Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions

The tremendous success of deep learning and transfer learning broadened the scope of fault diagnosis, especially the latter further improved the diagnosis accuracy under multiple working conditions. However, most existing attempts assume that label distribution is domain-invariant despite taking int...

Full description

Saved in:
Bibliographic Details
Published in:Reliability engineering & system safety Vol. 230; p. 108890
Main Authors: Ding, Yifei, Jia, Minping, Zhuang, Jichao, Cao, Yudong, Zhao, Xiaoli, Lee, Chi-Guhn
Format: Journal Article
Language:English
Published: Barking Elsevier Ltd 01.02.2023
Elsevier BV
Subjects:
ISSN:0951-8320, 1879-0836
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The tremendous success of deep learning and transfer learning broadened the scope of fault diagnosis, especially the latter further improved the diagnosis accuracy under multiple working conditions. However, most existing attempts assume that label distribution is domain-invariant despite taking into account the different feature distributions. This does not accommodate the diversity of fault mode distributions under different operating conditions and weakens the generalization to imbalanced domain adaptation (IDA) scenarios. Therefore, this work proposed a novel deep imbalanced domain adaptation (DIDA) framework for fault diagnosis of bearings, aiming at the challenging scenario where feature shift and label shift exist simultaneously under different working conditions. Specifically, DIDA overcomes the class-imbalanced label shift and achieves a fine-grained latent space matching by cost-sensitive learning and categorical alignment. Besides, margin loss regularization is introduced to further optimize classification boundaries and improve cross-domain generalization for IDA fault diagnosis tasks. Finally, we simulated the IDA protocols on experimental datasets and conducted case studies under multiple working conditions, thus validating the effectiveness and superiority of the proposed framework. •A novel deep imbalanced domain adaptation (DIDA) is proposed.•DIDA narrows both feature shift and label shift.•DIDA broadens fault diagnosis to IDA scenarios.•Experimental case studies verified validity and superiority.
AbstractList The tremendous success of deep learning and transfer learning broadened the scope of fault diagnosis, especially the latter further improved the diagnosis accuracy under multiple working conditions. However, most existing attempts assume that label distribution is domain-invariant despite taking into account the different feature distributions. This does not accommodate the diversity of fault mode distributions under different operating conditions and weakens the generalization to imbalanced domain adaptation (IDA) scenarios. Therefore, this work proposed a novel deep imbalanced domain adaptation (DIDA) framework for fault diagnosis of bearings, aiming at the challenging scenario where feature shift and label shift exist simultaneously under different working conditions. Specifically, DIDA overcomes the class-imbalanced label shift and achieves a fine-grained latent space matching by cost-sensitive learning and categorical alignment. Besides, margin loss regularization is introduced to further optimize classification boundaries and improve cross-domain generalization for IDA fault diagnosis tasks. Finally, we simulated the IDA protocols on experimental datasets and conducted case studies under multiple working conditions, thus validating the effectiveness and superiority of the proposed framework. •A novel deep imbalanced domain adaptation (DIDA) is proposed.•DIDA narrows both feature shift and label shift.•DIDA broadens fault diagnosis to IDA scenarios.•Experimental case studies verified validity and superiority.
The tremendous success of deep learning and transfer learning broadened the scope of fault diagnosis, especially the latter further improved the diagnosis accuracy under multiple working conditions. However, most existing attempts assume that label distribution is domain-invariant despite taking into account the different feature distributions. This does not accommodate the diversity of fault mode distributions under different operating conditions and weakens the generalization to imbalanced domain adaptation (IDA) scenarios. Therefore, this work proposed a novel deep imbalanced domain adaptation (DIDA) framework for fault diagnosis of bearings, aiming at the challenging scenario where feature shift and label shift exist simultaneously under different working conditions. Specifically, DIDA overcomes the class-imbalanced label shift and achieves a fine-grained latent space matching by cost-sensitive learning and categorical alignment. Besides, margin loss regularization is introduced to further optimize classification boundaries and improve cross-domain generalization for IDA fault diagnosis tasks. Finally, we simulated the IDA protocols on experimental datasets and conducted case studies under multiple working conditions, thus validating the effectiveness and superiority of the proposed framework.
ArticleNumber 108890
Author Cao, Yudong
Zhuang, Jichao
Zhao, Xiaoli
Ding, Yifei
Jia, Minping
Lee, Chi-Guhn
Author_xml – sequence: 1
  givenname: Yifei
  orcidid: 0000-0001-8408-6945
  surname: Ding
  fullname: Ding, Yifei
  organization: School of Mechanical Engineering, Southeast University, Nanjing 211189, PR China
– sequence: 2
  givenname: Minping
  orcidid: 0000-0001-9010-2307
  surname: Jia
  fullname: Jia, Minping
  email: mpjia@seu.edu.cn
  organization: School of Mechanical Engineering, Southeast University, Nanjing 211189, PR China
– sequence: 3
  givenname: Jichao
  surname: Zhuang
  fullname: Zhuang, Jichao
  organization: School of Mechanical Engineering, Southeast University, Nanjing 211189, PR China
– sequence: 4
  givenname: Yudong
  orcidid: 0000-0003-2167-8075
  surname: Cao
  fullname: Cao, Yudong
  organization: School of Mechanical Engineering, Southeast University, Nanjing 211189, PR China
– sequence: 5
  givenname: Xiaoli
  surname: Zhao
  fullname: Zhao, Xiaoli
  organization: School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210014, PR China
– sequence: 6
  givenname: Chi-Guhn
  orcidid: 0000-0002-0916-0241
  surname: Lee
  fullname: Lee, Chi-Guhn
  organization: Centre for Maintenance Optimization and Reliability Engineering, University of Toronto, Toronto M5S 3G8, Canada
BookMark eNp9kM1KxDAURoMoOKO-gKuA645pM20ScCPjLwhudB3S5EZSO0lNWsW3N6WuXLgK3PudG76zRoc-eEDovCSbkpTNZbeJkNKmIlWVB5wLcoBWJWeiIJw2h2hFRF0WnFbkGK1T6gghW1GzFZpuAAbs9q3qlddgsAl75TxWRg2jGl3w2IaIx6h8shBxDyp659-wVVM_YuPUmw_JJRwsbvMurxKevMnRfQ64oQf8FeL7jOjgjZtPplN0ZFWf4Oz3PUGvd7cvu4fi6fn-cXf9VGha8bEwQjWUEwaN2NZbJRpNW8tsC8JQUtVaA9F5bQWjbW1NbYBpxUvFcznRlC09QRfL3SGGjwnSKLswRZ-_lBVrsqeGUZZTfEnpGFKKYKV2S_dc2_WyJHKWLDs5S5azZLlIzmj1Bx2i26v4_T90tUCQq386iDJpB7N9F0GP0gT3H_4DTvya3A
CitedBy_id crossref_primary_10_1016_j_ress_2023_109490
crossref_primary_10_1016_j_eswa_2024_124944
crossref_primary_10_3390_en16062668
crossref_primary_10_1016_j_engappai_2024_107973
crossref_primary_10_1088_1361_6501_ad7a1b
crossref_primary_10_1016_j_aei_2024_102878
crossref_primary_10_1016_j_ress_2025_111050
crossref_primary_10_1109_TNNLS_2024_3362687
crossref_primary_10_1109_JIOT_2024_3387741
crossref_primary_10_1177_14759217251345714
crossref_primary_10_1016_j_ress_2023_109522
crossref_primary_10_1016_j_knosys_2025_114109
crossref_primary_10_1016_j_ress_2023_109486
crossref_primary_10_1016_j_ress_2024_110400
crossref_primary_10_1088_1361_6501_adb321
crossref_primary_10_1016_j_ress_2023_109246
crossref_primary_10_1016_j_ress_2024_110369
crossref_primary_10_1016_j_eswa_2024_125594
crossref_primary_10_1088_1361_6501_ad20c3
crossref_primary_10_1177_14759217251332517
crossref_primary_10_1007_s12206_025_0810_4
crossref_primary_10_1016_j_apacoust_2025_110877
crossref_primary_10_1016_j_ress_2023_109380
crossref_primary_10_1088_1361_6501_ad2668
crossref_primary_10_1016_j_aei_2024_103048
crossref_primary_10_1088_1361_6501_ad36d9
crossref_primary_10_1109_TIM_2025_3551574
crossref_primary_10_1016_j_engappai_2025_110510
crossref_primary_10_1109_JSEN_2023_3256060
crossref_primary_10_1109_TIM_2024_3400354
crossref_primary_10_1007_s13042_024_02233_0
crossref_primary_10_1038_s41598_024_79151_2
crossref_primary_10_1016_j_neucom_2025_129588
crossref_primary_10_1016_j_ress_2024_110653
crossref_primary_10_3390_act14010039
crossref_primary_10_1016_j_ress_2023_109256
crossref_primary_10_1016_j_engappai_2025_111964
crossref_primary_10_1016_j_ress_2024_109991
crossref_primary_10_1016_j_ymssp_2025_113202
crossref_primary_10_1016_j_ress_2025_110999
crossref_primary_10_1088_1361_6501_acce55
crossref_primary_10_1016_j_ress_2024_110539
crossref_primary_10_1016_j_measurement_2025_116869
crossref_primary_10_1088_1361_6501_ad3fd4
crossref_primary_10_3390_app132413120
crossref_primary_10_1016_j_measurement_2024_116344
crossref_primary_10_1016_j_knosys_2023_110918
crossref_primary_10_1016_j_ress_2024_110181
crossref_primary_10_1016_j_ress_2024_110749
crossref_primary_10_1109_JSEN_2025_3529034
crossref_primary_10_1016_j_ress_2023_109746
crossref_primary_10_1038_s41598_023_50826_6
crossref_primary_10_1016_j_ymssp_2024_111837
crossref_primary_10_1016_j_ress_2023_109468
crossref_primary_10_1016_j_ress_2024_110347
crossref_primary_10_1016_j_ress_2024_110745
crossref_primary_10_1108_ILT_04_2023_0086
crossref_primary_10_1007_s11071_024_09733_2
crossref_primary_10_1016_j_engappai_2024_109380
crossref_primary_10_3390_s24134070
crossref_primary_10_1109_TIM_2023_3271736
crossref_primary_10_3390_e26121007
crossref_primary_10_1177_09544062241245826
crossref_primary_10_1016_j_engappai_2024_108678
crossref_primary_10_1016_j_ress_2024_109938
crossref_primary_10_1109_JSEN_2023_3343077
crossref_primary_10_1088_1361_6501_ae02ba
crossref_primary_10_3390_act13100401
crossref_primary_10_1016_j_ymssp_2025_112934
crossref_primary_10_3390_machines12110787
crossref_primary_10_3390_s25123686
crossref_primary_10_1016_j_psep_2025_107704
crossref_primary_10_1038_s41598_025_03459_w
crossref_primary_10_1093_jcde_qwae105
crossref_primary_10_3389_fbioe_2024_1334643
crossref_primary_10_1016_j_engappai_2024_109371
crossref_primary_10_1016_j_engappai_2023_107539
crossref_primary_10_1016_j_jmapro_2025_05_084
crossref_primary_10_1016_j_eswa_2024_123930
crossref_primary_10_1016_j_ress_2024_110562
crossref_primary_10_1088_1361_6501_ad19c2
crossref_primary_10_1088_1361_6501_adc7d0
crossref_primary_10_1016_j_aei_2024_102436
crossref_primary_10_1016_j_engappai_2023_107538
crossref_primary_10_1080_10589759_2025_2487927
crossref_primary_10_1016_j_ress_2023_109601
crossref_primary_10_1016_j_ymssp_2025_112422
crossref_primary_10_1016_j_ress_2025_110842
crossref_primary_10_1007_s41060_023_00463_z
crossref_primary_10_1016_j_ress_2024_110293
crossref_primary_10_1109_TASE_2025_3571516
crossref_primary_10_1109_ACCESS_2024_3413578
crossref_primary_10_1109_TIM_2024_3462979
crossref_primary_10_1109_JSEN_2023_3347251
crossref_primary_10_1016_j_measurement_2025_118117
crossref_primary_10_1088_1361_6501_add75b
crossref_primary_10_1016_j_measurement_2024_115901
crossref_primary_10_1016_j_ress_2023_109618
crossref_primary_10_1016_j_engappai_2024_109396
crossref_primary_10_1088_1361_6501_ace9f0
crossref_primary_10_1088_3049_4761_adce0d
crossref_primary_10_1109_ACCESS_2023_3264636
crossref_primary_10_1016_j_aei_2024_102681
crossref_primary_10_1016_j_measurement_2025_116982
crossref_primary_10_1016_j_asoc_2024_112528
crossref_primary_10_1016_j_knosys_2025_114251
crossref_primary_10_1016_j_cie_2025_110988
crossref_primary_10_1016_j_knosys_2024_111682
crossref_primary_10_1016_j_ress_2025_111648
crossref_primary_10_1093_jcde_qwad076
crossref_primary_10_1016_j_knosys_2025_113165
crossref_primary_10_1016_j_ress_2023_109692
crossref_primary_10_1016_j_energy_2025_137825
crossref_primary_10_1016_j_apacoust_2023_109797
crossref_primary_10_1088_1361_6501_ad7a92
crossref_primary_10_1016_j_eswa_2025_126423
crossref_primary_10_3390_app132312823
crossref_primary_10_1016_j_aei_2024_103079
crossref_primary_10_1088_1361_6501_ace841
crossref_primary_10_32604_cmes_2023_031360
crossref_primary_10_1016_j_measurement_2023_112945
crossref_primary_10_1016_j_ress_2024_110380
crossref_primary_10_1109_TII_2023_3343735
crossref_primary_10_1007_s11432_024_4333_7
crossref_primary_10_1016_j_ress_2023_109705
crossref_primary_10_1016_j_ress_2024_110707
crossref_primary_10_1016_j_ress_2024_110708
crossref_primary_10_1109_JSEN_2024_3479213
crossref_primary_10_3390_s23135875
crossref_primary_10_1088_1361_6501_adcce6
crossref_primary_10_1088_1361_6501_ad99f3
crossref_primary_10_1016_j_engappai_2023_106670
crossref_primary_10_1016_j_eswa_2024_124240
crossref_primary_10_1177_14759217241279789
crossref_primary_10_1016_j_compind_2025_104349
crossref_primary_10_1109_TII_2023_3331129
crossref_primary_10_1016_j_ress_2025_111145
crossref_primary_10_1109_TIM_2025_3551907
crossref_primary_10_1109_TII_2025_3545106
crossref_primary_10_1016_j_aei_2025_103400
crossref_primary_10_1108_SRT_11_2024_0017
crossref_primary_10_1371_journal_pone_0307672
crossref_primary_10_3390_app14209208
crossref_primary_10_1088_1361_6501_ad4d15
crossref_primary_10_1109_JPHOT_2024_3392392
crossref_primary_10_1016_j_ress_2023_109832
crossref_primary_10_1109_JIOT_2024_3419044
crossref_primary_10_1177_14759217241256690
crossref_primary_10_1016_j_ress_2025_110854
crossref_primary_10_1109_JSEN_2023_3280202
crossref_primary_10_1038_s41598_025_92838_4
crossref_primary_10_1016_j_ress_2025_110979
crossref_primary_10_1177_14759217251330518
Cites_doi 10.1109/ACCESS.2020.2990528
10.1016/j.ymssp.2021.108018
10.1007/978-3-319-58347-1_10
10.1016/j.ymssp.2020.107233
10.1007/s10845-020-01600-2
10.1016/j.ress.2021.107583
10.1007/978-3-030-01219-9_18
10.1016/S0165-1765(01)00524-9
10.1016/j.ress.2018.02.012
10.1109/TKDE.2009.191
10.1016/j.eswa.2021.116459
10.1109/CVPR42600.2020.00763
10.1016/j.isatra.2021.02.042
10.1109/TIM.2022.3216413
10.1109/CVPR.2019.00949
10.1016/j.ress.2021.107530
10.1016/j.ymssp.2021.108616
10.1016/j.measurement.2021.109834
10.1613/jair.953
10.1016/j.ress.2021.108012
10.1016/j.measurement.2021.110511
10.1016/j.ress.2021.108126
10.1109/TSMC.2017.2754287
10.1109/CVPR.2016.580
10.1016/j.measurement.2021.109352
10.1016/j.knosys.2022.109272
10.1109/TII.2019.2943898
10.1088/1361-6501/ac57ef
10.1016/j.ress.2021.107938
10.1016/j.ymssp.2017.08.002
10.1007/s00521-019-04097-w
10.1016/j.isatra.2019.08.012
10.1016/j.ymssp.2020.106683
10.1016/j.ress.2021.107934
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Feb 2023
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 2023
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2022.108890
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2022_108890
S0951832022005075
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
SOI
ID FETCH-LOGICAL-c328t-d9a63807e69454a96c3bf7fbe9d3025cce0c807f973b5fd5de7ca81a8049961b3
ISICitedReferencesCount 166
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000951956500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Wed Aug 13 06:35:28 EDT 2025
Tue Nov 18 19:44:10 EST 2025
Sat Nov 29 07:10:28 EST 2025
Fri Feb 23 02:39:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Domain shift
Bearings
Label shift
Imbalanced domain adaptation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-d9a63807e69454a96c3bf7fbe9d3025cce0c807f973b5fd5de7ca81a8049961b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8408-6945
0000-0001-9010-2307
0000-0002-0916-0241
0000-0003-2167-8075
PQID 2760886737
PQPubID 2045406
ParticipantIDs proquest_journals_2760886737
crossref_citationtrail_10_1016_j_ress_2022_108890
crossref_primary_10_1016_j_ress_2022_108890
elsevier_sciencedirect_doi_10_1016_j_ress_2022_108890
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Pan, Yang (b17) 2010; 22
Zhu, Zhuang, Wang, Ke, Chen, Bian (b43) 2020
Zhao, Zhong, Fu, Tang, Pecht (b9) 2020; 16
Chen, Mauricio, Li, Gryllias (b10) 2020; 140
Ding, Jia, Miao, Huang (b6) 2021; 212
Kang B, Xie S, Rohrbach M, Yan Z, Gordo A, Feng J, et al. Decoupling Representation and Classifier for Long-Tailed Recognition. In: International conference on learning representations. 2019.
Wang, Lan, Liu, Ouyang, Qin (b16) 2021
Ding, Jia, Miao, Cao (b13) 2022; 168
Chen, Zhang, Gao (b11) 2021; 32
Han, Liu, Yang, Jiang (b22) 2020; 97
Cao K, Wei C, Gaidon A, Arechiga N, Ma T. Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss. In: Proceedings of the 33rd international conference on neural information processing systems. 2019, p. 1567–78.
Wu, Zhao, Sun, Yan, Chen (b27) 2021; 216
Tan, Peng, Saenko (b34) 2020
Xu, Saleh (b1) 2021; 211
Wang, Zhou, Du, Lei, Wang (b5) 2022; 162
Kuang, Xu, Tao, Wu (b31) 2022; 71
Zou Y, Yu Z, Kumar BVKV, Wang J. Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training. In: Proceedings of the European conference on computer vision. 2018, p. 289–305.
Manjurul Islam, Kim (b4) 2019; 184
Fu, Zhang, Lin, Zhao, Zhong (b7) 2021; 216
Long, Cao, Wang, Jordan (b32) 2015
Chawla, Bowyer, Hall, Kegelmeyer (b38) 2002; 16
Zellinger, Grubinger, Lughofer, Natschläger, Saminger-Platz (b33) 2019
Qian, Qin, Wang, Liu (b19) 2021; 178
Yang, Yang, Wang, Cao, Zou, Xie (b23) 2021
Cui Y, Jia M, Lin T-Y, Song Y, Belongie S. Class-Balanced Loss Based on Effective Number of Samples. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019, p. 9268–77.
Bao, Du, Zhang, Wang, Qiu, Cao (b14) 2021
Wu, Zhang, Guo, Ji, Pecht (b28) 2022; 193
Wen, Gao, Li (b18) 2019; 49
Jamal MA, Brown M, Yang M-H, Wang L, Gong B. Rethinking Class-Balanced Methods for Long-Tailed Visual Recognition From a Domain Adaptation Perspective. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020, p. 7610–9.
Zhao, Wang, Cai, Zhang, Wang, Du (b2) 2022; 188
Huang C, Li Y, Loy CC, Tang X. Learning Deep Representation for Imbalanced Classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 5375–84.
Shao, Jiang, Zhang, Duan, Liang, Wu (b8) 2018; 100
Reed (b44) 2001; 74
Ding, Zhuang, Ding, Jia (b3) 2022; 218
Mao, Feng, Liu, Zhang, Liang (b12) 2021; 150
Wen, Li, Gao (b25) 2020; 32
Xia, Shao, Williams, Lu, Shu, de Silva (b21) 2021; 215
Liu, Chen, Zhang, Liu, He, Zhou (b30) 2022; 251
Neupane, Seok (b15) 2020; 8
Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette (b45) 2017; 17
Wang, Cui, Cai, Li (b20) 2022; 71
Wang Y-X, Ramanan D, Hebert M. Learning to Model the Tail. In: Proceedings of the 31st international conference on neural information processing systems. NIPS’17, Long Beach, California, USA; ISBN: 978-1-5108-6096-4, 2017, p. 7032–42.
Zhu, Dong, Pan, Hu, Zhu (b24) 2022; 33
Tan, Guo, Gao, Lin, Liu (b29) 2021; 183
Zhang, Chen, Li, Zhang, Lv, He (b26) 2022; 119
Neupane (10.1016/j.ress.2022.108890_b15) 2020; 8
Wen (10.1016/j.ress.2022.108890_b18) 2019; 49
Shao (10.1016/j.ress.2022.108890_b8) 2018; 100
Kuang (10.1016/j.ress.2022.108890_b31) 2022; 71
Chen (10.1016/j.ress.2022.108890_b10) 2020; 140
Ganin (10.1016/j.ress.2022.108890_b45) 2017; 17
10.1016/j.ress.2022.108890_b39
Chawla (10.1016/j.ress.2022.108890_b38) 2002; 16
Yang (10.1016/j.ress.2022.108890_b23) 2021
Wang (10.1016/j.ress.2022.108890_b16) 2021
10.1016/j.ress.2022.108890_b36
10.1016/j.ress.2022.108890_b35
10.1016/j.ress.2022.108890_b37
Zellinger (10.1016/j.ress.2022.108890_b33) 2019
Zhu (10.1016/j.ress.2022.108890_b24) 2022; 33
Tan (10.1016/j.ress.2022.108890_b34) 2020
Liu (10.1016/j.ress.2022.108890_b30) 2022; 251
Wu (10.1016/j.ress.2022.108890_b28) 2022; 193
Mao (10.1016/j.ress.2022.108890_b12) 2021; 150
Zhu (10.1016/j.ress.2022.108890_b43) 2020
Ding (10.1016/j.ress.2022.108890_b6) 2021; 212
Wang (10.1016/j.ress.2022.108890_b20) 2022; 71
Reed (10.1016/j.ress.2022.108890_b44) 2001; 74
Chen (10.1016/j.ress.2022.108890_b11) 2021; 32
Zhang (10.1016/j.ress.2022.108890_b26) 2022; 119
Tan (10.1016/j.ress.2022.108890_b29) 2021; 183
10.1016/j.ress.2022.108890_b42
Xia (10.1016/j.ress.2022.108890_b21) 2021; 215
Wen (10.1016/j.ress.2022.108890_b25) 2020; 32
Wu (10.1016/j.ress.2022.108890_b27) 2021; 216
Zhao (10.1016/j.ress.2022.108890_b2) 2022; 188
Xu (10.1016/j.ress.2022.108890_b1) 2021; 211
Wang (10.1016/j.ress.2022.108890_b5) 2022; 162
Fu (10.1016/j.ress.2022.108890_b7) 2021; 216
10.1016/j.ress.2022.108890_b41
Bao (10.1016/j.ress.2022.108890_b14) 2021
10.1016/j.ress.2022.108890_b40
Han (10.1016/j.ress.2022.108890_b22) 2020; 97
Long (10.1016/j.ress.2022.108890_b32) 2015
Pan (10.1016/j.ress.2022.108890_b17) 2010; 22
Qian (10.1016/j.ress.2022.108890_b19) 2021; 178
Zhao (10.1016/j.ress.2022.108890_b9) 2020; 16
Ding (10.1016/j.ress.2022.108890_b13) 2022; 168
Ding (10.1016/j.ress.2022.108890_b3) 2022; 218
Manjurul Islam (10.1016/j.ress.2022.108890_b4) 2019; 184
References_xml – volume: 162
  year: 2022
  ident: b5
  article-title: Bearing fault diagnosis method based on adaptive maximum cyclostationarity blind deconvolution
  publication-title: Mech Syst Signal Process
– start-page: 585
  year: 2020
  end-page: 602
  ident: b34
  article-title: Class-imbalanced domain adaptation: an empirical odyssey
  publication-title: Computer vision – ECCV 2020 workshops
– volume: 71
  start-page: 1
  year: 2022
  end-page: 10
  ident: b20
  article-title: Partial transfer learning of multidiscriminator deep weighted adversarial network in cross-machine fault diagnosis
  publication-title: IEEE Trans Instrum Meas
– volume: 215
  year: 2021
  ident: b21
  article-title: Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning
  publication-title: Rel Eng Syst Saf
– reference: Cao K, Wei C, Gaidon A, Arechiga N, Ma T. Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss. In: Proceedings of the 33rd international conference on neural information processing systems. 2019, p. 1567–78.
– year: 2021
  ident: b16
  article-title: Generalizing to unseen domains: A survey on domain generalization
– reference: Zou Y, Yu Z, Kumar BVKV, Wang J. Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training. In: Proceedings of the European conference on computer vision. 2018, p. 289–305.
– start-page: 97
  year: 2015
  end-page: 105
  ident: b32
  article-title: Learning transferable features with deep adaptation networks
  publication-title: 32nd international conference on machine learning, vol. 1
– volume: 178
  year: 2021
  ident: b19
  article-title: A new deep transfer learning network based on convolutional auto-encoder for mechanical fault diagnosis
  publication-title: Measurement
– volume: 119
  start-page: 152
  year: 2022
  end-page: 171
  ident: b26
  article-title: Intelligent fault diagnosis of machines with small & imbalanced data: A state-of-the-art review and possible extensions
  publication-title: ISA Trans
– reference: Wang Y-X, Ramanan D, Hebert M. Learning to Model the Tail. In: Proceedings of the 31st international conference on neural information processing systems. NIPS’17, Long Beach, California, USA; ISBN: 978-1-5108-6096-4, 2017, p. 7032–42.
– volume: 218
  year: 2022
  ident: b3
  article-title: Self-supervised pretraining via contrast learning for intelligent incipient fault detection of bearings
  publication-title: Rel Eng Syst Saf
– volume: 74
  start-page: 15
  year: 2001
  end-page: 19
  ident: b44
  article-title: The Pareto, Zipf and other power laws
  publication-title: Econom Lett
– volume: 97
  start-page: 269
  year: 2020
  end-page: 281
  ident: b22
  article-title: Deep transfer network with joint distribution adaptation: A new intelligent fault diagnosis framework for industry application
  publication-title: ISA Trans
– volume: 251
  year: 2022
  ident: b30
  article-title: Cross-domain intelligent bearing fault diagnosis under class imbalanced samples via transfer residual network augmented with explicit weight self-assignment strategy based on meta data
  publication-title: Knowl-Based Syst
– volume: 216
  year: 2021
  ident: b7
  article-title: Deep residual LSTM with domain-invariance for remaining useful life prediction across domains
  publication-title: Rel Eng Syst Saf
– volume: 183
  year: 2021
  ident: b29
  article-title: MiDAN: A framework for cross-domain intelligent fault diagnosis with imbalanced datasets
  publication-title: Measurement
– reference: Cui Y, Jia M, Lin T-Y, Song Y, Belongie S. Class-Balanced Loss Based on Effective Number of Samples. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019, p. 9268–77.
– volume: 211
  year: 2021
  ident: b1
  article-title: Machine learning for reliability engineering and safety applications: Review of current status and future opportunities
  publication-title: Rel Eng Syst Saf
– volume: 150
  year: 2021
  ident: b12
  article-title: A new deep auto-encoder method with fusing discriminant information for bearing fault diagnosis
  publication-title: Mech Syst Signal Process
– start-page: 1
  year: 2021
  end-page: 12
  ident: b23
  article-title: Advancing imbalanced domain adaptation: Cluster-level discrepancy minimization with a comprehensive benchmark
  publication-title: IEEE Trans Cybern
– volume: 193
  year: 2022
  ident: b28
  article-title: Imbalanced bearing fault diagnosis under variant working conditions using cost-sensitive deep domain adaptation network
  publication-title: Expert Syst Appl
– start-page: 1
  year: 2020
  end-page: 10
  ident: b43
  article-title: Deep subdomain adaptation network for image classification
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 168
  year: 2022
  ident: b13
  article-title: A novel time– frequency transformer based on self– attention mechanism and its application in fault diagnosis of rolling bearings
  publication-title: Mech Syst Signal Process
– volume: 32
  start-page: 971
  year: 2021
  end-page: 987
  ident: b11
  article-title: Bearing fault diagnosis base on multi-scale CNN and LSTM model
  publication-title: J Intell Manuf
– volume: 8
  start-page: 93155
  year: 2020
  end-page: 93178
  ident: b15
  article-title: Bearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A review
  publication-title: IEEE Access
– volume: 17
  start-page: 189
  year: 2017
  end-page: 209
  ident: b45
  article-title: Domain-adversarial training of neural networks
  publication-title: Adv Comput Vis Pattern Recognit
– volume: 32
  start-page: 6111
  year: 2020
  end-page: 6124
  ident: b25
  article-title: A transfer convolutional neural network for fault diagnosis based on ResNet-50
  publication-title: Neural Comput Appl
– volume: 71
  start-page: 1
  year: 2022
  end-page: 11
  ident: b31
  article-title: Class-imbalance adversarial transfer learning network for cross-domain fault diagnosis with imbalanced data
  publication-title: IEEE Trans Instrum Meas
– reference: Kang B, Xie S, Rohrbach M, Yan Z, Gordo A, Feng J, et al. Decoupling Representation and Classifier for Long-Tailed Recognition. In: International conference on learning representations. 2019.
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: b38
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J Artificial Intelligence Res
– reference: Huang C, Li Y, Loy CC, Tang X. Learning Deep Representation for Imbalanced Classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 5375–84.
– volume: 140
  year: 2020
  ident: b10
  article-title: A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks
  publication-title: Mech Syst Signal Process
– volume: 49
  start-page: 136
  year: 2019
  end-page: 144
  ident: b18
  article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis
  publication-title: IEEE Trans Syst Man Cybern Syst
– volume: 188
  year: 2022
  ident: b2
  article-title: Multiscale inverted residual convolutional neural network for intelligent diagnosis of bearings under variable load condition
  publication-title: Measurement
– volume: 216
  year: 2021
  ident: b27
  article-title: Learning from class-imbalanced data with a model-agnostic framework for machine intelligent diagnosis
  publication-title: Rel Eng Syst Saf
– volume: 16
  start-page: 4681
  year: 2020
  end-page: 4690
  ident: b9
  article-title: Deep residual shrinkage networks for fault diagnosis
  publication-title: IEEE Trans Ind Inf
– start-page: 65
  year: 2021
  end-page: 79
  ident: b14
  article-title: A transformer model-based approach to bearing fault diagnosis
  publication-title: Data science
– volume: 184
  start-page: 55
  year: 2019
  end-page: 66
  ident: b4
  article-title: Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector machines
  publication-title: Rel Eng Syst Saf
– volume: 100
  start-page: 743
  year: 2018
  end-page: 765
  ident: b8
  article-title: Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing
  publication-title: Mech Syst Signal Process
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: b17
  article-title: A survey on transfer learning
  publication-title: IEEE Trans Knowl Data Eng
– volume: 33
  year: 2022
  ident: b24
  article-title: A simulation-data-driven subdomain adaptation adversarial transfer learning network for rolling element bearing fault diagnosis
  publication-title: Meas Sci Technol
– reference: Jamal MA, Brown M, Yang M-H, Wang L, Gong B. Rethinking Class-Balanced Methods for Long-Tailed Visual Recognition From a Domain Adaptation Perspective. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020, p. 7610–9.
– volume: 212
  year: 2021
  ident: b6
  article-title: Remaining useful life estimation using deep metric transfer learning for kernel regression
  publication-title: Rel Eng Syst Saf
– year: 2019
  ident: b33
  article-title: Central moment discrepancy (CMD) for domain-invariant representation learning
– volume: 8
  start-page: 93155
  year: 2020
  ident: 10.1016/j.ress.2022.108890_b15
  article-title: Bearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990528
– volume: 162
  year: 2022
  ident: 10.1016/j.ress.2022.108890_b5
  article-title: Bearing fault diagnosis method based on adaptive maximum cyclostationarity blind deconvolution
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.108018
– volume: 17
  start-page: 189
  year: 2017
  ident: 10.1016/j.ress.2022.108890_b45
  article-title: Domain-adversarial training of neural networks
  publication-title: Adv Comput Vis Pattern Recognit
  doi: 10.1007/978-3-319-58347-1_10
– volume: 150
  year: 2021
  ident: 10.1016/j.ress.2022.108890_b12
  article-title: A new deep auto-encoder method with fusing discriminant information for bearing fault diagnosis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.107233
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.ress.2022.108890_b31
  article-title: Class-imbalance adversarial transfer learning network for cross-domain fault diagnosis with imbalanced data
  publication-title: IEEE Trans Instrum Meas
– volume: 32
  start-page: 971
  issue: 4
  year: 2021
  ident: 10.1016/j.ress.2022.108890_b11
  article-title: Bearing fault diagnosis base on multi-scale CNN and LSTM model
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-020-01600-2
– volume: 212
  year: 2021
  ident: 10.1016/j.ress.2022.108890_b6
  article-title: Remaining useful life estimation using deep metric transfer learning for kernel regression
  publication-title: Rel Eng Syst Saf
  doi: 10.1016/j.ress.2021.107583
– ident: 10.1016/j.ress.2022.108890_b37
  doi: 10.1007/978-3-030-01219-9_18
– start-page: 97
  year: 2015
  ident: 10.1016/j.ress.2022.108890_b32
  article-title: Learning transferable features with deep adaptation networks
– volume: 74
  start-page: 15
  issue: 1
  year: 2001
  ident: 10.1016/j.ress.2022.108890_b44
  article-title: The Pareto, Zipf and other power laws
  publication-title: Econom Lett
  doi: 10.1016/S0165-1765(01)00524-9
– ident: 10.1016/j.ress.2022.108890_b39
– volume: 184
  start-page: 55
  year: 2019
  ident: 10.1016/j.ress.2022.108890_b4
  article-title: Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector machines
  publication-title: Rel Eng Syst Saf
  doi: 10.1016/j.ress.2018.02.012
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 10.1016/j.ress.2022.108890_b17
  article-title: A survey on transfer learning
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– start-page: 1
  year: 2021
  ident: 10.1016/j.ress.2022.108890_b23
  article-title: Advancing imbalanced domain adaptation: Cluster-level discrepancy minimization with a comprehensive benchmark
  publication-title: IEEE Trans Cybern
– volume: 193
  year: 2022
  ident: 10.1016/j.ress.2022.108890_b28
  article-title: Imbalanced bearing fault diagnosis under variant working conditions using cost-sensitive deep domain adaptation network
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116459
– ident: 10.1016/j.ress.2022.108890_b40
  doi: 10.1109/CVPR42600.2020.00763
– volume: 119
  start-page: 152
  year: 2022
  ident: 10.1016/j.ress.2022.108890_b26
  article-title: Intelligent fault diagnosis of machines with small & imbalanced data: A state-of-the-art review and possible extensions
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2021.02.042
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.ress.2022.108890_b20
  article-title: Partial transfer learning of multidiscriminator deep weighted adversarial network in cross-machine fault diagnosis
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2022.3216413
– ident: 10.1016/j.ress.2022.108890_b35
– ident: 10.1016/j.ress.2022.108890_b42
  doi: 10.1109/CVPR.2019.00949
– start-page: 585
  year: 2020
  ident: 10.1016/j.ress.2022.108890_b34
  article-title: Class-imbalanced domain adaptation: an empirical odyssey
– volume: 211
  year: 2021
  ident: 10.1016/j.ress.2022.108890_b1
  article-title: Machine learning for reliability engineering and safety applications: Review of current status and future opportunities
  publication-title: Rel Eng Syst Saf
  doi: 10.1016/j.ress.2021.107530
– volume: 168
  year: 2022
  ident: 10.1016/j.ress.2022.108890_b13
  article-title: A novel time– frequency transformer based on self– attention mechanism and its application in fault diagnosis of rolling bearings
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.108616
– volume: 183
  year: 2021
  ident: 10.1016/j.ress.2022.108890_b29
  article-title: MiDAN: A framework for cross-domain intelligent fault diagnosis with imbalanced datasets
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109834
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.ress.2022.108890_b38
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J Artificial Intelligence Res
  doi: 10.1613/jair.953
– volume: 216
  year: 2021
  ident: 10.1016/j.ress.2022.108890_b7
  article-title: Deep residual LSTM with domain-invariance for remaining useful life prediction across domains
  publication-title: Rel Eng Syst Saf
  doi: 10.1016/j.ress.2021.108012
– year: 2021
  ident: 10.1016/j.ress.2022.108890_b16
– volume: 188
  year: 2022
  ident: 10.1016/j.ress.2022.108890_b2
  article-title: Multiscale inverted residual convolutional neural network for intelligent diagnosis of bearings under variable load condition
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110511
– volume: 218
  year: 2022
  ident: 10.1016/j.ress.2022.108890_b3
  article-title: Self-supervised pretraining via contrast learning for intelligent incipient fault detection of bearings
  publication-title: Rel Eng Syst Saf
  doi: 10.1016/j.ress.2021.108126
– volume: 49
  start-page: 136
  issue: 1
  year: 2019
  ident: 10.1016/j.ress.2022.108890_b18
  article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2017.2754287
– ident: 10.1016/j.ress.2022.108890_b36
  doi: 10.1109/CVPR.2016.580
– start-page: 65
  year: 2021
  ident: 10.1016/j.ress.2022.108890_b14
  article-title: A transformer model-based approach to bearing fault diagnosis
– volume: 178
  year: 2021
  ident: 10.1016/j.ress.2022.108890_b19
  article-title: A new deep transfer learning network based on convolutional auto-encoder for mechanical fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109352
– volume: 251
  year: 2022
  ident: 10.1016/j.ress.2022.108890_b30
  article-title: Cross-domain intelligent bearing fault diagnosis under class imbalanced samples via transfer residual network augmented with explicit weight self-assignment strategy based on meta data
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.109272
– start-page: 1
  year: 2020
  ident: 10.1016/j.ress.2022.108890_b43
  article-title: Deep subdomain adaptation network for image classification
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 16
  start-page: 4681
  issue: 7
  year: 2020
  ident: 10.1016/j.ress.2022.108890_b9
  article-title: Deep residual shrinkage networks for fault diagnosis
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2019.2943898
– volume: 33
  issue: 7
  year: 2022
  ident: 10.1016/j.ress.2022.108890_b24
  article-title: A simulation-data-driven subdomain adaptation adversarial transfer learning network for rolling element bearing fault diagnosis
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/ac57ef
– ident: 10.1016/j.ress.2022.108890_b41
– volume: 215
  year: 2021
  ident: 10.1016/j.ress.2022.108890_b21
  article-title: Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning
  publication-title: Rel Eng Syst Saf
  doi: 10.1016/j.ress.2021.107938
– volume: 100
  start-page: 743
  year: 2018
  ident: 10.1016/j.ress.2022.108890_b8
  article-title: Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.08.002
– year: 2019
  ident: 10.1016/j.ress.2022.108890_b33
– volume: 32
  start-page: 6111
  issue: 10
  year: 2020
  ident: 10.1016/j.ress.2022.108890_b25
  article-title: A transfer convolutional neural network for fault diagnosis based on ResNet-50
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04097-w
– volume: 97
  start-page: 269
  year: 2020
  ident: 10.1016/j.ress.2022.108890_b22
  article-title: Deep transfer network with joint distribution adaptation: A new intelligent fault diagnosis framework for industry application
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2019.08.012
– volume: 140
  year: 2020
  ident: 10.1016/j.ress.2022.108890_b10
  article-title: A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.106683
– volume: 216
  year: 2021
  ident: 10.1016/j.ress.2022.108890_b27
  article-title: Learning from class-imbalanced data with a model-agnostic framework for machine intelligent diagnosis
  publication-title: Rel Eng Syst Saf
  doi: 10.1016/j.ress.2021.107934
SSID ssj0004957
Score 2.6853285
Snippet The tremendous success of deep learning and transfer learning broadened the scope of fault diagnosis, especially the latter further improved the diagnosis...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108890
SubjectTerms Adaptation
Bearings
Deep learning
Domain shift
Domains
Fault diagnosis
Imbalanced domain adaptation
Label shift
Machine learning
Regularization
Reliability engineering
Transfer learning
Working conditions
Title Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions
URI https://dx.doi.org/10.1016/j.ress.2022.108890
https://www.proquest.com/docview/2760886737
Volume 230
WOSCitedRecordID wos000951956500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEE9RWtAe6MlyFXtt7-6xoomgCoFDWqUny95H5Sq1TZq05W_xC9lnHCqI4MDFirx2Yu18Wc9-880MAO8TETO1BKAQZZKHCeM0pKXUBDwRRPBBJEyPpbMxnkzIbEa_9no_fC7MzRzXNbm7o-1_NbU6p4ytU2f_wdzrL1Un1GdldHVUZlfHvzL8sRBtUF2VWrOog_u8uVK7_6DgRbupLDQOq1j4thEXgSxW86XmYrX0zlYpKdWYaeupM80Wnfjw1jLsWrLOq47x83W-xbyy1b-_B6Ird2hAZgtHB9eFdPVHjBPt-qqcV1JUa0mPVfF-rurWv10Nv71yBPeJ1vs3XQjFUL7nK964ix2TESMvfvb02jrF5uwXmjIK1apjYzfCLtIEU1NVe3MVj114x67D0W_fDpaouDzURMaheoJYKywJHXTvQh__n3zJR6fjcT4dzqYHaNR-C3WfMh3PP0DHFjMPwE6MU0r6YOfo03B20mXjUltf1j-5S9WyqsL7P_0nd-ieY2C8nelT8MRtU-CRhdcz0BP1c_B4o3jlC7DSQIMd0KAFGuyABhXQoAca9ECDBmhwDTTYSOiBBg3QoAcadECDHdBegtPRcPrhY-iaeIQMxWQZclpkuqmByGiSJgXNGCollqWgHCl_mzExYGpYUozKVPKUC8wKEhVE78WzqESvQL9uavEawAEiMiUSJ5QonyphZRkXBSYJKrnELOG7IPJzmTNX4V43WpnnXsp4mev5z_X853b-d0Gwvqe19V22Xp16E-XOQ7WeZ64gtvW-fW_P3C0VahxnalD3iXqzfXgPPOr-Lvugv1ysxFvwkN0sq-vFOwe_n96Xv-c
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+imbalanced+domain+adaptation+for+transfer+learning+fault+diagnosis+of+bearings+under+multiple+working+conditions&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Ding%2C+Yifei&rft.au=Jia%2C+Minping&rft.au=Zhuang%2C+Jichao&rft.au=Cao%2C+Yudong&rft.date=2023-02-01&rft.pub=Elsevier+BV&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=230&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ress.2022.108890&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon