A deep learning model for process fault prognosis

Early fault detection and fault prognosis are crucial functions to ensure safe process operations. Fault prognosis can detect and isolate early developing faults as well as predict fault propagation. To promptly detect potential faults in process systems, it is important to examine the fault symptom...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Process safety and environmental protection Ročník 154; s. 467 - 479
Hlavní autoři: Arunthavanathan, Rajeevan, Khan, Faisal, Ahmed, Salim, Imtiaz, Syed
Médium: Journal Article
Jazyk:angličtina
Vydáno: Rugby Elsevier B.V 01.10.2021
Elsevier Science Ltd
Témata:
ISSN:0957-5820, 1744-3598
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Early fault detection and fault prognosis are crucial functions to ensure safe process operations. Fault prognosis can detect and isolate early developing faults as well as predict fault propagation. To promptly detect potential faults in process systems, it is important to examine the fault symptoms as early as possible. In recent years, fault prognosis approaches have led to the remaining useful life prediction. Therefore, in a process system, advancing prognosis approaches will be beneficial for early fault detection in terms of process safety, and to predict the remaining useful life, targeting the system's reliability. In data-driven models, early fault detection is regarded as a time-dependent sequence learning problem; the future data sequence is predicted using the previous data pattern. Studying recent years' research shows that a recurrent neural network (RNN) can solve the sequence learning problem. This paper proposes an early potential fault detection approach by examining the fault symptoms in multivariate complex process systems. The proposed model has been developed using the Convolutional Neural Network (CNN)- Long Short-Term Memory (LSTM) approach to forecast the system parameters for future sampling windows' recognition and an unsupervised One-class-SVM used for fault symptoms' detection using forecasted data window. The performance of the proposed method is assessed using Tennessee Eastman process time-series data. The results confirm that the proposed method effectively detects potential fault conditions in multivariate dynamic systems by detecting the fault symptoms early as possible.
AbstractList Early fault detection and fault prognosis are crucial functions to ensure safe process operations. Fault prognosis can detect and isolate early developing faults as well as predict fault propagation. To promptly detect potential faults in process systems, it is important to examine the fault symptoms as early as possible. In recent years, fault prognosis approaches have led to the remaining useful life prediction. Therefore, in a process system, advancing prognosis approaches will be beneficial for early fault detection in terms of process safety, and to predict the remaining useful life, targeting the system's reliability. In data-driven models, early fault detection is regarded as a time-dependent sequence learning problem; the future data sequence is predicted using the previous data pattern. Studying recent years' research shows that a recurrent neural network (RNN) can solve the sequence learning problem. This paper proposes an early potential fault detection approach by examining the fault symptoms in multivariate complex process systems. The proposed model has been developed using the Convolutional Neural Network (CNN)- Long Short-Term Memory (LSTM) approach to forecast the system parameters for future sampling windows' recognition and an unsupervised One-class-SVM used for fault symptoms' detection using forecasted data window. The performance of the proposed method is assessed using Tennessee Eastman process time-series data. The results confirm that the proposed method effectively detects potential fault conditions in multivariate dynamic systems by detecting the fault symptoms early as possible.
