019 article-title: A simulation-based multivariate Bayesian control chart for real time condition-based maintenance of complex systems publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2011.12.010 – volume: 50 start-page: 241 issue: 3 year: 1995 ident: 10.1016/j.ress.2019.03.037_bib0001 article-title: The performance of precursor-based estimators for rare event frequencies publication-title: Reliab Eng Syst Saf doi: 10.1016/0951-8320(95)00097-6 – volume: 61 start-page: 292 issue: 2 year: 2012 ident: 10.1016/j.ress.2019.03.037_bib0012 article-title: Remaining useful life estimation of critical components with application to bearings publication-title: Reliab IEEE Trans doi: 10.1109/TR.2012.2194175 |
| SSID | ssj0004957 |
| Score | 2.3411276 |
| SecondaryResourceType | review_article |
| Snippet | •Optimization of safety-threshold for complex industrial processes.•Consider joint probabilities of multiple process variables leading to an accident.•Enables... Modern engineering systems give paramount importance to safety in order to avoid or mitigate hazardous accidents which can lead to huge economic losses,... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 297 |
| SubjectTerms | Accidents Bayesian analysis Bayesian network Contamination Economic impact Genetic algorithm Genetic algorithms Hazard mitigation Industrial hazard Markov chains Optimization Organic chemistry Process monitoring Process variables Real time Real variables Reliability engineering Risk assessment Safety Safety-threshold optimization System safety |
| Title | An integrated approach for real-time hazard mitigation in complex industrial processes |
| URI | https://dx.doi.org/10.1016/j.ress.2019.03.037 https://www.proquest.com/docview/2240140758 |
| Volume | 188 |
| WOSCitedRecordID | wos000470341400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLZG4cAOaOOHBnSTD9yqTE6T1PaxQkUwTdWkAepOUeLYUFRCRVvU8tfz_CvpiqjGYVIVWUljpX1f_D4_v_cZoRMFLDeXMC3hQnSCmEfQYh0SMAneAGxOlamtuv5J-302GPBfLpgzMdsJ0LJk8zkf_1dTwzkwti6dfYe5q07hBLTB6HAEs8PxnwzfLWsNiKLSDDfphEAQR4HeTb51mz3r-MH90Eps2HxHk14u59CstvMY2zoCl2johbzlaGjlvRctWesZGhRZZejWJFNOYMSs5sjcr_H8Xo4B_JkZz_dQ3iwy50FNcNwFC5YjEroIivmIhA8thgGMFOTvUZYtj5M2Kde53MgoJLwezW1g4e67DjzoLDyrRxvR2nf59foVl1YlGvoctrtU95HqPlISwYduoM02TThroM3uRW_woy6m5VYe1v8IV2llkwJXn-QtNrPi1w1ZufyEdtwsA3ctOj6jD7LcRR-XtCf30HW3xDVOsMcJBpzgCifY4gTXOIF7sMMJrnGCK5zso6uz3uXpeeA22QhE1GbTQILLAxLKE0FiBfRWkCKXOUyjI06KsEiIkrytqGbmHC7EXOZZwRKaMRWLRLHoADXKh1J-QVgXMocdCjOGRK__F1mHFIrIOIu0zGEuDlHo_6xUOAV6vRHKKH3bTIeoVd0ztvora7-deBukjkFaZpgCpNbe1_QGS92rDNeB7IYxUGp29K6HOEbb9VvRRI3p40x-RVviaTqcPH5zcHsBDjudbA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+approach+for+real-time+hazard+mitigation+in+complex+industrial+processes&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Rebello%2C+Sinda&rft.au=Yu%2C+Hongyang&rft.au=Ma%2C+Lin&rft.date=2019-08-01&rft.issn=0951-8320&rft.volume=188&rft.spage=297&rft.epage=309&rft_id=info:doi/10.1016%2Fj.ress.2019.03.037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2019_03_037 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |