A fuzzy multi-objective optimisation model of risk-based gas detector placement methodology for explosion protection in oil and gas facilities

A flammable gas detection system is one of the critical control strategies of catastrophic events such as fire and explosion. While gas detector technology has improved significantly, adopting a methodology for optimal placement of gas detectors is still an issue, especially when integrated with a r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Process safety and environmental protection Jg. 161; S. 571 - 582
Hauptverfasser: Idris, Ahmad Muzammil, Rusli, Risza, Nasif, Mohammad Shakir, Ramli, Ahmad Fakrul, Lim, Jeng Shiun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Rugby Elsevier Ltd 01.05.2022
Elsevier Science Ltd
Schlagworte:
ISSN:0957-5820, 1744-3598
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A flammable gas detection system is one of the critical control strategies of catastrophic events such as fire and explosion. While gas detector technology has improved significantly, adopting a methodology for optimal placement of gas detectors is still an issue, especially when integrated with a risk-based approach. An enhancement of a risk-based approach is proposed to optimise the placement of flammable gas detectors by integrating a formulation of fuzzy multi-objective mixed-integer linear programming with the goal of minimising the residual risk and total number of detectors for effective explosion protection. The proposed methodology primarily begins with the identification of critical leak scenarios that require detection followed by the prediction of a targeted gas cloud and dispersion analysis using a computational fluid dynamic model. Risk analysis is conducted to identify high risk areas that need flammable gas detectors protection, which is the input for the mathematical model. The proposed risk-based model was tested using a case study involving a natural gas liquids (NGL) recovery unit, and the results were compared to a published greedy algorithm (GA) formulation. By using mixed-integer linear programming (MILP) formulation, the number of detectors needed are lower with higher risk reductions compared to the GA formulation. Additionally, a sensitivity analysis was performed to determine the proposed model’s response to parameter variations.
AbstractList A flammable gas detection system is one of the critical control strategies of catastrophic events such as fire and explosion. While gas detector technology has improved significantly, adopting a methodology for optimal placement of gas detectors is still an issue, especially when integrated with a risk-based approach. An enhancement of a risk-based approach is proposed to optimise the placement of flammable gas detectors by integrating a formulation of fuzzy multi-objective mixed-integer linear programming with the goal of minimising the residual risk and total number of detectors for effective explosion protection. The proposed methodology primarily begins with the identification of critical leak scenarios that require detection followed by the prediction of a targeted gas cloud and dispersion analysis using a computational fluid dynamic model. Risk analysis is conducted to identify high risk areas that need flammable gas detectors protection, which is the input for the mathematical model. The proposed risk-based model was tested using a case study involving a natural gas liquids (NGL) recovery unit, and the results were compared to a published greedy algorithm (GA) formulation. By using mixed-integer linear programming (MILP) formulation, the number of detectors needed are lower with higher risk reductions compared to the GA formulation. Additionally, a sensitivity analysis was performed to determine the proposed model's response to parameter variations.
Author Ramli, Ahmad Fakrul
Lim, Jeng Shiun
Idris, Ahmad Muzammil
Rusli, Risza
Nasif, Mohammad Shakir
Author_xml – sequence: 1
  givenname: Ahmad Muzammil
  surname: Idris
  fullname: Idris, Ahmad Muzammil
  organization: Department of Chemical Engineering and Centre of Advanced Process Safety (CAPS), Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
– sequence: 2
  givenname: Risza
  surname: Rusli
  fullname: Rusli, Risza
  email: risza@utp.edu.my
  organization: Department of Chemical Engineering and Centre of Advanced Process Safety (CAPS), Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
– sequence: 3
  givenname: Mohammad Shakir
  surname: Nasif
  fullname: Nasif, Mohammad Shakir
  organization: Department of Mechanical Engineering and Centre of Advanced Process Safety (CAPS), Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
– sequence: 4
  givenname: Ahmad Fakrul
  surname: Ramli
  fullname: Ramli, Ahmad Fakrul
  organization: PETRONAS Research Sdn Bhd, Kawasan Institusi Bangi, Lot 3288 & 3289 Off Jalan Ayer Itam, Kajang 43000, Selangor, Malaysia
– sequence: 5
  givenname: Jeng Shiun
  surname: Lim
  fullname: Lim, Jeng Shiun
  organization: Process Systems Engineering Centre (PROSPECT), Research Institute for Sustainable Environment (RISE), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
BookMark eNp9kM1u3CAURlGVSp0kfYGskLq2i7GxjdRNFPVPipRNukYMXJLrYuMCE3XyEH3m4E5XXWTFlTjfd-Gck7MlLEDIVcPqhjX9x6leE6w1Z5zXrK0Za96QXTN0XdUKOZ6RHZNiqMTI2TtyntLECsGHZkf-XFN3eH4-0vngM1ZhP4HJ-AQ0rBlnTDpjWOgcLHgaHI2YflZ7ncDSB52ohVzwEOnqtYEZlkxnyI_BBh8ejtSVG_i9-pC2kjWGjd5GXGhAT_VyqnHaoMeMkC7JW6d9gvf_zgvy48vn-5tv1e3d1-8317eVafmYK7vvRiEbJyTrBBO2F8PAhW2HXnS9HCzAAPtOa2tghI5pkD24cZRSt7JzzLQX5MOptzzq1wFSVlM4xKWsVLzvZV_8tKJQ44kyMaQUwSmD-a-RHDV61TC12VeT2uyrzb5irSpuS5T_F10jzjoeXw99OoWgfP0JIapkEBYDFmMxp2zA1-IvrMOj7A
CitedBy_id crossref_primary_10_1002_prs_12607
crossref_primary_10_1016_j_buildenv_2024_111997
crossref_primary_10_1016_j_jlp_2022_104965
crossref_primary_10_1016_j_ress_2024_109947
crossref_primary_10_1016_j_ijhydene_2025_151499
crossref_primary_10_1016_j_psep_2022_07_007
crossref_primary_10_1002_ente_202500412
crossref_primary_10_1016_j_psep_2024_08_091
crossref_primary_10_1002_cjce_25258
Cites_doi 10.1016/j.jhazmat.2008.01.111
10.1016/j.jlp.2020.104252
10.1016/j.cjche.2017.10.031
10.1016/j.compchemeng.2012.05.010
10.1021/ie401369v
10.1016/j.jlp.2020.104131
10.1016/j.psep.2016.10.012
10.1016/j.jhazmat.2007.07.123
10.1007/978-1-4419-1153-7_1184
10.1002/prs.12116
10.1016/j.jlp.2005.10.008
10.1057/palgrave.jors.2601758
10.1016/j.jlp.2016.03.004
ContentType Journal Article
Copyright 2022 The Institution of Chemical Engineers
Copyright Elsevier Science Ltd. May 2022
Copyright_xml – notice: 2022 The Institution of Chemical Engineers
– notice: Copyright Elsevier Science Ltd. May 2022
DBID AAYXX
CITATION
7ST
7TB
7U7
8FD
C1K
FR3
KR7
SOI
DOI 10.1016/j.psep.2022.03.001
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Toxicology Abstracts
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1744-3598
EndPage 582
ExternalDocumentID 10_1016_j_psep_2022_03_001
S0957582022001975
GroupedDBID --K
--M
-QF
.~1
0R~
123
1B1
1~.
1~5
3EH
4.4
457
4G.
4P2
53G
5VS
7-5
71M
8P~
8WZ
A6W
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHIDL
AHPOS
AIAGR
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CAG
COF
CS3
DU5
EBS
EDH
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
I-F
IHE
J1W
JARJE
KCYFY
KOM
M41
ML.
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SJN
SPC
SPCBC
SSG
SSJ
SSR
SSZ
T5K
UNMZH
XFK
ZE2
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMLS
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BANNL
CITATION
EFKBS
~HD
7ST
7TB
7U7
8FD
AGCQF
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-c328t-db48591f5904505d657725d37654697dee7eb4aadce8e40ae96ef8899a394f0c3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793467800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-5820
IngestDate Wed Aug 13 11:21:14 EDT 2025
Tue Nov 18 21:25:00 EST 2025
Sat Nov 29 07:03:54 EST 2025
Fri Feb 23 02:39:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gas detectors optimisation
Explosion
Risk-based
Fuzzy multi-objective
Computational fluid dynamics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-db48591f5904505d657725d37654697dee7eb4aadce8e40ae96ef8899a394f0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2669600035
PQPubID 2047550
PageCount 12
ParticipantIDs proquest_journals_2669600035
crossref_citationtrail_10_1016_j_psep_2022_03_001
crossref_primary_10_1016_j_psep_2022_03_001
elsevier_sciencedirect_doi_10_1016_j_psep_2022_03_001
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Rugby
PublicationPlace_xml – name: Rugby
PublicationTitle Process safety and environmental protection
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Benavides-Serrano, Legg, Vazquez-Roman, Mannan, Laird (bib3) 2013; 53
Lee, Kulesz (bib17) 2008; 158
Shariff, Rusli, Leong, Radhakrishnan, Buang (bib21) 2006; 19
HSE (bib9) 1993
Rad, Rashtchian, Badri (bib20) 2017; 105
Vázquez-Román, Díaz-Ovalle, Quiroz-Pérez, Mannan (bib25) 2016; 44
ISA (2003), ISA-12.13.03–2005: Guide for Combustible Gas Detection as a Method of Protection, The Instrumentation, Systems, and Automation Society.
API (bib2) 2001
BS (bib4) 2020
Oil and Gas UK (2018). Fire and Explosion Guidance, Issue 2. ISBN: 1903004732.
Silver (bib23) 2004; 55
IOGP (2021), Risk Assessment Data Directory, Process Release Frequencies, International Association of Oil & Gas Producers.
Ferrara, G., Zhvansky, R., Bengherbia, T., Ledin, S., Rocha, G., Ahmed, I., Johnson, D.M., & Tam, V. (2016). Performance Based Gas Detection: Geographic Vs Scenario Based Approaches using CFD. DNV GL.
Wang, Chen (bib26) 2013
Idris, Rusli, Burok, Mohd Nabil, Ab Hadi, Abdul Karim (bib10) 2019; 39
Legg (bib18) 2012; 47
Sun, Chen, Zhang, Mu, Zhou (bib24) 2020; 65
Aoun, F., Bachir, S. (2018). Benefits of Gas Detection Mapping in Complex Process Facilities. IChemE Hazards28, Retrieved from
Cen, Yao, Wang, Xiong (bib5) 2018; 26
Laguna, M., & Marti, R. (2013). Heuristics. Encyclopaedia Of Operations Research And Management Science, 695–703. doi
Insight Numerics, (2021) Retrieved from
DeFriend, Dejmek, Porter, Deshotels, Natvig (bib7) 2008; 159
.
IEC (2007), IEC 60079–29-1:2007: Explosive atmospheres - Part 29–1: Gas detectors - Performance requirements of detectors for flammable gases, International Electrotechnical Commission.
Shen, Jiao, Parker, Sun, Wang (bib22) 2020; 67
David, Christine, David (bib6) 2020; 1
ISA (bib15) 2018
Idris (10.1016/j.psep.2022.03.001_bib10) 2019; 39
Legg (10.1016/j.psep.2022.03.001_bib18) 2012; 47
Benavides-Serrano (10.1016/j.psep.2022.03.001_bib3) 2013; 53
Rad (10.1016/j.psep.2022.03.001_bib20) 2017; 105
HSE (10.1016/j.psep.2022.03.001_bib9) 1993
Shen (10.1016/j.psep.2022.03.001_bib22) 2020; 67
Cen (10.1016/j.psep.2022.03.001_bib5) 2018; 26
Lee (10.1016/j.psep.2022.03.001_bib17) 2008; 158
10.1016/j.psep.2022.03.001_bib11
10.1016/j.psep.2022.03.001_bib12
10.1016/j.psep.2022.03.001_bib13
10.1016/j.psep.2022.03.001_bib14
10.1016/j.psep.2022.03.001_bib16
10.1016/j.psep.2022.03.001_bib19
Shariff (10.1016/j.psep.2022.03.001_bib21) 2006; 19
BS (10.1016/j.psep.2022.03.001_bib4) 2020
10.1016/j.psep.2022.03.001_bib1
DeFriend (10.1016/j.psep.2022.03.001_bib7) 2008; 159
David (10.1016/j.psep.2022.03.001_bib6) 2020; 1
10.1016/j.psep.2022.03.001_bib8
API (10.1016/j.psep.2022.03.001_bib2) 2001
Wang (10.1016/j.psep.2022.03.001_bib26) 2013
Vázquez-Román (10.1016/j.psep.2022.03.001_bib25) 2016; 44
ISA (10.1016/j.psep.2022.03.001_bib15) 2018
Sun (10.1016/j.psep.2022.03.001_bib24) 2020; 65
Silver (10.1016/j.psep.2022.03.001_bib23) 2004; 55
References_xml – reference: IEC (2007), IEC 60079–29-1:2007: Explosive atmospheres - Part 29–1: Gas detectors - Performance requirements of detectors for flammable gases, International Electrotechnical Commission.
– volume: 47
  start-page: 194
  year: 2012
  end-page: 201
  ident: bib18
  article-title: A stochastic programming approach for gas detector placement using CFD-based dispersion simulations
  publication-title: Comput. Chem. Eng.
– volume: 105
  start-page: 175
  year: 2017
  end-page: 183
  ident: bib20
  article-title: A risk-based methodology for optimum placement of flammable gas detectors within open process plants
  publication-title: Process Saf. Environ. Prot.
– year: 2001
  ident: bib2
  article-title: API RP 14C: Recommended Practice for Analysis, Design, Installation, and Testing of Basic Surface Safety Systems for Offshore Production Platforms
– year: 2013
  ident: bib26
  article-title: Heuristic Optimisation. Encyclopaedia Of
  publication-title: Syst. Biol.
– reference: Aoun, F., Bachir, S. (2018). Benefits of Gas Detection Mapping in Complex Process Facilities. IChemE Hazards28, Retrieved from:
– start-page: 93002
  year: 1993
  ident: bib9
  article-title: Offshore Detector Siting Criterion Investigation of Detector Spacing by Lloyds Register
  publication-title: Offshore Technol. Rep. OTO
– volume: 39
  year: 2019
  ident: bib10
  article-title: Human factors influencing the reliability of fire and gas detection system
  publication-title: Process Saf. Prog.
– volume: 159
  start-page: 142
  year: 2008
  end-page: 151
  ident: bib7
  article-title: A risk-based approach to flammable gas detector spacing
  publication-title: J. Hazard. Mater.
– year: 2018
  ident: bib15
  article-title: ISA-TR 84.00.07–20102018: Technical Report Guidance on the Evaluation of Fire, Combustible Gas and Toxic Gas System Effectiveness
– reference: Ferrara, G., Zhvansky, R., Bengherbia, T., Ledin, S., Rocha, G., Ahmed, I., Johnson, D.M., & Tam, V. (2016). Performance Based Gas Detection: Geographic Vs Scenario Based Approaches using CFD. DNV GL.
– volume: 55
  start-page: 936
  year: 2004
  end-page: 956
  ident: bib23
  article-title: An overview of heuristic solution methods
  publication-title: J. Oper. Res. Soc.
– volume: 67
  year: 2020
  ident: bib22
  article-title: Recent application of Computational Fluid Dynamics (CFD) in process safety and loss prevention: A review
  publication-title: J. Loss Prev. Process Ind.
– volume: 19
  start-page: 409
  year: 2006
  end-page: 418
  ident: bib21
  article-title: Inherent safety tool for explosion consequences study
  publication-title: J. Loss Prev. Process Ind.
– volume: 44
  start-page: 633
  year: 2016
  end-page: 641
  ident: bib25
  article-title: A CFD based approach for gas detectors allocation
  publication-title: J. Loss Prev. Process. Ind.
– volume: 26
  start-page: 1078
  year: 2018
  end-page: 1086
  ident: bib5
  article-title: A risk-based methodology for the optimal placement of hazardous gas detectors
  publication-title: Chin. J. Chem. Eng.
– volume: 158
  start-page: 417
  year: 2008
  end-page: 429
  ident: bib17
  article-title: A risk-based sensor placement methodology☆
  publication-title: J. Hazard. Mater.
– volume: 65
  year: 2020
  ident: bib24
  article-title: Optimisation of gas detector placement considering scenario probability and detector reliability in oil refinery installation
  publication-title: J. Loss Prev. Process Ind.
– reference: .
– reference: Laguna, M., & Marti, R. (2013). Heuristics. Encyclopaedia Of Operations Research And Management Science, 695–703. doi:
– reference: IOGP (2021), Risk Assessment Data Directory, Process Release Frequencies, International Association of Oil & Gas Producers.
– volume: 53
  start-page: 5355
  year: 2013
  end-page: 5365
  ident: bib3
  article-title: A stochastic programming approach for the optimal placement of gas detectors: unavailability and voting strategies
  publication-title: Ind. Eng. Chem. Res
– reference: ]〉.
– reference: Insight Numerics, (2021) Retrieved from: 〈
– reference: Oil and Gas UK (2018). Fire and Explosion Guidance, Issue 2. ISBN: 1903004732.
– year: 2020
  ident: bib4
  article-title: BS 60080:2020, British Explosive and toxic atmospheres — Hazard detection mapping — Guidance on the placement of permanently installed flame and gas detection devices using software tools and other techniques
– volume: 1
  year: 2020
  ident: bib6
  publication-title: Constraint Programming and Local Search Heuristic: A Matheuristic Approach for Routing and Scheduling Feeder Vessels in Multi-Terminal Ports. SN Operations Research Forum
– reference: ISA (2003), ISA-12.13.03–2005: Guide for Combustible Gas Detection as a Method of Protection, The Instrumentation, Systems, and Automation Society.
– year: 2013
  ident: 10.1016/j.psep.2022.03.001_bib26
  article-title: Heuristic Optimisation. Encyclopaedia Of
  publication-title: Syst. Biol.
– ident: 10.1016/j.psep.2022.03.001_bib11
– ident: 10.1016/j.psep.2022.03.001_bib13
– start-page: 93002
  year: 1993
  ident: 10.1016/j.psep.2022.03.001_bib9
  article-title: Offshore Detector Siting Criterion Investigation of Detector Spacing by Lloyds Register
  publication-title: Offshore Technol. Rep. OTO
– volume: 158
  start-page: 417
  issue: 2–3
  year: 2008
  ident: 10.1016/j.psep.2022.03.001_bib17
  article-title: A risk-based sensor placement methodology☆
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.01.111
– volume: 67
  year: 2020
  ident: 10.1016/j.psep.2022.03.001_bib22
  article-title: Recent application of Computational Fluid Dynamics (CFD) in process safety and loss prevention: A review
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2020.104252
– volume: 26
  start-page: 1078
  year: 2018
  ident: 10.1016/j.psep.2022.03.001_bib5
  article-title: A risk-based methodology for the optimal placement of hazardous gas detectors
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2017.10.031
– ident: 10.1016/j.psep.2022.03.001_bib8
– volume: 1
  year: 2020
  ident: 10.1016/j.psep.2022.03.001_bib6
– volume: 47
  start-page: 194
  year: 2012
  ident: 10.1016/j.psep.2022.03.001_bib18
  article-title: A stochastic programming approach for gas detector placement using CFD-based dispersion simulations
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2012.05.010
– volume: 53
  start-page: 5355
  year: 2013
  ident: 10.1016/j.psep.2022.03.001_bib3
  article-title: A stochastic programming approach for the optimal placement of gas detectors: unavailability and voting strategies
  publication-title: Ind. Eng. Chem. Res
  doi: 10.1021/ie401369v
– ident: 10.1016/j.psep.2022.03.001_bib1
– volume: 65
  year: 2020
  ident: 10.1016/j.psep.2022.03.001_bib24
  article-title: Optimisation of gas detector placement considering scenario probability and detector reliability in oil refinery installation
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2020.104131
– ident: 10.1016/j.psep.2022.03.001_bib12
– volume: 105
  start-page: 175
  year: 2017
  ident: 10.1016/j.psep.2022.03.001_bib20
  article-title: A risk-based methodology for optimum placement of flammable gas detectors within open process plants
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2016.10.012
– ident: 10.1016/j.psep.2022.03.001_bib14
– ident: 10.1016/j.psep.2022.03.001_bib19
– volume: 159
  start-page: 142
  issue: 1
  year: 2008
  ident: 10.1016/j.psep.2022.03.001_bib7
  article-title: A risk-based approach to flammable gas detector spacing
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.07.123
– ident: 10.1016/j.psep.2022.03.001_bib16
  doi: 10.1007/978-1-4419-1153-7_1184
– volume: 39
  issue: S1
  year: 2019
  ident: 10.1016/j.psep.2022.03.001_bib10
  article-title: Human factors influencing the reliability of fire and gas detection system
  publication-title: Process Saf. Prog.
  doi: 10.1002/prs.12116
– year: 2020
  ident: 10.1016/j.psep.2022.03.001_bib4
– volume: 19
  start-page: 409
  year: 2006
  ident: 10.1016/j.psep.2022.03.001_bib21
  article-title: Inherent safety tool for explosion consequences study
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2005.10.008
– volume: 55
  start-page: 936
  issue: 9
  year: 2004
  ident: 10.1016/j.psep.2022.03.001_bib23
  article-title: An overview of heuristic solution methods
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2601758
– volume: 44
  start-page: 633
  year: 2016
  ident: 10.1016/j.psep.2022.03.001_bib25
  article-title: A CFD based approach for gas detectors allocation
  publication-title: J. Loss Prev. Process. Ind.
  doi: 10.1016/j.jlp.2016.03.004
– year: 2018
  ident: 10.1016/j.psep.2022.03.001_bib15
– year: 2001
  ident: 10.1016/j.psep.2022.03.001_bib2
SSID ssj0001271
Score 2.3598006
Snippet A flammable gas detection system is one of the critical control strategies of catastrophic events such as fire and explosion. While gas detector technology has...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 571
SubjectTerms Catastrophic events
Computational fluid dynamics
Computer applications
Dynamic models
Explosion
Explosions
Flammability
Flammable gases
Fuzzy multi-objective
Gas detectors
Gas detectors optimisation
Greedy algorithms
Integer programming
Linear programming
Mathematical models
Methodology
Mixed integer
Multiple objective analysis
Natural gas
Optimization
Placement
Risk analysis
Risk-based
Sensitivity analysis
Title A fuzzy multi-objective optimisation model of risk-based gas detector placement methodology for explosion protection in oil and gas facilities
URI https://dx.doi.org/10.1016/j.psep.2022.03.001
https://www.proquest.com/docview/2669600035
Volume 161
WOSCitedRecordID wos000793467800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1744-3598
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001271
  issn: 0957-5820
  databaseCode: AIEXJ
  dateStart: 19961101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELbKxgM8IBhMDAbyA29RUJvYTfxYoU6AWIW6gfoWObHD2q1J1bTT6I_gb_I3uIsdpxQxARIvUVXFbtT7ene-fvcdIa8ED7s6zzM_zVTkMx0yH3CT-kEoe_0UYpwRnv_8IRqN4slEfOx0vje9MNdXUVHENzdi8V9NDe-BsbF19i_M7TaFN-A1GB2uYHa4_pHhB16-3my-GqqgX6Yz49K8EpzD3JJ3zAAcTBSRWu5jKFPeF1l5Sq_qMr5Xc7VqooCZMW2kmmp9cGTtYY3NsxoPli1ZTo3qAG6Tyww5tw1B0Sa_tinBq2SORFG8eavPDlvC3IYOsWpp5yVfzKXyTtcbOZ-3rJDxujLt3eNptXEBZiSraa01eVpewO2w7uwCEmVHQx7LuVllNj2Rl0tLj7TlDzg5O7Khqck1fTktCcoUNyOfx4H5x0cb1x4x5qNe4U--3yjBW-_NzTQYmwhwMxXplxhjyh2z14tKo-BpEBiV3F4bUR3P8QwfBJ8jQOqaiPgdsh9EXEAE2R-8G07eu6ShF9S1Affgtr_LUBF3P-l3OdRONlGnSOcPyQN7tqEDg8lHpKOLA3J_S_HygBwOtw1ObWSpHpNvA1rDlu7Alm7DltawpWVOW9hSwBttYEsdbOkWbCnAljrY0hZldFpQgC0FJNbbtLB9Qj6dDM_fvPXtrBA_C4N45auUoRJjzgWcUbpc9TkcG7mC8MlZX0RK60inTEqV6VizrtSir_M4FkKGguXdLDwke0VZ6KeEYueaYpDoZkyxnua4KGLo0UTYS2N2RHrNt59kVkgf57lcJQ1jcpagxRK0WNINkTZ6RDy3ZmFkZG69mzdGTWwibBLcBDB467rjBgGJ9UhVAhm46NeMgWf_uO1zcq_95R2TvdVyrV-Qu9n1alotX1ok_wB5buxO
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fuzzy+multi-objective+optimisation+model+of+risk-based+gas+detector+placement+methodology+for+explosion+protection+in+oil+and+gas+facilities&rft.jtitle=Process+safety+and+environmental+protection&rft.au=Idris%2C+Ahmad+Muzammil&rft.au=Rusli%2C+Risza&rft.au=Nasif%2C+Mohammad+Shakir&rft.au=Ramli%2C+Ahmad+Fakrul&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=0957-5820&rft.eissn=1744-3598&rft.volume=161&rft.spage=571&rft.epage=582&rft_id=info:doi/10.1016%2Fj.psep.2022.03.001&rft.externalDocID=S0957582022001975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-5820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-5820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-5820&client=summon