Author Imtiaz, Syed
Khan, Faisal
Ahmed, Salim
Arunthavanathan, Rajeevan
Author_xml – sequence: 1
  givenname: Rajeevan
  surname: Arunthavanathan
  fullname: Arunthavanathan, Rajeevan
  organization: Centre for Risk, Integrity, and Safety Engineering (C-RISE), Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's NL, A1B 3X5, Canada
– sequence: 2
  givenname: Faisal
  orcidid: 0000-0002-5638-4299
  surname: Khan
  fullname: Khan, Faisal
  email: fikhan@mun.ca, fikhan@tamu.edu
  organization: Centre for Risk, Integrity, and Safety Engineering (C-RISE), Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's NL, A1B 3X5, Canada
– sequence: 3
  givenname: Salim
  surname: Ahmed
  fullname: Ahmed, Salim
  organization: Centre for Risk, Integrity, and Safety Engineering (C-RISE), Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's NL, A1B 3X5, Canada
– sequence: 4
  givenname: Syed
  surname: Imtiaz
  fullname: Imtiaz, Syed
  organization: Centre for Risk, Integrity, and Safety Engineering (C-RISE), Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's NL, A1B 3X5, Canada
BookMark eNp9kE1rwzAMhs3oYG23P7BTYOdksuykCexSyr6gsMt2No6tFIc0zux0sH-_hO60w9BBCN5HQs-KLXrfE2O3HDIOvLhvsyHSkCEgz6DMAPGCLflGylTkVblgS6jyTZqXCFdsFWMLABw3fMn4NrFEQ9KRDr3rD8nRW-qSxodkCN5QjEmjT904T4feRxev2WWju0g3v33NPp4e33cv6f7t-XW33adGYDmmtrBaWBSVJl0ggKxLKREFmpxPVfESpZUNt0Vdk8CCy2aKoRZYN9bUlVizu_Pe6fLnieKoWn8K_XRSYQEgZCVATCk8p0zwMQZq1BDcUYdvxUHNalSrZjVqVqOgVJOaCSr_QMaNenS-H4N23f_owxml6fUvR0FF46g3ZF0gMyrr3X_4D_YTf7A
CitedBy_id crossref_primary_10_1016_j_psep_2024_12_068
crossref_primary_10_1016_j_jii_2023_100490
crossref_primary_10_1016_j_psep_2024_12_066
crossref_primary_10_1016_j_compchemeng_2025_109394
crossref_primary_10_1016_j_psep_2022_03_023
crossref_primary_10_3390_pr10030435
crossref_primary_10_1016_j_psep_2025_107156
crossref_primary_10_1016_j_psep_2023_05_025
crossref_primary_10_1016_j_psep_2025_107438
crossref_primary_10_1016_j_eswa_2023_121434
crossref_primary_10_1016_j_psep_2024_06_082
crossref_primary_10_1016_j_compchemeng_2024_108855
crossref_primary_10_1016_j_psep_2024_08_115
crossref_primary_10_1016_j_psep_2024_06_122
crossref_primary_10_1016_j_pnucene_2025_106038
crossref_primary_10_3390_electronics12020312
crossref_primary_10_1108_BPMJ_07_2021_0484
crossref_primary_10_1016_j_compind_2022_103771
crossref_primary_10_1016_j_psep_2023_06_004
crossref_primary_10_1016_j_ssci_2023_106381
crossref_primary_10_3390_pr12071432
crossref_primary_10_1007_s11063_024_11577_1
crossref_primary_10_1016_j_psep_2025_106871
crossref_primary_10_1016_j_psep_2023_02_078
crossref_primary_10_1016_j_psep_2023_02_079
crossref_primary_10_1016_j_psep_2024_10_075
crossref_primary_10_1016_j_ress_2022_109079
crossref_primary_10_1016_j_jprocont_2022_01_002
crossref_primary_10_1109_TASE_2023_3325565
crossref_primary_10_1007_s41872_025_00341_6
crossref_primary_10_1007_s11814_025_00524_y
crossref_primary_10_1016_j_psep_2023_01_077
crossref_primary_10_1016_j_psep_2023_04_007
crossref_primary_10_1016_j_psep_2022_07_019
crossref_primary_10_1016_j_psep_2022_12_047
crossref_primary_10_1109_JSYST_2022_3205179
crossref_primary_10_1016_j_oceaneng_2022_112455
crossref_primary_10_1016_j_petrol_2021_109817
crossref_primary_10_3390_s23198096
crossref_primary_10_1016_j_psep_2024_03_001
crossref_primary_10_1016_j_psep_2025_107385
crossref_primary_10_1016_j_psep_2025_107781
crossref_primary_10_1016_j_jlp_2023_105185
crossref_primary_10_26599_BDMA_2023_9020002
crossref_primary_10_1016_j_psep_2024_04_012
crossref_primary_10_1016_j_compchemeng_2023_108359
crossref_primary_10_1016_j_engappai_2025_111218
crossref_primary_10_1002_cjce_24961
crossref_primary_10_1016_j_dche_2025_100227
crossref_primary_10_3390_e27070736
crossref_primary_10_1016_j_psep_2023_12_071
crossref_primary_10_1016_j_psep_2024_11_057
crossref_primary_10_1016_j_psep_2025_107272
crossref_primary_10_1016_j_psep_2024_09_033
crossref_primary_10_1016_j_psep_2022_05_012
crossref_primary_10_1016_j_cherd_2025_07_041
crossref_primary_10_1016_j_engappai_2024_108046
crossref_primary_10_1016_j_cherd_2022_06_029
crossref_primary_10_1016_j_compchemeng_2023_108346
crossref_primary_10_1016_j_psep_2025_107704
crossref_primary_10_1002_cjce_25701
crossref_primary_10_1109_JSEN_2022_3233585
crossref_primary_10_1016_j_psep_2022_05_073
crossref_primary_10_1016_j_ces_2024_120699
crossref_primary_10_1016_j_psep_2024_07_086
crossref_primary_10_1016_j_psep_2023_02_023
crossref_primary_10_1007_s12572_023_00327_6
crossref_primary_10_1016_j_psep_2023_07_083
crossref_primary_10_1016_j_psep_2025_106942
crossref_primary_10_1016_j_psep_2022_12_018
crossref_primary_10_1016_j_rsase_2023_101117
crossref_primary_10_1016_j_psep_2022_11_062
crossref_primary_10_1109_ACCESS_2023_3334012
crossref_primary_10_1109_TIM_2024_3480200
crossref_primary_10_1109_JIOT_2022_3230945
crossref_primary_10_1016_j_psep_2022_04_039
crossref_primary_10_1016_j_psep_2022_10_086
crossref_primary_10_2118_215831_PA
crossref_primary_10_1016_j_psep_2022_01_062
crossref_primary_10_1016_j_psep_2025_107883
crossref_primary_10_1016_j_psep_2025_107885
crossref_primary_10_1016_j_petsci_2025_04_006
crossref_primary_10_1016_j_psep_2025_107400
crossref_primary_10_1016_j_psep_2025_107884
crossref_primary_10_1016_j_psep_2022_11_076
crossref_primary_10_1016_j_psep_2023_07_094
crossref_primary_10_1016_j_psep_2023_11_055
crossref_primary_10_1016_j_psep_2025_106834
crossref_primary_10_1002_cjce_25206
crossref_primary_10_1016_j_psep_2023_04_020
crossref_primary_10_1002_cjce_25460
crossref_primary_10_3390_pr11061608
crossref_primary_10_1002_cjce_24770
crossref_primary_10_1016_j_asoc_2022_109427
crossref_primary_10_1016_j_psep_2024_11_086
crossref_primary_10_1108_RIA_03_2024_0061
crossref_primary_10_1016_j_apenergy_2023_121030
crossref_primary_10_1016_j_psep_2025_107066
crossref_primary_10_1016_j_psep_2024_05_125
crossref_primary_10_1016_j_psep_2024_10_043
crossref_primary_10_1016_j_psep_2025_107579
crossref_primary_10_1016_j_psep_2025_107578
crossref_primary_10_1016_j_psep_2025_107217
crossref_primary_10_3390_pr12122824
crossref_primary_10_1016_j_psep_2024_06_060
crossref_primary_10_1016_j_wear_2023_204793
crossref_primary_10_1016_j_psep_2022_06_003
crossref_primary_10_1016_j_psep_2022_09_039
crossref_primary_10_1002_cjce_25350
crossref_primary_10_3390_pr12112589
crossref_primary_10_1016_j_psep_2024_09_114
crossref_primary_10_1016_j_ces_2024_120565
crossref_primary_10_1016_j_psep_2024_05_143
crossref_primary_10_1016_j_psep_2024_09_079
crossref_primary_10_1016_j_psep_2021_11_034
crossref_primary_10_1016_j_compchemeng_2023_108386
crossref_primary_10_1016_j_compchemeng_2024_108600
crossref_primary_10_1016_j_psep_2025_107468
crossref_primary_10_1016_j_psep_2023_02_058
crossref_primary_10_1016_j_cjche_2025_05_020
crossref_primary_10_1016_j_oceaneng_2023_114318
crossref_primary_10_1016_j_ces_2023_118900
Cites_doi 10.1016/j.jprocont.2009.07.011
10.1021/acs.iecr.9b00524
10.1162/neco.1997.9.8.1735
10.1109/TIE.2015.2417501
10.3390/s19214612
10.1016/j.ress.2017.11.021
10.1109/ACCESS.2020.2971348
10.1016/j.compchemeng.2019.106697
10.1016/j.isatra.2019.07.001
10.1016/j.neucom.2018.06.078
10.1002/aic.16497
10.1016/j.ress.2021.107646
10.1016/j.engappai.2019.09.002
10.1016/0098-1354(88)87015-7
10.1016/0005-1098(93)90090-G
10.1109/TNNLS.2016.2582798
10.1109/ACCESS.2018.2794765
10.1016/j.bspc.2018.08.035
10.1016/j.compchemeng.2020.107197
10.1016/j.jprocont.2020.06.005
10.1016/0098-1354(93)80018-I
10.1016/j.ymssp.2017.01.050
10.1016/j.compind.2019.103182
10.1109/TII.2018.2866549
ContentType Journal Article
Copyright 2021 Institution of Chemical Engineers
Copyright Elsevier Science Ltd. Oct 2021
Copyright_xml – notice: 2021 Institution of Chemical Engineers
– notice: Copyright Elsevier Science Ltd. Oct 2021
DBID AAYXX
CITATION
7ST
7TB
7U7
8FD
C1K
FR3
KR7
SOI
DOI 10.1016/j.psep.2021.08.022
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Toxicology Abstracts
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1744-3598
EndPage 479
ExternalDocumentID 10_1016_j_psep_2021_08_022
S0957582021004481
GroupedDBID --K
--M
-QF
.~1
0R~
123
1B1
1~.
1~5
3EH
4.4
457
4G.
4P2
53G
5VS
7-5
71M
8P~
8WZ
A6W
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHIDL
AHPOS
AIAGR
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CAG
COF
CS3
DU5
EBS
EDH
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
I-F
IHE
J1W
JARJE
KCYFY
KOM
M41
ML.
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SJN
SPC
SPCBC
SSG
SSJ
SSR
SSZ
T5K
UNMZH
XFK
ZE2
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMLS
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BANNL
CITATION
EFKBS
~HD
7ST
7TB
7U7
8FD
AGCQF
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-c328t-d6da3d239aea62004b8442232c5151591824d4f1d6bbe32614f6202a32bfdcb93
ISICitedReferencesCount 131
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704392700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-5820
IngestDate Wed Aug 13 09:50:10 EDT 2025
Sat Nov 29 07:05:40 EST 2025
Tue Nov 18 22:00:43 EST 2025
Fri Feb 23 02:42:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Process safety
Data-driven model
LSTM model
Fault prognosis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-d6da3d239aea62004b8442232c5151591824d4f1d6bbe32614f6202a32bfdcb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5638-4299
PQID 2600349303
PQPubID 2047550
PageCount 13
ParticipantIDs proquest_journals_2600349303
crossref_primary_10_1016_j_psep_2021_08_022
crossref_citationtrail_10_1016_j_psep_2021_08_022
elsevier_sciencedirect_doi_10_1016_j_psep_2021_08_022
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace Rugby
PublicationPlace_xml – name: Rugby
PublicationTitle Process safety and environmental protection
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Arunthavanathan, Khan, Ahmed, Imtiaz (bib0015) 2021
Biagetti, Sciubba (bib0020) 2004
Hoang, Kang (bib0055) 2019; 335
Verstraete, Droguett, Modarres (bib0130) 2020; 20
Li, Hua, Wu (bib0080) 2020; 8
Pan, He, Tang, Meng (bib0110) 2018; 64
Zheng, Xue, Chen, Guo, Chen, Chen, Gao (bib0165) 2019
Schölkopf, Williamson, Smola, Shawe-Taylor, Piatt (bib0120) 2000
Yue, Ping, Lanxin (bib0145) 2018
Hochreiter, Schmidhuber (bib0060) 1997; 9
Mahadevan, Shah (bib0100) 2009; 19
Galagedarage Don, Khan (bib0040) 2019; 58
Gao, Cecati, Ding (bib0045) 2015; 62
Zhao, Sun, Jin (bib0155) 2018; 6
Downs, Vogel (bib0035) 1993; 17
Djeziri, Benmoussa, Benbouzid (bib0030) 2019; 86
Cheng, Zhu, Wu, Shao (bib0025) 2019; 15
Sorsa, Koivo (bib0125) 1993; 29
Onel, Kieslich, Pistikopoulos (bib0105) 2019; 65
Zhao, Mao, Chen (bib0160) 2019; 47
Abdel-Hamid, Mohamed, Jiang, Penn (bib0005) 2012
Han, Ding, Geng, Wang, Chu (bib0050) 2020; 92
Liu, Pan, Lei, Hu, Zuo (bib0095) 2021; 214
Li, Ding, Sun (bib0075) 2018; 172
Javed, Gouriveau, Zerhouni (bib0070) 2017
Liu, Yao, Zhang, Liao (bib0090) 2019
Hoskins, Himmelblau (bib0065) 1988; 12
Zhang, Lim, Qin, Tan (bib0150) 2017; 28
Lin, Tao (bib0085) 2019
Arunthavanathan, Khan, Ahmed, Imtiaz, Rusli (bib0010) 2020; 134
Wang, Pan, Yuan, Yang, Gui (bib0135) 2020; 96
Park, Di Marco, Shin, Bang (bib0115) 2019; 19
Xia, Song, Zheng, Pan, Xi (bib0140) 2020; 115
Zhao (10.1016/j.psep.2021.08.022_bib0155) 2018; 6
Li (10.1016/j.psep.2021.08.022_bib0080) 2020; 8
Zhang (10.1016/j.psep.2021.08.022_bib0150) 2017; 28
Downs (10.1016/j.psep.2021.08.022_bib0035) 1993; 17
Yue (10.1016/j.psep.2021.08.022_bib0145) 2018
Zheng (10.1016/j.psep.2021.08.022_bib0165) 2019
Mahadevan (10.1016/j.psep.2021.08.022_bib0100) 2009; 19
Arunthavanathan (10.1016/j.psep.2021.08.022_bib0010) 2020; 134
Liu (10.1016/j.psep.2021.08.022_bib0095) 2021; 214
Hoang (10.1016/j.psep.2021.08.022_bib0055) 2019; 335
Sorsa (10.1016/j.psep.2021.08.022_bib0125) 1993; 29
Pan (10.1016/j.psep.2021.08.022_bib0110) 2018; 64
Lin (10.1016/j.psep.2021.08.022_bib0085) 2019
Abdel-Hamid (10.1016/j.psep.2021.08.022_bib0005) 2012
Javed (10.1016/j.psep.2021.08.022_bib0070) 2017
Verstraete (10.1016/j.psep.2021.08.022_bib0130) 2020; 20
Wang (10.1016/j.psep.2021.08.022_bib0135) 2020; 96
Liu (10.1016/j.psep.2021.08.022_bib0090) 2019
Cheng (10.1016/j.psep.2021.08.022_bib0025) 2019; 15
Gao (10.1016/j.psep.2021.08.022_bib0045) 2015; 62
Xia (10.1016/j.psep.2021.08.022_bib0140) 2020; 115
Onel (10.1016/j.psep.2021.08.022_bib0105) 2019; 65
Schölkopf (10.1016/j.psep.2021.08.022_bib0120) 2000
Park (10.1016/j.psep.2021.08.022_bib0115) 2019; 19
Galagedarage Don (10.1016/j.psep.2021.08.022_bib0040) 2019; 58
Biagetti (10.1016/j.psep.2021.08.022_bib0020) 2004
Arunthavanathan (10.1016/j.psep.2021.08.022_bib0015) 2021
Zhao (10.1016/j.psep.2021.08.022_bib0160) 2019; 47
Hochreiter (10.1016/j.psep.2021.08.022_bib0060) 1997; 9
Djeziri (10.1016/j.psep.2021.08.022_bib0030) 2019; 86
Hoskins (10.1016/j.psep.2021.08.022_bib0065) 1988; 12
Li (10.1016/j.psep.2021.08.022_bib0075) 2018; 172
Han (10.1016/j.psep.2021.08.022_bib0050) 2020; 92
References_xml – volume: 96
  start-page: 457
  year: 2020
  end-page: 467
  ident: bib0135
  article-title: A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network
  publication-title: ISA Trans.
– volume: 214
  start-page: 107646
  year: 2021
  ident: bib0095
  article-title: Fault prediction of bearings based on LSTM and statistical process analysis
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 47
  start-page: 312
  year: 2019
  end-page: 323
  ident: bib0160
  article-title: Speech emotion recognition using deep 1D & 2D CNN LSTM networks
  publication-title: Biomed. Signal Process. Control
– start-page: 1
  year: 2019
  end-page: 9
  ident: bib0085
  article-title: A novel bearing health indicator construction method based on ensemble stacked autoencoder
  publication-title: 2019 IEEE International Conference on Prognostics and Health Management
– start-page: 4277
  year: 2012
  end-page: 4280
  ident: bib0005
  article-title: Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition
  publication-title: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
– volume: 92
  start-page: 161
  year: 2020
  end-page: 168
  ident: bib0050
  article-title: An optimized long short-term memory network based fault diagnosis model for chemical processes
  publication-title: J. Process Control
– start-page: 489
  year: 2019
  end-page: 493
  ident: bib0090
  article-title: Attention based Echo state Network: A novel approach for fault prognosis
  publication-title: 11th International Conference on Machine Learning and Computing, ICMLC 2019
– volume: 64
  start-page: 443
  year: 2018
  end-page: 452
  ident: bib0110
  article-title: An improved bearing fault diagnosis method using one-dimensional CNN and LSTM
  publication-title: J. Mech. Eng.
– volume: 58
  start-page: 12041
  year: 2019
  end-page: 12053
  ident: bib0040
  article-title: Process fault prognosis using hidden markov model-bayesian networks hybrid model
  publication-title: Ind. Eng. Chem. Res.
– volume: 65
  start-page: 992
  year: 2019
  end-page: 1005
  ident: bib0105
  article-title: A nonlinear support vector machine-based feature selection approach for fault detection and diagnosis: application to the Tennessee Eastman process
  publication-title: Aiche J.
– volume: 62
  start-page: 3757
  year: 2015
  end-page: 3767
  ident: bib0045
  article-title: A survey of fault diagnosis and fault-tolerant techniques-part I: fault diagnosis with model-based and signal-based approaches
  publication-title: IEEE Trans. Ind. Electron.
– volume: 19
  start-page: 1
  year: 2019
  end-page: 17
  ident: bib0115
  article-title: Fault detection and diagnosis using combined autoencoder and long short-term memory network
  publication-title: Sensors (Switzerland)
– start-page: 582
  year: 2000
  end-page: 588
  ident: bib0120
  article-title: Support vector method for novelty detection
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 86
  start-page: 154
  year: 2019
  end-page: 164
  ident: bib0030
  article-title: Data-driven approach augmented in simulation for robust fault prognosis
  publication-title: Eng. Appl. Artif. Intell.
– year: 2017
  ident: bib0070
  article-title: State of the art and taxonomy of prognostics approaches, trends of prognostics applications and open issues towards maturity at different technology readiness levels
  publication-title: Mech. Syst. Signal Process.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib0060
  article-title: Long short-term memory
  publication-title: Neural Comput.
– start-page: 537
  year: 2019
  end-page: 541
  ident: bib0165
  article-title: A fault prediction of equipment based on CNN-LSTM network
  publication-title: Proceedings - IEEE International Conference on Energy Internet
– volume: 20
  year: 2020
  ident: bib0130
  article-title: A deep adversarial approach based on multi-sensor fusion for semi-supervised remaining useful life prognostics
  publication-title: Sensors (Switzerland)
– start-page: 274
  year: 2018
  end-page: 278
  ident: bib0145
  article-title: An End-to-End model based on CNN-LSTM for industrial fault diagnosis and prognosis
  publication-title: Proceedings of 2018 6th IEEE International Conference on Network Infrastructure and Digital Content, IC-NIDC 2018
– volume: 335
  start-page: 327
  year: 2019
  end-page: 335
  ident: bib0055
  article-title: A survey on Deep Learning based bearing fault diagnosis
  publication-title: Neurocomputing
– volume: 6
  start-page: 12929
  year: 2018
  end-page: 12939
  ident: bib0155
  article-title: Sequential fault diagnosis based on LSTM neural network
  publication-title: IEEE Access
– volume: 115
  year: 2020
  ident: bib0140
  article-title: An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation
  publication-title: Comput. Ind.
– start-page: 2553
  year: 2004
  end-page: 2572
  ident: bib0020
  article-title: Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems
  publication-title: Energy
– volume: 15
  start-page: 987
  year: 2019
  end-page: 997
  ident: bib0025
  article-title: Machine health monitoring using adaptive kernel spectral clustering and deep long short-term memory recurrent neural networks
  publication-title: IEEE Trans. Industr. Inform.
– volume: 29
  start-page: 843
  year: 1993
  end-page: 849
  ident: bib0125
  article-title: Application of artificial neural networks in process fault diagnosis
  publication-title: Automatica
– volume: 28
  start-page: 2306
  year: 2017
  end-page: 2318
  ident: bib0150
  article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2021
  ident: bib0015
  article-title: An analysis of process fault diagnosis methods from safety perspectives
  publication-title: Comput. Chem. Eng.
– volume: 134
  start-page: 106697
  year: 2020
  ident: bib0010
  article-title: Fault detection and diagnosis in process system using artificial intelligence-based cognitive technique
  publication-title: Comput. Chem. Eng.
– volume: 19
  start-page: 1627
  year: 2009
  end-page: 1639
  ident: bib0100
  article-title: Fault detection and diagnosis in process data using one-class support vector machines
  publication-title: J. Process Control
– volume: 8
  start-page: 26933
  year: 2020
  end-page: 26940
  ident: bib0080
  article-title: A hybrid CNN-LSTM model for forecasting particulate matter (PM2.5)
  publication-title: IEEE Access
– volume: 17
  start-page: 245
  year: 1993
  end-page: 255
  ident: bib0035
  article-title: A plant-wide industrial problem process
  publication-title: Comput. Chem. Eng.
– volume: 172
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib0075
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 12
  start-page: 881
  year: 1988
  end-page: 890
  ident: bib0065
  article-title: Artificial neural network models of knowledge representation in chemical engineering
  publication-title: Comput. Chem. Eng.
– volume: 19
  start-page: 1627
  year: 2009
  ident: 10.1016/j.psep.2021.08.022_bib0100
  article-title: Fault detection and diagnosis in process data using one-class support vector machines
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2009.07.011
– volume: 20
  year: 2020
  ident: 10.1016/j.psep.2021.08.022_bib0130
  article-title: A deep adversarial approach based on multi-sensor fusion for semi-supervised remaining useful life prognostics
  publication-title: Sensors (Switzerland)
– volume: 58
  start-page: 12041
  year: 2019
  ident: 10.1016/j.psep.2021.08.022_bib0040
  article-title: Process fault prognosis using hidden markov model-bayesian networks hybrid model
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b00524
– start-page: 582
  year: 2000
  ident: 10.1016/j.psep.2021.08.022_bib0120
  article-title: Support vector method for novelty detection
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 489
  year: 2019
  ident: 10.1016/j.psep.2021.08.022_bib0090
  article-title: Attention based Echo state Network: A novel approach for fault prognosis
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.psep.2021.08.022_bib0060
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 62
  start-page: 3757
  year: 2015
  ident: 10.1016/j.psep.2021.08.022_bib0045
  article-title: A survey of fault diagnosis and fault-tolerant techniques-part I: fault diagnosis with model-based and signal-based approaches
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2417501
– volume: 19
  start-page: 1
  year: 2019
  ident: 10.1016/j.psep.2021.08.022_bib0115
  article-title: Fault detection and diagnosis using combined autoencoder and long short-term memory network
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s19214612
– start-page: 274
  year: 2018
  ident: 10.1016/j.psep.2021.08.022_bib0145
  article-title: An End-to-End model based on CNN-LSTM for industrial fault diagnosis and prognosis
  publication-title: Proceedings of 2018 6th IEEE International Conference on Network Infrastructure and Digital Content, IC-NIDC 2018
– volume: 172
  start-page: 1
  year: 2018
  ident: 10.1016/j.psep.2021.08.022_bib0075
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.11.021
– volume: 8
  start-page: 26933
  year: 2020
  ident: 10.1016/j.psep.2021.08.022_bib0080
  article-title: A hybrid CNN-LSTM model for forecasting particulate matter (PM2.5)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2971348
– start-page: 4277
  year: 2012
  ident: 10.1016/j.psep.2021.08.022_bib0005
  article-title: Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition
  publication-title: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
– volume: 134
  start-page: 106697
  year: 2020
  ident: 10.1016/j.psep.2021.08.022_bib0010
  article-title: Fault detection and diagnosis in process system using artificial intelligence-based cognitive technique
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.106697
– volume: 96
  start-page: 457
  year: 2020
  ident: 10.1016/j.psep.2021.08.022_bib0135
  article-title: A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.07.001
– volume: 335
  start-page: 327
  year: 2019
  ident: 10.1016/j.psep.2021.08.022_bib0055
  article-title: A survey on Deep Learning based bearing fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.078
– volume: 65
  start-page: 992
  year: 2019
  ident: 10.1016/j.psep.2021.08.022_bib0105
  article-title: A nonlinear support vector machine-based feature selection approach for fault detection and diagnosis: application to the Tennessee Eastman process
  publication-title: Aiche J.
  doi: 10.1002/aic.16497
– start-page: 1
  year: 2019
  ident: 10.1016/j.psep.2021.08.022_bib0085
  article-title: A novel bearing health indicator construction method based on ensemble stacked autoencoder
– volume: 214
  start-page: 107646
  year: 2021
  ident: 10.1016/j.psep.2021.08.022_bib0095
  article-title: Fault prediction of bearings based on LSTM and statistical process analysis
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107646
– volume: 86
  start-page: 154
  year: 2019
  ident: 10.1016/j.psep.2021.08.022_bib0030
  article-title: Data-driven approach augmented in simulation for robust fault prognosis
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.09.002
– volume: 12
  start-page: 881
  year: 1988
  ident: 10.1016/j.psep.2021.08.022_bib0065
  article-title: Artificial neural network models of knowledge representation in chemical engineering
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(88)87015-7
– start-page: 2553
  year: 2004
  ident: 10.1016/j.psep.2021.08.022_bib0020
  article-title: Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems
– volume: 29
  start-page: 843
  year: 1993
  ident: 10.1016/j.psep.2021.08.022_bib0125
  article-title: Application of artificial neural networks in process fault diagnosis
  publication-title: Automatica
  doi: 10.1016/0005-1098(93)90090-G
– volume: 28
  start-page: 2306
  year: 2017
  ident: 10.1016/j.psep.2021.08.022_bib0150
  article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582798
– volume: 6
  start-page: 12929
  year: 2018
  ident: 10.1016/j.psep.2021.08.022_bib0155
  article-title: Sequential fault diagnosis based on LSTM neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2794765
– volume: 47
  start-page: 312
  year: 2019
  ident: 10.1016/j.psep.2021.08.022_bib0160
  article-title: Speech emotion recognition using deep 1D & 2D CNN LSTM networks
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.08.035
– year: 2021
  ident: 10.1016/j.psep.2021.08.022_bib0015
  article-title: An analysis of process fault diagnosis methods from safety perspectives
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.107197
– volume: 92
  start-page: 161
  year: 2020
  ident: 10.1016/j.psep.2021.08.022_bib0050
  article-title: An optimized long short-term memory network based fault diagnosis model for chemical processes
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2020.06.005
– volume: 17
  start-page: 245
  issue: 3
  year: 1993
  ident: 10.1016/j.psep.2021.08.022_bib0035
  article-title: A plant-wide industrial problem process
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(93)80018-I
– year: 2017
  ident: 10.1016/j.psep.2021.08.022_bib0070
  article-title: State of the art and taxonomy of prognostics approaches, trends of prognostics applications and open issues towards maturity at different technology readiness levels
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.01.050
– volume: 64
  start-page: 443
  year: 2018
  ident: 10.1016/j.psep.2021.08.022_bib0110
  article-title: An improved bearing fault diagnosis method using one-dimensional CNN and LSTM
  publication-title: J. Mech. Eng.
– volume: 115
  year: 2020
  ident: 10.1016/j.psep.2021.08.022_bib0140
  article-title: An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.103182
– start-page: 537
  year: 2019
  ident: 10.1016/j.psep.2021.08.022_bib0165
  article-title: A fault prediction of equipment based on CNN-LSTM network
– volume: 15
  start-page: 987
  year: 2019
  ident: 10.1016/j.psep.2021.08.022_bib0025
  article-title: Machine health monitoring using adaptive kernel spectral clustering and deep long short-term memory recurrent neural networks
  publication-title: IEEE Trans. Industr. Inform.
  doi: 10.1109/TII.2018.2866549
SSID ssj0001271
Score 2.5968819
Snippet Early fault detection and fault prognosis are crucial functions to ensure safe process operations. Fault prognosis can detect and isolate early developing...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 467
SubjectTerms Artificial neural networks
Data-driven model
Deep learning
Fault detection
Fault diagnosis
Fault prognosis
Life prediction
Long short-term memory
LSTM model
Mathematical models
Multivariate analysis
Neural networks
Process safety
Prognosis
Recurrent neural networks
System effectiveness
Time dependence
Useful life
Title A deep learning model for process fault prognosis
URI https://dx.doi.org/10.1016/j.psep.2021.08.022
https://www.proquest.com/docview/2600349303
Volume 154
WOSCitedRecordID wos000704392700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1744-3598
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001271
  issn: 0957-5820
  databaseCode: AIEXJ
  dateStart: 19961101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOCAbTNgbyAXGpjIjjxMkxQq34qAoSHerNshOHtWqzsGTVducP5zl20myICg5cosjNR_Xezy_Pz-_9HkKv3uYy57GUBCZTRJhUOYkplyRT3PNkrmnaEJh-m_DpNJrP4y-Dwc-2Fmaz4kURXV_H5X9VNYyBsk3p7D-ou3soDMA5KB2OoHY4_pXik2Gmddm2g_hue9002YSlLQoY5vJqVTeZWcVFtaj6_qmrGxhWIMDaUjP1SuFM1Zbldejt3ieGu-BcmubMJgzf6Ewutd5scffJjY_lopJdSkdyvtYuKr1arDuMrsHmNFHtrzeu8MoFJajXpbe5SFlbLdMaqG2Kkg09chJE1O7HaGt4OWPEsAnesswB69lWZvt2_Gbzbfhh-aastCEgpZaT1VY73ybYnn4W47PJRMxG89nr8gcxvcfMHr1rxHIP7VMexGDe95MPo_nH7ovu0Wbh3v1vV3xl8wTvvvZPDs6dT33jv8weo0du4YETC5gnaKCLA_SwR0d5gA5HfVVjJ9XqKfISbDCFW0zhBlMYMIUdpnCDKdxh6hk6G49m794T12uDpD6NapKFmfQz6sdSy9BMJxUxBq4jzNXG5YVlKMtY7mWhUhpcfo_lcBmVPlV5lqrYP0R7xUWhjxAOaKpCX4WcppSlaRj5IawKlGHm4x7X6THyWgGJ1BHRm34oK9FmHC6FEaowQhWmSSqlx2jY3VNaGpadVwet3IVzJK2DKAAzO-87bZUk3IyuhOng4LMYXL2T3T8_Rw-2U-EU7dWXV_oFup9u6kV1-dJh6hdfEZxB
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+model+for+process+fault+prognosis&rft.jtitle=Process+safety+and+environmental+protection&rft.au=Arunthavanathan%2C+Rajeevan&rft.au=Khan%2C+Faisal&rft.au=Ahmed%2C+Salim&rft.au=Imtiaz%2C+Syed&rft.date=2021-10-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0957-5820&rft.eissn=1744-3598&rft.volume=154&rft.spage=467&rft_id=info:doi/10.1016%2Fj.psep.2021.08.022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-5820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-5820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-5820&client=summon