Boundaries in the eyes: Measure event segmentation during naturalistic video watching using eye tracking
During naturalistic information processing, individuals spontaneously segment their continuous experiences into discrete events, a phenomenon known as event segmentation. Traditional methods for assessing this process, which include subjective reports and neuroimaging techniques, often disrupt real-...
Uloženo v:
| Vydáno v: | Behavior research methods Ročník 57; číslo 9; s. 255 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
12.08.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1554-3528, 1554-3528 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | During naturalistic information processing, individuals spontaneously segment their continuous experiences into discrete events, a phenomenon known as event segmentation. Traditional methods for assessing this process, which include subjective reports and neuroimaging techniques, often disrupt real-time segmentation or are costly and time-intensive. Our study investigated the potential of measuring event segmentation by recording and analyzing eye movements while participants viewed naturalistic videos. We collected eye movement data from healthy young adults as they watched commercial films (
N
= 104), or online Science, Technology, Engineering, and Mathematics (STEM) educational courses (
N
= 44). We analyzed changes in
pupil size
and
eye movement speed
near event boundaries and employed
inter-subject correlation analysis
(ISC) and
hidden Markov models
(HMM) to identify patterns indicative of event segmentation. We observed that both the speed of eye movements and pupil size dynamically responded to event boundaries, exhibiting heightened sensitivity to high-strength boundaries. Our analyses further revealed that event boundaries synchronized eye movements across participants. These boundaries can be effectively identified by HMM, yielding higher within-event similarity values and aligned with human-annotated boundaries. Importantly, HMM-based event segmentation metrics responded to experimental manipulations and predicted learning outcomes. This study provided a comprehensive computational framework for measuring event segmentation using eye-tracking. With the widespread accessibility of low-cost eye-tracking devices, the ability to measure event segmentation from eye movement data promises to deepen our understanding of this process in diverse real-world settings. |
|---|---|
| AbstractList | During naturalistic information processing, individuals spontaneously segment their continuous experiences into discrete events, a phenomenon known as event segmentation. Traditional methods for assessing this process, which include subjective reports and neuroimaging techniques, often disrupt real-time segmentation or are costly and time-intensive. Our study investigated the potential of measuring event segmentation by recording and analyzing eye movements while participants viewed naturalistic videos. We collected eye movement data from healthy young adults as they watched commercial films (N = 104), or online Science, Technology, Engineering, and Mathematics (STEM) educational courses (N = 44). We analyzed changes in pupil size and eye movement speed near event boundaries and employed inter-subject correlation analysis (ISC) and hidden Markov models (HMM) to identify patterns indicative of event segmentation. We observed that both the speed of eye movements and pupil size dynamically responded to event boundaries, exhibiting heightened sensitivity to high-strength boundaries. Our analyses further revealed that event boundaries synchronized eye movements across participants. These boundaries can be effectively identified by HMM, yielding higher within-event similarity values and aligned with human-annotated boundaries. Importantly, HMM-based event segmentation metrics responded to experimental manipulations and predicted learning outcomes. This study provided a comprehensive computational framework for measuring event segmentation using eye-tracking. With the widespread accessibility of low-cost eye-tracking devices, the ability to measure event segmentation from eye movement data promises to deepen our understanding of this process in diverse real-world settings.During naturalistic information processing, individuals spontaneously segment their continuous experiences into discrete events, a phenomenon known as event segmentation. Traditional methods for assessing this process, which include subjective reports and neuroimaging techniques, often disrupt real-time segmentation or are costly and time-intensive. Our study investigated the potential of measuring event segmentation by recording and analyzing eye movements while participants viewed naturalistic videos. We collected eye movement data from healthy young adults as they watched commercial films (N = 104), or online Science, Technology, Engineering, and Mathematics (STEM) educational courses (N = 44). We analyzed changes in pupil size and eye movement speed near event boundaries and employed inter-subject correlation analysis (ISC) and hidden Markov models (HMM) to identify patterns indicative of event segmentation. We observed that both the speed of eye movements and pupil size dynamically responded to event boundaries, exhibiting heightened sensitivity to high-strength boundaries. Our analyses further revealed that event boundaries synchronized eye movements across participants. These boundaries can be effectively identified by HMM, yielding higher within-event similarity values and aligned with human-annotated boundaries. Importantly, HMM-based event segmentation metrics responded to experimental manipulations and predicted learning outcomes. This study provided a comprehensive computational framework for measuring event segmentation using eye-tracking. With the widespread accessibility of low-cost eye-tracking devices, the ability to measure event segmentation from eye movement data promises to deepen our understanding of this process in diverse real-world settings. During naturalistic information processing, individuals spontaneously segment their continuous experiences into discrete events, a phenomenon known as event segmentation. Traditional methods for assessing this process, which include subjective reports and neuroimaging techniques, often disrupt real-time segmentation or are costly and time-intensive. Our study investigated the potential of measuring event segmentation by recording and analyzing eye movements while participants viewed naturalistic videos. We collected eye movement data from healthy young adults as they watched commercial films (N = 104), or online Science, Technology, Engineering, and Mathematics (STEM) educational courses (N = 44). We analyzed changes in pupil size and eye movement speed near event boundaries and employed inter-subject correlation analysis (ISC) and hidden Markov models (HMM) to identify patterns indicative of event segmentation. We observed that both the speed of eye movements and pupil size dynamically responded to event boundaries, exhibiting heightened sensitivity to high-strength boundaries. Our analyses further revealed that event boundaries synchronized eye movements across participants. These boundaries can be effectively identified by HMM, yielding higher within-event similarity values and aligned with human-annotated boundaries. Importantly, HMM-based event segmentation metrics responded to experimental manipulations and predicted learning outcomes. This study provided a comprehensive computational framework for measuring event segmentation using eye-tracking. With the widespread accessibility of low-cost eye-tracking devices, the ability to measure event segmentation from eye movement data promises to deepen our understanding of this process in diverse real-world settings. During naturalistic information processing, individuals spontaneously segment their continuous experiences into discrete events, a phenomenon known as event segmentation. Traditional methods for assessing this process, which include subjective reports and neuroimaging techniques, often disrupt real-time segmentation or are costly and time-intensive. Our study investigated the potential of measuring event segmentation by recording and analyzing eye movements while participants viewed naturalistic videos. We collected eye movement data from healthy young adults as they watched commercial films ( N = 104), or online Science, Technology, Engineering, and Mathematics (STEM) educational courses ( N = 44). We analyzed changes in pupil size and eye movement speed near event boundaries and employed inter-subject correlation analysis (ISC) and hidden Markov models (HMM) to identify patterns indicative of event segmentation. We observed that both the speed of eye movements and pupil size dynamically responded to event boundaries, exhibiting heightened sensitivity to high-strength boundaries. Our analyses further revealed that event boundaries synchronized eye movements across participants. These boundaries can be effectively identified by HMM, yielding higher within-event similarity values and aligned with human-annotated boundaries. Importantly, HMM-based event segmentation metrics responded to experimental manipulations and predicted learning outcomes. This study provided a comprehensive computational framework for measuring event segmentation using eye-tracking. With the widespread accessibility of low-cost eye-tracking devices, the ability to measure event segmentation from eye movement data promises to deepen our understanding of this process in diverse real-world settings. |
| ArticleNumber | 255 |
| Author | Chen, Zhengyue Li, Jiashen Hao, Xin Liu, Wei |
| Author_xml | – sequence: 1 givenname: Jiashen surname: Li fullname: Li, Jiashen organization: Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University – sequence: 2 givenname: Zhengyue surname: Chen fullname: Chen, Zhengyue organization: Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University – sequence: 3 givenname: Xin surname: Hao fullname: Hao, Xin email: psyhaoxin@ccnu.edu.cn organization: Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University – sequence: 4 givenname: Wei orcidid: 0000-0001-7291-0327 surname: Liu fullname: Liu, Wei email: weiliu1991@ccnu.edu.cn organization: Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40797057$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtvHCEMx1GVqnn1C_RQIfXSy6RgYGF6a6O8pFS9JGfEMJ4s6S6z5ZEq375sNn2ohx7ANvxssP-HZC_OEQl5w9mJ0Mp8yFxIMB0D1ZbuWSdfkAOulOyEArP3l79PDnO-Z0wY4PIV2ZdM95opfUCWn-caR5cCZhoiLUuk-Ij5I_2CLtfUogeMhWa8WzfrSpgjHWsK8Y5GV2pyq5BL8PQhjDjTH6745fau5u3eKtGSnP_WgmPycnKrjK-f7RG5PT-7Ob3srr9eXJ1-uu68AFO6UTPWC8Od036Yeg_etM4AYQAnR-CTNDAxgUNrpZ3IhevZAnAALaDX2okj8n5Xd5Pm7xVzseuQPa5WLuJcsxUges6V0dDQd_-g93NNsf2uUQstVa-UbtTbZ6oOaxztJoW1S4_21wwbADvApznnhNNvhDO7FcruhLJNKPsklJUtSeyS8mY7TEx_3v5P1k8ALJUr |
| Cites_doi | 10.1523/JNEUROSCI.0360-19.2019 10.1523/JNEUROSCI.0702-11.2011 10.1515/COMMUN.2006.022 10.3758/s13428-022-01832-5 10.1016/j.tics.2021.10.010 10.1016/0022-1031(88)90037-6 10.1016/j.neuron.2020.10.029 10.1038/s41467-020-17851-9 10.1016/j.neuron.2017.06.041 10.1038/ncomms5567 10.1038/s41467-021-22202-3 10.3167/proj.2008.020102 10.1016/j.bandc.2019.103621 10.1016/j.tics.2015.04.006 10.1038/nbt1004-1315 10.1037/a0015631 10.7554/eLife.77430 10.1038/nn.4450 10.1111/j.1551-6709.2011.01202.x 10.1016/j.cognition.2018.01.007 10.7554/eLife.64972 10.7554/eLife.69430 10.1177/0956797616682029 10.1016/j.cub.2017.09.057 10.1037/0096-3445.130.1.29 10.1016/j.neuroimage.2021.118085 10.3758/s13421-010-0027-2 10.3389/fpsyg.2018.00803 10.1037/pag0000615 10.3389/fnagi.2021.607219 10.1016/j.neuroimage.2014.02.004 10.1016/j.celrep.2021.109692 10.1073/pnas.2200257119 10.1037/0033-2909.127.1.3 10.1002/asi.20794 10.1038/s41593-020-0614-x 10.1038/nrn2573 10.1016/j.tics.2020.03.005 10.1016/j.cobeha.2019.12.014 10.1080/20445911.2020.1796685 10.1038/s41467-020-17713-4 10.1037/a0033558 10.1371/journal.pcbi.1007549 10.1093/pnasnexus/pgac020 10.1016/j.neuron.2007.12.009 10.1093/cercor/bhab258 10.1073/pnas.2309054121 10.1186/s41235-017-0080-5 10.1093/scan/nsz037 10.1016/S1071-5819(03)00017-X 10.1016/j.cub.2021.09.013 10.1523/JNEUROSCI.0524-18.2018 10.1038/88486 10.7554/eLife.70445 10.1037/0096-3445.118.2.136 10.3758/BF03193267 10.1093/cercor/bhad106 10.1146/annurev-psych-010419-051101 10.1167/16.2.5 10.1038/srep43083 10.1037/xlm0001150 10.1016/j.tics.2007.11.004 10.1126/science.1089506 10.1177/1420326X15626585 10.1038/s41467-019-12048-1 10.1037/xlm0000367 10.1073/pnas.2016980118 10.1038/srep43293 10.1037/pag0000773 |
| ContentType | Journal Article |
| Copyright | The Psychonomic Society, Inc. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2025. The Psychonomic Society, Inc. The Psychonomic Society, Inc. 2025. |
| Copyright_xml | – notice: The Psychonomic Society, Inc. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2025. The Psychonomic Society, Inc. – notice: The Psychonomic Society, Inc. 2025. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 4T- 7TK K9. 7X8 |
| DOI | 10.3758/s13428-025-02790-4 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Docstoc Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Docstoc MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology Mathematics |
| EISSN | 1554-3528 |
| ExternalDocumentID | 40797057 10_3758_s13428_025_02790_4 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -ET -~X 06D 0R~ 0VY 199 1N0 203 23N 2J2 2JN 2JY 2KG 2KM 2LR 30V 4.4 406 408 40E 53G 5GY 8TC 8UJ 95. 96X AABHQ AACDK AAHNG AAJBT AAJKR AAKPC AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH AAZMS ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABIVO ABJNI ABJOX ABKCH ABMQK ABNWP ABPLI ABPPZ ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHQT ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACPIV ACPRK ACSTC ACZOJ ADBBV ADHHG ADHIR ADKNI ADKPE ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYQZM AZFZN B-. BAWUL BENPR BGNMA CSCUP DDRTE DIK DNIVK DPUIP E3Z EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC GGCAI GGRSB GJIRD GNWQR GQ7 GUQSH HF~ HMJXF HRMNR HVGLF IAO IKXTQ ITM IWAJR J-C JBSCW JZLTJ KOV LLZTM M2O M4Y N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9J OK1 P2P P9L PF- PT4 R9I ROL RPV RSV S16 S1Z S27 S3B SBS SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TN5 TR2 TSG TUC TUS U2A U9L UG4 UOJIU UPT UTJUX W48 WH7 WK8 XSW ZMTXR ZOVNA ZUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 4T- 7TK K9. 7X8 |
| ID | FETCH-LOGICAL-c328t-d7009381aa7cbf9c2c87902e2b2a4d21f482f03eb3822a446a9062eb2732977a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001548409700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1554-3528 |
| IngestDate | Thu Oct 02 21:51:29 EDT 2025 Fri Nov 14 03:52:32 EST 2025 Wed Sep 17 01:48:35 EDT 2025 Sat Nov 29 07:31:53 EST 2025 Tue Sep 16 01:15:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Inter-subject correlation analysis Hidden Markov model Event segmentation Naturalistic information processing Eye tracking |
| Language | English |
| License | 2025. The Psychonomic Society, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-d7009381aa7cbf9c2c87902e2b2a4d21f482f03eb3822a446a9062eb2732977a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7291-0327 |
| PMID | 40797057 |
| PQID | 3267459557 |
| PQPubID | 976348 |
| ParticipantIDs | proquest_miscellaneous_3239115872 proquest_journals_3267459557 pubmed_primary_40797057 crossref_primary_10_3758_s13428_025_02790_4 springer_journals_10_3758_s13428_025_02790_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-12 |
| PublicationDateYYYYMMDD | 2025-08-12 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Behavior research methods |
| PublicationTitleAbbrev | Behav Res |
| PublicationTitleAlternate | Behav Res Methods |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | W Liu (2790_CR40) 2022; 32 JP Hutson (2790_CR31) 2017; 2 GD Lassiter (2790_CR38) 1988; 24 JP Dmochowski (2790_CR16) 2014; 5 C Gu (2790_CR23) 2024 J Madsen (2790_CR44) 2022 JP Magliano (2790_CR45) 2020; 32 M Faber (2790_CR19) 2018; 173 R Masís-Obando (2790_CR47) 2022 S Flores (2790_CR20) 2017; 43 CS Lee (2790_CR39) 2021 S Joshi (2790_CR32) 2020; 24 ME Smith (2790_CR59) 2024; 39 EE Davis (2790_CR14) 2021; 36 M Silva (2790_CR58) 2019; 39 CA Kurby (2790_CR35) 2008; 12 M Meshulam (2790_CR48) 2021; 12 M Kumar (2790_CR34) 2020; 16 SS Cohen (2790_CR11) 2022 SR Eddy (2790_CR17) 2004; 22 H-J Bucher (2790_CR7) 2006; 31 JM Zacks (2790_CR67) 2001; 127 R Bianco (2790_CR6) 2020; 138 J Madsen (2790_CR43) 2021 S Zhao (2790_CR69) 2019; 10 CA Kurby (2790_CR36) 2011; 39 C Sun (2790_CR61) 2020; 23 K Lankinen (2790_CR37) 2014; 92 C Baldassano (2790_CR2) 2017; 95 M Huff (2790_CR30) 2017; 7 P Pérez (2790_CR51) 2021; 36 KM Swallow (2790_CR62) 2009; 138 A Ben-Yakov (2790_CR3) 2011; 31 KA Dalrymple (2790_CR13) 2018 SJ Sara (2790_CR55) 2009; 10 O Raccah (2790_CR52) 2023; 49 JM Zacks (2790_CR65) 2020; 71 J Chen (2790_CR8) 2017; 20 TS Yates (2790_CR63) 2022 JE Kragel (2790_CR33) 2022; 26 T Partala (2790_CR50) 2003; 59 Y Liu (2790_CR41) 2017; 7 J-H Choi (2790_CR9) 2017; 26 D Clewett (2790_CR10) 2020; 11 U Hasson (2790_CR27) 2008; 57 JP Magliano (2790_CR46) 2011; 35 R Davis (2790_CR15) 2021 U Hasson (2790_CR26) 2015; 19 JM Zacks (2790_CR68) 2001; 130 L Geerligs (2790_CR21) 2022 C Hanson (2790_CR24) 1989; 118 A Ben-Yakov (2790_CR5) 2018; 38 JM Zacks (2790_CR66) 2001; 4 U Hasson (2790_CR29) 2004; 303 ML Eisenberg (2790_CR18) 2016; 16 U Hasson (2790_CR28) 2008; 2 Y Yeshurun (2790_CR64) 2017; 28 BI Cohn-Sheehy (2790_CR12) 2021; 31 L Lorigo (2790_CR42) 2008; 59 SA Nastase (2790_CR49) 2019 K Sasmita (2790_CR56) 2022; 55 L Geerligs (2790_CR22) 2021; 236 ZM Reagh (2790_CR53) 2020; 11 JD Ryan (2790_CR54) 2020; 32 C Sava-Segal (2790_CR57) 2023; 33 BM Hard (2790_CR25) 2006; 34 JW Antony (2790_CR1) 2021; 109 I Sols (2790_CR60) 2017; 27 A Ben-Yakov (2790_CR4) 2013; 142 |
| References_xml | – volume: 39 start-page: 8538 issue: 43 year: 2019 ident: 2790_CR58 publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.0360-19.2019 – volume: 31 start-page: 9032 issue: 24 year: 2011 ident: 2790_CR3 publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.0702-11.2011 – volume: 31 start-page: 347 issue: 3 year: 2006 ident: 2790_CR7 publication-title: Comm doi: 10.1515/COMMUN.2006.022 – volume: 55 start-page: 428 issue: 1 year: 2022 ident: 2790_CR56 publication-title: Behavior Research Methods doi: 10.3758/s13428-022-01832-5 – volume: 26 start-page: 53 issue: 1 year: 2022 ident: 2790_CR33 publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2021.10.010 – volume: 24 start-page: 222 issue: 3 year: 1988 ident: 2790_CR38 publication-title: Journal of Experimental Social Psychology doi: 10.1016/0022-1031(88)90037-6 – volume: 109 start-page: 377 issue: 2 year: 2021 ident: 2790_CR1 publication-title: Neuron doi: 10.1016/j.neuron.2020.10.029 – volume: 11 issue: 1 year: 2020 ident: 2790_CR10 publication-title: Nature Communications doi: 10.1038/s41467-020-17851-9 – volume: 95 start-page: 709 issue: 3 year: 2017 ident: 2790_CR2 publication-title: Neuron doi: 10.1016/j.neuron.2017.06.041 – volume: 5 issue: 1 year: 2014 ident: 2790_CR16 publication-title: Nature Communications doi: 10.1038/ncomms5567 – volume: 12 start-page: 1922 issue: 1 year: 2021 ident: 2790_CR48 publication-title: Nature Communications doi: 10.1038/s41467-021-22202-3 – volume: 2 start-page: 1 issue: 1 year: 2008 ident: 2790_CR28 publication-title: Projections doi: 10.3167/proj.2008.020102 – volume: 138 year: 2020 ident: 2790_CR6 publication-title: Brain and Cognition doi: 10.1016/j.bandc.2019.103621 – volume: 19 start-page: 304 issue: 6 year: 2015 ident: 2790_CR26 publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2015.04.006 – volume: 22 start-page: 1315 issue: 10 year: 2004 ident: 2790_CR17 publication-title: Nature Biotechnology doi: 10.1038/nbt1004-1315 – volume: 138 start-page: 236 issue: 2 year: 2009 ident: 2790_CR62 publication-title: Journal of Experimental Psychology: General doi: 10.1037/a0015631 – year: 2022 ident: 2790_CR21 publication-title: eLife doi: 10.7554/eLife.77430 – volume: 20 start-page: 115 issue: 1 year: 2017 ident: 2790_CR8 publication-title: Nature Neuroscience doi: 10.1038/nn.4450 – volume: 35 start-page: 1489 issue: 8 year: 2011 ident: 2790_CR46 publication-title: Cognitive Science doi: 10.1111/j.1551-6709.2011.01202.x – volume: 173 start-page: 133 year: 2018 ident: 2790_CR19 publication-title: Cognition doi: 10.1016/j.cognition.2018.01.007 – year: 2021 ident: 2790_CR39 publication-title: eLife doi: 10.7554/eLife.64972 – year: 2022 ident: 2790_CR11 publication-title: eLife doi: 10.7554/eLife.69430 – volume: 28 start-page: 307 issue: 3 year: 2017 ident: 2790_CR64 publication-title: Psychological Science doi: 10.1177/0956797616682029 – volume: 27 start-page: 3499 issue: 22 year: 2017 ident: 2790_CR60 publication-title: Current Biology doi: 10.1016/j.cub.2017.09.057 – volume: 130 start-page: 29 issue: 1 year: 2001 ident: 2790_CR68 publication-title: Journal of Experimental Psychology: General doi: 10.1037/0096-3445.130.1.29 – volume: 236 year: 2021 ident: 2790_CR22 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.118085 – volume: 39 start-page: 75 issue: 1 year: 2011 ident: 2790_CR36 publication-title: Memory & Cognition doi: 10.3758/s13421-010-0027-2 – year: 2018 ident: 2790_CR13 publication-title: Frontiers in Psychology doi: 10.3389/fpsyg.2018.00803 – volume: 36 start-page: 604 issue: 5 year: 2021 ident: 2790_CR14 publication-title: Psychology and Aging doi: 10.1037/pag0000615 – year: 2021 ident: 2790_CR15 publication-title: Frontiers in Aging Neuroscience doi: 10.3389/fnagi.2021.607219 – volume: 92 start-page: 217 year: 2014 ident: 2790_CR37 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.02.004 – volume: 36 issue: 11 year: 2021 ident: 2790_CR51 publication-title: Cell Reports doi: 10.1016/j.celrep.2021.109692 – year: 2022 ident: 2790_CR63 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.2200257119 – volume: 127 start-page: 3 issue: 1 year: 2001 ident: 2790_CR67 publication-title: Psychological Bulletin doi: 10.1037/0033-2909.127.1.3 – volume: 59 start-page: 1041 issue: 7 year: 2008 ident: 2790_CR42 publication-title: Journal of the American Society for Information Science and Technology doi: 10.1002/asi.20794 – volume: 23 start-page: 651 issue: 5 year: 2020 ident: 2790_CR61 publication-title: Nature Neuroscience doi: 10.1038/s41593-020-0614-x – volume: 10 start-page: 211 issue: 3 year: 2009 ident: 2790_CR55 publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn2573 – volume: 24 start-page: 466 issue: 6 year: 2020 ident: 2790_CR32 publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2020.03.005 – volume: 32 start-page: 1 year: 2020 ident: 2790_CR54 publication-title: Current Opinion in Behavioral Sciences doi: 10.1016/j.cobeha.2019.12.014 – volume: 32 start-page: 506 issue: 5–6 year: 2020 ident: 2790_CR45 publication-title: Journal of Cognitive Psychology doi: 10.1080/20445911.2020.1796685 – volume: 11 start-page: 3980 issue: 1 year: 2020 ident: 2790_CR53 publication-title: Nature Communications doi: 10.1038/s41467-020-17713-4 – volume: 142 start-page: 1255 issue: 4 year: 2013 ident: 2790_CR4 publication-title: Journal of Experimental Psychology: General doi: 10.1037/a0033558 – volume: 16 issue: 1 year: 2020 ident: 2790_CR34 publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1007549 – year: 2022 ident: 2790_CR44 publication-title: PNAS Nexus doi: 10.1093/pnasnexus/pgac020 – volume: 57 start-page: 452 issue: 3 year: 2008 ident: 2790_CR27 publication-title: Neuron doi: 10.1016/j.neuron.2007.12.009 – volume: 32 start-page: 949 issue: 5 year: 2022 ident: 2790_CR40 publication-title: Cerebral Cortex doi: 10.1093/cercor/bhab258 – year: 2024 ident: 2790_CR23 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.2309054121 – volume: 2 issue: 1 year: 2017 ident: 2790_CR31 publication-title: Cognitive Research: Principles and Implications doi: 10.1186/s41235-017-0080-5 – year: 2019 ident: 2790_CR49 publication-title: Social Cognitive and Affective Neuroscience doi: 10.1093/scan/nsz037 – volume: 59 start-page: 185 issue: 1–2 year: 2003 ident: 2790_CR50 publication-title: International Journal of Human-Computer Studies doi: 10.1016/S1071-5819(03)00017-X – volume: 31 start-page: 4935 issue: 22 year: 2021 ident: 2790_CR12 publication-title: Current Biology doi: 10.1016/j.cub.2021.09.013 – volume: 38 start-page: 10057 issue: 47 year: 2018 ident: 2790_CR5 publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.0524-18.2018 – volume: 4 start-page: 651 issue: 6 year: 2001 ident: 2790_CR66 publication-title: Nature Neuroscience doi: 10.1038/88486 – year: 2022 ident: 2790_CR47 publication-title: eLife doi: 10.7554/eLife.70445 – volume: 118 start-page: 136 issue: 2 year: 1989 ident: 2790_CR24 publication-title: Journal of Experimental Psychology: General doi: 10.1037/0096-3445.118.2.136 – volume: 34 start-page: 1221 issue: 6 year: 2006 ident: 2790_CR25 publication-title: Memory & Cognition doi: 10.3758/BF03193267 – volume: 33 start-page: 8164 issue: 13 year: 2023 ident: 2790_CR57 publication-title: Cerebral Cortex doi: 10.1093/cercor/bhad106 – volume: 71 start-page: 165 issue: 1 year: 2020 ident: 2790_CR65 publication-title: Annual Review of Psychology doi: 10.1146/annurev-psych-010419-051101 – volume: 16 issue: 2 year: 2016 ident: 2790_CR18 publication-title: Journal of Vision doi: 10.1167/16.2.5 – volume: 7 start-page: 43083 issue: 1 year: 2017 ident: 2790_CR30 publication-title: Scientific Reports doi: 10.1038/srep43083 – volume: 49 start-page: 1494 issue: 9 year: 2023 ident: 2790_CR52 publication-title: Journal of Experimental Psychology: Learning, Memory, and Cognition doi: 10.1037/xlm0001150 – volume: 12 start-page: 72 issue: 2 year: 2008 ident: 2790_CR35 publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2007.11.004 – volume: 303 start-page: 1634 issue: 5664 year: 2004 ident: 2790_CR29 publication-title: Science doi: 10.1126/science.1089506 – volume: 26 start-page: 488 issue: 4 year: 2017 ident: 2790_CR9 publication-title: Indoor and Built Environment doi: 10.1177/1420326X15626585 – volume: 10 start-page: 4030 issue: 1 year: 2019 ident: 2790_CR69 publication-title: Nature Communications doi: 10.1038/s41467-019-12048-1 – volume: 43 start-page: 1183 issue: 8 year: 2017 ident: 2790_CR20 publication-title: Journal of Experimental Psychology: Learning, Memory, and Cognition doi: 10.1037/xlm0000367 – year: 2021 ident: 2790_CR43 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.2016980118 – volume: 7 start-page: 43293 issue: 1 year: 2017 ident: 2790_CR41 publication-title: Scientific Reports doi: 10.1038/srep43293 – volume: 39 start-page: 180 issue: 2 year: 2024 ident: 2790_CR59 publication-title: Psychology and Aging doi: 10.1037/pag0000773 |
| SSID | ssj0038214 |
| Score | 2.4559987 |
| Snippet | During naturalistic information processing, individuals spontaneously segment their continuous experiences into discrete events, a phenomenon known as event... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 255 |
| SubjectTerms | Access Adult Adults Behavior Behavioral Science and Psychology Boundaries Cognitive Psychology Correlation analysis Distance learning Eye movements Eye Movements - physiology Eye tracking Eye-Tracking Technology Female Humans Information processing Investigations Learning outcomes Male Marking and tracking techniques Markov analysis Markov Chains Mathematical models Mathematics Medical imaging Memory Neuroimaging Neurosciences Original Manuscript Psychology Pupil - physiology Science and technology Segmentation Students Subjectivity Tracking Young Adult Young adults |
| Title | Boundaries in the eyes: Measure event segmentation during naturalistic video watching using eye tracking |
| URI | https://link.springer.com/article/10.3758/s13428-025-02790-4 https://www.ncbi.nlm.nih.gov/pubmed/40797057 https://www.proquest.com/docview/3267459557 https://www.proquest.com/docview/3239115872 |
| Volume | 57 |
| WOSCitedRecordID | wos001548409700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1554-3528 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038214 issn: 1554-3528 databaseCode: RSV dateStart: 20050201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HbjwfoyXgsQNKtYkXVJugJg4wIR4TLtVaZYCBzq0DhD_Hjtth9DEAc5N3MhxnO-LYwfgoI82keqMYoYpEpSoKYM0DRHImZawKmrF0r912L1SnY7u9eKbKimsqG-71yFJ76mJVyKoPS5CIamaMqeMYhU3AzkNs7jdaVqOt3fd2v8KzUNZpsf80u_nFjSBKydion6raS_-b5BLsFBBS3Za2sIyTLl8BebHHu5zFZ7O_CNKxI7Zc84Q-zH36YoTdl2eFDJfzokV7vGlSknKWZnHyHwBUCqWiMIZ5e4N2Ad6cTq_YnR3_pEksdHQWDp7X4OH9sX9-WVQPbUQWMH1KOgrOtrQoTHKpllsudU4eu54yo3s8zCTmmdNgcwbAYVBCmmovjGyciU4Ikgj1mEmH-RuE5gN0zSOM5kZxGrKCSo42M9ExltKGstbDTistZ-8lhU1EmQipL6kVF-C6ku8-hLZgJ16gpJqdRWJIFlRHEWqAfvjz7guKNhhcjd4ozYC_XikFW_ARjmx498hiY1Vk3of1bP4Lfz3sWz9rfk2zHNvCEjT-Q7MjIZvbhfm7PvouRjuwbTq6T1vuV_sKOg4 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8xmDRegH0AHR8zEm8sorGdOuGNIaoiSoU2QH2zHNcpPJCipoD63-_OSTqhqg_jObZjnc_n3-_OdwY4HKBOpHFGMcMUCUrUlEGahgjkTEtYFbUS6d86vOuqXi_u95PrKimsqG-71yFJb6mJVyKoPS5CIamaMqeMYpU0A_kBViSeWHSR7_efu9r-ipiHskyPWdDv7RE0hyvnYqL-qGmvv2-SG7BWQUt2WurCZ1hy-RdYnVm46Ve4_-UfUSJ2zB5yhtiPuakrTthV6SlkvpwTK9zwsUpJylmZx8h8AVAqloiDM8rdG7FXtOLkv2J0d35II7HJ2FjyvX-D2_b5zVknqJ5aCKzg8SQYKHJtxKExyqZZYrmNcfbc8ZQbOeBhJmOeNQUybwQUBimkofrGyMqV4IggjdiE5XyUu21gNkzTJMlkZhCrKSeo4OAgExlvKWksbzXgqJa-fioramhkIiQ-XYpPo_i0F5-WDditF0hXu6vQgsaKkihSDTiYfcZ9QcEOk7vRM7URaMejWPEGbJULO_sdkthENan3z3oV_w2-eC7f_6_5D_jUubnq6u5F73IHVrlXCqTsfBeWJ-Nntwcf7cvkoRjve_39C16a6jQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xUsWlPFpgebSuxK2N2NjOOuHGa9UKukKCIm6W49jAgSzaBCr-PTPOZqFCHCrOsSfWzHg839gzA7BdoE7kqac7wxwBStKVUZ7H6MiZnrAq6WUy9Dq8OFGDQXp5mZ2-yOIPr93bK8kmp4GqNJX1zl3haYsLdHB3qlhIqqzMKbtYZd1ITsOspKZBhNfPLlpbLFIeyyZV5o15_x5Hr3zMV_ej4djpL7x_wYvwcexysr1GR5ZgypXLMD-xfI-f4Ho_NFci1MxuSoY-IXOPrtplv5sIIgtlnljlrm7HqUola_IbWSgMSkUUkTijnL4h-4vWneJajN7UXxElVo-MpZj8Z_jTPzo_-BmNWzBEVvC0jgpFIY80NkbZ3GeW2xRXzx3PuZEFj71Mue8KROToaBiElobqHiNaV4KjZ2nECsyUw9KtAbNxnmeZl96gD6ecoEKEhRee95Q0lvc68L2VhL5rKm1oRCjEPt2wTyP7dGCflh3YbIWlx7uu0oJoJVmSqA58m3zG_UKXIKZ0w3saI9C-J6niHVhthDz5HYLbTHVp9o9Wos_E317L-v8N_wofTg_7-uTX4HgD5nnQCUTyfBNm6tG924I5-1DfVKMvQZWfAKtt8xg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boundaries+in+the+eyes%3A+Measure+event+segmentation+during+naturalistic+video+watching+using+eye+tracking&rft.jtitle=Behavior+research+methods&rft.au=Li%2C+Jiashen&rft.au=Chen%2C+Zhengyue&rft.au=Hao%2C+Xin&rft.au=Liu%2C+Wei&rft.date=2025-08-12&rft.eissn=1554-3528&rft.volume=57&rft.issue=9&rft.spage=255&rft_id=info:doi/10.3758%2Fs13428-025-02790-4&rft_id=info%3Apmid%2F40797057&rft.externalDocID=40797057 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-3528&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-3528&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-3528&client=summon |