Virtual power plant containing electric vehicles scheduling strategies based on deep reinforcement learning

•VPP agent and EV charging station agent games to obtain electricity price.•The VPP tends to use mixed strategy, while EVs tend to use pure strategies.•Using Stackelberg game to prevent VPP from obtaining excess profit from EV members. Virtual power plants (VPPs), which aggregate customer-side flexi...

Full description

Saved in:
Bibliographic Details
Published in:Electric power systems research Vol. 205; p. 107714
Main Authors: Wang, Jianing, Guo, Chunlin, Yu, Changshu, Liang, Yanchang
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.04.2022
Elsevier Science Ltd
Subjects:
ISSN:0378-7796, 1873-2046
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •VPP agent and EV charging station agent games to obtain electricity price.•The VPP tends to use mixed strategy, while EVs tend to use pure strategies.•Using Stackelberg game to prevent VPP from obtaining excess profit from EV members. Virtual power plants (VPPs), which aggregate customer-side flexibility resources, provide an effective way for customers to participate in the electricity market, and provide a variety of flexible technologies and services to the market. Importantly, VPPs can provide services to electric vehicle (EV) charging stations. In this paper, we constructed a deep reinforcement learning (DRL) based Stackelberg game model for a VPP with EV charging stations. Considering the interests of both sides of the game, soft actor-critic (SAC) algorithm is used for the VPP agent and twin delay deep deterministic policy gradient (TD3) algorithm is used for the EV charging station agent. By alternately training the network parameters of the agents, the strategy and solution at the equilibrium of the game are calculated. Results of cases demonstrate that the VPP agent can learn the strategy of selling electricity to EVs, optimize the scheduling of distributed energy resources (DERs), and bidding strategy for participation in the electricity market. Meanwhile, the EV aggregation agent can learn scheduling strategies for charging and discharging EVs. When the EV aggregator uses a deterministic strategy and the virtual power plant uses a stochastic strategy, energy complementarity is achieved and the overall operating economy is improved.
AbstractList Virtual power plants (VPPs), which aggregate customer-side flexibility resources, provide an effective way for customers to participate in the electricity market, and provide a variety of flexible technologies and services to the market. Importantly, VPPs can provide services to electric vehicle (EV) charging stations. In this paper, we constructed a deep reinforcement learning (DRL) based Stackelberg game model for a VPP with EV charging stations. Considering the interests of both sides of the game, soft actor-critic (SAC) algorithm is used for the VPP agent and twin delay deep deterministic policy gradient (TD3) algorithm is used for the EV charging station agent. By alternately training the network parameters of the agents, the strategy and solution at the equilibrium of the game are calculated. Results of cases demonstrate that the VPP agent can learn the strategy of selling electricity to EVs, optimize the scheduling of distributed energy resources (DERs), and bidding strategy for participation in the electricity market. Meanwhile, the EV aggregation agent can learn scheduling strategies for charging and discharging EVs. When the EV aggregator uses a deterministic strategy and the virtual power plant uses a stochastic strategy, energy complementarity is achieved and the overall operating economy is improved.
•VPP agent and EV charging station agent games to obtain electricity price.•The VPP tends to use mixed strategy, while EVs tend to use pure strategies.•Using Stackelberg game to prevent VPP from obtaining excess profit from EV members. Virtual power plants (VPPs), which aggregate customer-side flexibility resources, provide an effective way for customers to participate in the electricity market, and provide a variety of flexible technologies and services to the market. Importantly, VPPs can provide services to electric vehicle (EV) charging stations. In this paper, we constructed a deep reinforcement learning (DRL) based Stackelberg game model for a VPP with EV charging stations. Considering the interests of both sides of the game, soft actor-critic (SAC) algorithm is used for the VPP agent and twin delay deep deterministic policy gradient (TD3) algorithm is used for the EV charging station agent. By alternately training the network parameters of the agents, the strategy and solution at the equilibrium of the game are calculated. Results of cases demonstrate that the VPP agent can learn the strategy of selling electricity to EVs, optimize the scheduling of distributed energy resources (DERs), and bidding strategy for participation in the electricity market. Meanwhile, the EV aggregation agent can learn scheduling strategies for charging and discharging EVs. When the EV aggregator uses a deterministic strategy and the virtual power plant uses a stochastic strategy, energy complementarity is achieved and the overall operating economy is improved.
ArticleNumber 107714
Author Wang, Jianing
Yu, Changshu
Liang, Yanchang
Guo, Chunlin
Author_xml – sequence: 1
  givenname: Jianing
  surname: Wang
  fullname: Wang, Jianing
– sequence: 2
  givenname: Chunlin
  surname: Guo
  fullname: Guo, Chunlin
  email: gcl@ncepu.edu.cn
– sequence: 3
  givenname: Changshu
  surname: Yu
  fullname: Yu, Changshu
– sequence: 4
  givenname: Yanchang
  surname: Liang
  fullname: Liang, Yanchang
BookMark eNp9kE1LxDAQhoMouK7-AU8Bz12TZpu04EXELxC8qNeQTaaatSZ1klX896asJw97GpiZ5x3mOSL7IQYg5JSzBWdcnq8XMCZc1KzmpaEUX-6RGW-VqGq2lPtkxoRqK6U6eUiOUlozxmSnmhl5f_GYN2agY_wGpONgQqY2hmx88OGVwgA2o7f0C968HSDRZN_AbYZpmDKaDK--dFcmgaMxUAcwUgQf-ogWPqDEDWBwCjsmB70ZEpz81Tl5vrl-urqrHh5v768uHyor6jZXTq7UittWmsbJZtlKcEY4wZtl00jbc1Z3FhSYvpOiB6Os6JwApSTrmbEgxJycbXNHjJ8bSFmv4wZDOalrqYQsSgo6J_V2y2JMCaHXI_oPgz-aMz1J1Ws9SdWTVL2VWqD2H2R9NtkXYWj8sBu92KJQXv_ygDpZD8GC81gcaxf9LvwX7xGXeg
CitedBy_id crossref_primary_10_1002_tee_70023
crossref_primary_10_1016_j_rser_2022_113052
crossref_primary_10_1016_j_engappai_2022_105612
crossref_primary_10_3389_fenrg_2023_1337205
crossref_primary_10_1016_j_heliyon_2024_e24318
crossref_primary_10_3390_en17112705
crossref_primary_10_1016_j_apenergy_2022_120212
crossref_primary_10_1109_TPWRS_2024_3398019
crossref_primary_10_1016_j_energy_2025_138087
crossref_primary_10_1016_j_est_2024_110474
crossref_primary_10_3390_en17174463
crossref_primary_10_1016_j_est_2024_112151
crossref_primary_10_1109_TSG_2023_3273856
crossref_primary_10_1016_j_apenergy_2024_124706
crossref_primary_10_1016_j_epsr_2023_109285
crossref_primary_10_1109_ACCESS_2024_3494759
crossref_primary_10_1049_rpg2_12650
crossref_primary_10_1016_j_apenergy_2023_121615
crossref_primary_10_1016_j_apenergy_2024_122747
crossref_primary_10_1016_j_segan_2023_101054
crossref_primary_10_1109_TPWRS_2023_3296738
crossref_primary_10_1016_j_epsr_2023_109783
crossref_primary_10_1016_j_crsus_2023_100006
crossref_primary_10_1049_stg2_12173
crossref_primary_10_3390_en18133325
crossref_primary_10_1016_j_energy_2024_131235
crossref_primary_10_1016_j_enconman_2023_117773
crossref_primary_10_1109_TIA_2025_3535847
crossref_primary_10_3390_electronics11193175
crossref_primary_10_1016_j_epsr_2024_110371
crossref_primary_10_3390_su16124959
crossref_primary_10_1016_j_rser_2023_113466
crossref_primary_10_1016_j_asoc_2024_111235
crossref_primary_10_1109_ACCESS_2025_3572345
crossref_primary_10_1016_j_compchemeng_2023_108168
crossref_primary_10_1007_s00521_024_09530_3
crossref_primary_10_4316_AECE_2023_02003
crossref_primary_10_3390_en18174485
crossref_primary_10_3390_electronics12092041
crossref_primary_10_1016_j_epsr_2023_109971
crossref_primary_10_1016_j_est_2022_105579
crossref_primary_10_1109_TSG_2023_3265398
Cites_doi 10.1109/TSG.2019.2955437
10.1109/TSG.2020.3025082
10.1109/TSG.2019.2936142
10.1109/TPWRS.2020.2999536
10.1109/TSTE.2020.2980317
10.1109/JIOT.2020.2966232
10.1016/j.apenergy.2012.12.077
10.1016/j.apenergy.2016.03.020
10.1109/JIOT.2020.3032162
10.1109/TSG.2021.3098298
10.1109/TPWRS.2010.2070884
10.1287/mnsc.14.3.159
10.1016/j.ijepes.2018.04.011
10.1109/TSG.2015.2419714
10.1109/TPWRS.2010.2070883
10.1109/TVT.2020.3043851
10.1109/JIOT.2020.3015204
10.37478/jpe.v6i1.981
10.1109/TSG.2015.2409121
10.1109/TIA.2020.2984614
10.1109/TIA.2018.2828379
10.1109/TMC.2019.2927314
10.1007/BF01737554
ContentType Journal Article
Copyright 2021
Copyright Elsevier Science Ltd. Apr 2022
Copyright_xml – notice: 2021
– notice: Copyright Elsevier Science Ltd. Apr 2022
DBID AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1016/j.epsr.2021.107714
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2046
ExternalDocumentID 10_1016_j_epsr_2021_107714
S0378779621006957
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c328t-d6b7b1c86a5d65486eda3d3154556cf1029ce7eaf963fea7c39d3e7760f0ace33
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793739800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7796
IngestDate Sun Nov 09 08:17:34 EST 2025
Tue Nov 18 22:12:49 EST 2025
Sat Nov 29 07:19:40 EST 2025
Fri Feb 23 02:40:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Real-time dispatch
Deep reinforcement learning
Electric vehicle
Stackelberg game
Stochastic strategy
Virtual power plant
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-d6b7b1c86a5d65486eda3d3154556cf1029ce7eaf963fea7c39d3e7760f0ace33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2673620496
PQPubID 2047565
ParticipantIDs proquest_journals_2673620496
crossref_primary_10_1016_j_epsr_2021_107714
crossref_citationtrail_10_1016_j_epsr_2021_107714
elsevier_sciencedirect_doi_10_1016_j_epsr_2021_107714
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Electric power systems research
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Nguyen, Le, Wang (bib0011) 2018; 54
Numba, User manual - numba 0.53.1-py3.7-linux-x86_64.egg documentation, 2021, June 1, URL
Gao, Xu, Chuanwen (bib0014) 2018; 42
T.S. Ferguson, A course in game theory, 2020.
Mashhour, Moghaddas-Tafreshi (bib0023) 2011; 26
Fujimoto, Hoof, Meger (bib0030) 2018
Gu, Yang, Lin, Hu, Alazab, Kharel (bib0020) 2020
Liang, Ding, Ding, Lee (bib0015) 2020; 12
T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra, Continuous control with deep reinforcement learning
Zhan, Liu, Zhao, Zhang, Tang (bib0019) 2019; 19
Liu, Li, Lian, Tang, Liu, Jiang (bib0010) 2018; 102
Harsanyi (bib0037) 1967; 14
Dogan (bib0027) 2021; 24
Fudenberg, Tirole (bib0028) 1992; 60
Li, Hu, Cao, Dragičević, Huang, Chen, Blaabjerg (bib0003) 2021
Wang, Zhang, Zhang (bib0013) 2019; 43
Lin, Guan, Peng, Wang, Maharjan, Ohtsuki (bib0012) 2020; 7
Ye, Qiu, Sun, Papadaskalopoulos, Strbac (bib0016) 2019; 11
Wang, Ai, Tan, Yan, Liu (bib0006) 2015; 7
Pandžić, Morales, Conejo, Kuzle (bib0024) 2013; 105
Haarnoja, Zhou, Abbeel, Levine (bib0031) 2018
Mashhour, Moghaddas-Tafreshi (bib0022) 2011; 26
Jogunola, Adebisi, Ikpehai, Popoola, Gui, Gačanin, Ci (bib0032) 2021; 8
Yi, Xu, Zhou, Wu, Sun (bib0009) 2020; 11
Li, Cheng, Xue, Yang, Han (bib0021) 2020
Zhang, Yang, An (bib0002) 2021; 8
Ju, Tan, Yuan, Tan, Li, Dong (bib0008) 2016; 171
.
Harsanyi (bib0038) 1973; 2
Hongxia, Ha, Lei, Yuli (bib0025) 2015; 30
Gao (bib0026) 2019
Li, Wang, Lin (bib0018) 2019; 39
Li, Wan, He (bib0001) 2019; 11
Liang, Guo, Ding, Hua (bib0017) 2020; 35
Luo, Hu, Song, Yang, Zhan, Wu (bib0034) 2011; 35
Qiu, Ye, Papadaskalopoulos, Strbac (bib0005) 2020; 56
Yan, Chen, Zhou, Chen, Wen (bib0004) 2021
Kardakos, Simoglou, Bakirtzis (bib0007) 2015
Sutton, Barto (bib0033) 2018
Luo (10.1016/j.epsr.2021.107714_bib0034) 2011; 35
Ye (10.1016/j.epsr.2021.107714_bib0016) 2019; 11
Fujimoto (10.1016/j.epsr.2021.107714_bib0030) 2018
Ju (10.1016/j.epsr.2021.107714_bib0008) 2016; 171
Zhang (10.1016/j.epsr.2021.107714_bib0002) 2021; 8
Mashhour (10.1016/j.epsr.2021.107714_bib0022) 2011; 26
Harsanyi (10.1016/j.epsr.2021.107714_bib0038) 1973; 2
Lin (10.1016/j.epsr.2021.107714_bib0012) 2020; 7
Li (10.1016/j.epsr.2021.107714_bib0018) 2019; 39
Jogunola (10.1016/j.epsr.2021.107714_bib0032) 2021; 8
Gu (10.1016/j.epsr.2021.107714_bib0020) 2020
Yi (10.1016/j.epsr.2021.107714_bib0009) 2020; 11
Gao (10.1016/j.epsr.2021.107714_bib0014) 2018; 42
Fudenberg (10.1016/j.epsr.2021.107714_bib0028) 1992; 60
Li (10.1016/j.epsr.2021.107714_bib0021) 2020
10.1016/j.epsr.2021.107714_bib0029
Kardakos (10.1016/j.epsr.2021.107714_bib0007) 2015
Liu (10.1016/j.epsr.2021.107714_bib0010) 2018; 102
10.1016/j.epsr.2021.107714_bib0036
Mashhour (10.1016/j.epsr.2021.107714_bib0023) 2011; 26
Liang (10.1016/j.epsr.2021.107714_bib0015) 2020; 12
Dogan (10.1016/j.epsr.2021.107714_bib0027) 2021; 24
10.1016/j.epsr.2021.107714_bib0035
Liang (10.1016/j.epsr.2021.107714_bib0017) 2020; 35
Gao (10.1016/j.epsr.2021.107714_bib0026) 2019
Li (10.1016/j.epsr.2021.107714_bib0001) 2019; 11
Yan (10.1016/j.epsr.2021.107714_bib0004) 2021
Nguyen (10.1016/j.epsr.2021.107714_bib0011) 2018; 54
Wang (10.1016/j.epsr.2021.107714_bib0013) 2019; 43
Haarnoja (10.1016/j.epsr.2021.107714_bib0031) 2018
Li (10.1016/j.epsr.2021.107714_bib0003) 2021
Pandžić (10.1016/j.epsr.2021.107714_bib0024) 2013; 105
Hongxia (10.1016/j.epsr.2021.107714_bib0025) 2015; 30
Qiu (10.1016/j.epsr.2021.107714_bib0005) 2020; 56
Harsanyi (10.1016/j.epsr.2021.107714_bib0037) 1967; 14
Wang (10.1016/j.epsr.2021.107714_bib0006) 2015; 7
Zhan (10.1016/j.epsr.2021.107714_bib0019) 2019; 19
Sutton (10.1016/j.epsr.2021.107714_bib0033) 2018
References_xml – volume: 7
  start-page: 6288
  year: 2020
  end-page: 6301
  ident: bib0012
  article-title: Deep reinforcement learning for economic dispatch of virtual power plant in internet of energy
  publication-title: IEEE Internet Things J.
– reference: T.S. Ferguson, A course in game theory, 2020.
– volume: 54
  start-page: 3044
  year: 2018
  end-page: 3055
  ident: bib0011
  article-title: A bidding strategy for virtual power plants with the Intraday demand response exchange market using the stochastic programming
  publication-title: IEEE Trans. Ind. Appl.
– reference: Numba, User manual - numba 0.53.1-py3.7-linux-x86_64.egg documentation, 2021, June 1, URL
– year: 2020
  ident: bib0020
  article-title: Multi-agent actor-critic network-based incentive mechanism for mobile crowdsensing in industrial systems
  publication-title: IEEE Trans. Ind. Inf.
– volume: 26
  start-page: 949
  year: 2011
  end-page: 956
  ident: bib0022
  article-title: Bidding strategy of virtual power plant for participating in energy and spinning reserve markets-Part I: Problem formulation
  publication-title: IEEE Trans. Power Syst.
– volume: 14
  start-page: 159
  year: 1967
  end-page: 182
  ident: bib0037
  article-title: Games with incomplete information played by “Bayesian” players, I–III Part I. The basic model
  publication-title: Manage. Sci.
– volume: 11
  start-page: 1343
  year: 2019
  end-page: 1355
  ident: bib0016
  article-title: Deep reinforcement learning for strategic bidding in electricity markets
  publication-title: IEEE Trans. Smart Grid
– volume: 11
  start-page: 2427
  year: 2019
  end-page: 2439
  ident: bib0001
  article-title: Constrained EV charging scheduling based on safe deep reinforcement learning
  publication-title: IEEE Trans. Smart Grid
– volume: 11
  start-page: 2855
  year: 2020
  end-page: 2869
  ident: bib0009
  article-title: Bi-level programming for optimal operation of an active distribution network with multiple virtual power plants
  publication-title: IEEE Trans. Sustain. Energy
– volume: 43
  start-page: 155
  year: 2019
  end-page: 162
  ident: bib0013
  article-title: Game model of electricity market involving virtual power plant composed of wind power and electric vehicles
  publication-title: Autom. Electr. Power Syst.
– volume: 35
  start-page: 36
  year: 2011
  end-page: 42
  ident: bib0034
  article-title: Study on plug-in electric vehicles charging load calculating
  publication-title: Autom. Electr. Power Syst.
– volume: 8
  start-page: 3075
  year: 2021
  end-page: 3087
  ident: bib0002
  article-title: CDDPG: a deep-reinforcement-learning-based approach for electric vehicle charging control
  publication-title: IEEE Internet Things J.
– year: 2015
  ident: bib0007
  article-title: Optimal offering strategy of a virtual power plant: a stochastic bi-level approach
  publication-title: IEEE Trans. Smart Grid
– volume: 7
  start-page: 510
  year: 2015
  end-page: 519
  ident: bib0006
  article-title: Interactive dispatch modes and bidding strategy of multiple virtual power plants based on demand response and game theory
  publication-title: IEEE Trans. Smart Grid
– volume: 26
  start-page: 957
  year: 2011
  end-page: 964
  ident: bib0023
  article-title: Bidding strategy of virtual power plant for participating in energy and spinning reserve markets-Part II: Numerical analysis
  publication-title: IEEE Trans. Power Syst.
– volume: 24
  start-page: 795
  year: 2021
  end-page: 805
  ident: bib0027
  article-title: Optimum sitting and sizing of WTs, PVs, ESSs and EVCSs using hybrid soccer league competition-pattern search algorithm
  publication-title: Eng. Sci. Technol.Int. J.
– volume: 171
  start-page: 184
  year: 2016
  end-page: 199
  ident: bib0008
  article-title: A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response
  publication-title: Appl. Energy
– volume: 102
  start-page: 235
  year: 2018
  end-page: 244
  ident: bib0010
  article-title: Optimal dispatch of virtual power plant using interval and deterministic combined optimization
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 42
  start-page: 48
  year: 2018
  end-page: 55
  ident: bib0014
  article-title: Stackelberg game based coordinated dispatch of virtual power plant considering electric vehicle management
  publication-title: Autom. Electr. Power Syst.
– volume: 56
  start-page: 5901
  year: 2020
  end-page: 5912
  ident: bib0005
  article-title: A deep reinforcement learning method for pricing electric vehicles with discrete charging levels
  publication-title: IEEE Trans. Ind. Appl.
– start-page: 1
  year: 2021
  end-page: 12
  ident: bib0003
  article-title: Electric vehicle charging management based on deep reinforcement learning
  publication-title: J. Mod. Power Syst. Clean Energy
– volume: 8
  start-page: 4211
  year: 2021
  end-page: 4227
  ident: bib0032
  article-title: Consensus algorithms and deep reinforcement learning in energy market: a review
  publication-title: IEEE Internet Things J.
– volume: 39
  start-page: 4135
  year: 2019
  end-page: 4150
  ident: bib0018
  article-title: A nash game model of multi-agent participation in renewable energy consumption and the solving method via transfer reinforcement learning
  publication-title: Proc. CSEE
– volume: 12
  start-page: 1380
  year: 2020
  end-page: 1393
  ident: bib0015
  article-title: Mobility-aware charging scheduling for shared on-demand electric vehicle fleet using deep reinforcement learning
  publication-title: IEEE Trans. Smart Grid
– volume: 35
  start-page: 4180
  year: 2020
  end-page: 4192
  ident: bib0017
  article-title: Agent-based modeling in electricity market using deep deterministic policy gradient algorithm
  publication-title: IEEE Trans. Power Syst.
– volume: 105
  start-page: 282
  year: 2013
  end-page: 292
  ident: bib0024
  article-title: Offering model for a virtual power plant based on stochastic programming
  publication-title: Appl. Energy
– volume: 2
  start-page: 1
  year: 1973
  end-page: 23
  ident: bib0038
  article-title: Games with randomly disturbed payoffs: a new rationale for mixed-strategy equilibrium points
  publication-title: Int. J. Game Theory
– start-page: 1587
  year: 2018
  end-page: 1596
  ident: bib0030
  article-title: Addressing function approximation error in actor-critic methods
  publication-title: International Conference on Machine Learning
– reference: T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra, Continuous control with deep reinforcement learning,
– reference: .
– year: 2019
  ident: bib0026
  publication-title: Bidding strategy and coordinated dispatch of virtual power plant with multiple distributed energy resources
– volume: 30
  start-page: 136
  year: 2015
  end-page: 145
  ident: bib0025
  article-title: Optimal scheduling model of virtual power plant in a unified electricity trading market
  publication-title: Trans. China Electrotech. Soc.
– volume: 60
  start-page: 841
  year: 1992
  end-page: 846
  ident: bib0028
  article-title: Game theory
  publication-title: Economica
– year: 2021
  ident: bib0004
  article-title: Deep reinforcement learning for continuous electric vehicles charging control with dynamic user behaviors
  publication-title: IEEE Trans. Smart Grid
– start-page: 1861
  year: 2018
  end-page: 1870
  ident: bib0031
  article-title: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor
  publication-title: International Conference on Machine Learning
– volume: 19
  start-page: 2316
  year: 2019
  end-page: 2329
  ident: bib0019
  article-title: Free market of multi-leader multi-follower mobile crowdsensing: an incentive mechanism design by deep reinforcement learning
  publication-title: IEEE Trans. Mob. Comput.
– year: 2020
  ident: bib0021
  article-title: Downlink transmit power control in ultra-dense UAV network based on mean field game and deep reinforcement learning
  publication-title: IEEE Trans. Veh. Technol.
– year: 2018
  ident: bib0033
  article-title: Reinforcement Learning: An Introduction
– start-page: 1587
  year: 2018
  ident: 10.1016/j.epsr.2021.107714_bib0030
  article-title: Addressing function approximation error in actor-critic methods
– start-page: 1
  year: 2021
  ident: 10.1016/j.epsr.2021.107714_bib0003
  article-title: Electric vehicle charging management based on deep reinforcement learning
  publication-title: J. Mod. Power Syst. Clean Energy
– year: 2019
  ident: 10.1016/j.epsr.2021.107714_bib0026
– volume: 11
  start-page: 2427
  issue: 3
  year: 2019
  ident: 10.1016/j.epsr.2021.107714_bib0001
  article-title: Constrained EV charging scheduling based on safe deep reinforcement learning
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2019.2955437
– ident: 10.1016/j.epsr.2021.107714_bib0036
– volume: 12
  start-page: 1380
  issue: 2
  year: 2020
  ident: 10.1016/j.epsr.2021.107714_bib0015
  article-title: Mobility-aware charging scheduling for shared on-demand electric vehicle fleet using deep reinforcement learning
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2020.3025082
– volume: 60
  start-page: 841
  issue: 238
  year: 1992
  ident: 10.1016/j.epsr.2021.107714_bib0028
  article-title: Game theory
  publication-title: Economica
– volume: 11
  start-page: 1343
  issue: 2
  year: 2019
  ident: 10.1016/j.epsr.2021.107714_bib0016
  article-title: Deep reinforcement learning for strategic bidding in electricity markets
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2019.2936142
– volume: 39
  start-page: 4135
  issue: 14
  year: 2019
  ident: 10.1016/j.epsr.2021.107714_bib0018
  article-title: A nash game model of multi-agent participation in renewable energy consumption and the solving method via transfer reinforcement learning
  publication-title: Proc. CSEE
– volume: 35
  start-page: 4180
  issue: 6
  year: 2020
  ident: 10.1016/j.epsr.2021.107714_bib0017
  article-title: Agent-based modeling in electricity market using deep deterministic policy gradient algorithm
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2020.2999536
– volume: 11
  start-page: 2855
  issue: 4
  year: 2020
  ident: 10.1016/j.epsr.2021.107714_bib0009
  article-title: Bi-level programming for optimal operation of an active distribution network with multiple virtual power plants
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2020.2980317
– volume: 42
  start-page: 48
  issue: 11
  year: 2018
  ident: 10.1016/j.epsr.2021.107714_bib0014
  article-title: Stackelberg game based coordinated dispatch of virtual power plant considering electric vehicle management
  publication-title: Autom. Electr. Power Syst.
– volume: 7
  start-page: 6288
  issue: 7
  year: 2020
  ident: 10.1016/j.epsr.2021.107714_bib0012
  article-title: Deep reinforcement learning for economic dispatch of virtual power plant in internet of energy
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2966232
– volume: 105
  start-page: 282
  year: 2013
  ident: 10.1016/j.epsr.2021.107714_bib0024
  article-title: Offering model for a virtual power plant based on stochastic programming
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.12.077
– volume: 171
  start-page: 184
  year: 2016
  ident: 10.1016/j.epsr.2021.107714_bib0008
  article-title: A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.03.020
– start-page: 1861
  year: 2018
  ident: 10.1016/j.epsr.2021.107714_bib0031
  article-title: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor
– volume: 8
  start-page: 4211
  issue: 6
  year: 2021
  ident: 10.1016/j.epsr.2021.107714_bib0032
  article-title: Consensus algorithms and deep reinforcement learning in energy market: a review
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3032162
– year: 2021
  ident: 10.1016/j.epsr.2021.107714_bib0004
  article-title: Deep reinforcement learning for continuous electric vehicles charging control with dynamic user behaviors
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2021.3098298
– volume: 26
  start-page: 949
  issue: 2
  year: 2011
  ident: 10.1016/j.epsr.2021.107714_bib0022
  article-title: Bidding strategy of virtual power plant for participating in energy and spinning reserve markets-Part I: Problem formulation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2010.2070884
– volume: 14
  start-page: 159
  issue: 3
  year: 1967
  ident: 10.1016/j.epsr.2021.107714_bib0037
  article-title: Games with incomplete information played by “Bayesian” players, I–III Part I. The basic model
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.14.3.159
– volume: 102
  start-page: 235
  year: 2018
  ident: 10.1016/j.epsr.2021.107714_bib0010
  article-title: Optimal dispatch of virtual power plant using interval and deterministic combined optimization
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.04.011
– year: 2018
  ident: 10.1016/j.epsr.2021.107714_bib0033
– volume: 43
  start-page: 155
  issue: 3
  year: 2019
  ident: 10.1016/j.epsr.2021.107714_bib0013
  article-title: Game model of electricity market involving virtual power plant composed of wind power and electric vehicles
  publication-title: Autom. Electr. Power Syst.
– year: 2015
  ident: 10.1016/j.epsr.2021.107714_bib0007
  article-title: Optimal offering strategy of a virtual power plant: a stochastic bi-level approach
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2015.2419714
– volume: 26
  start-page: 957
  issue: 2
  year: 2011
  ident: 10.1016/j.epsr.2021.107714_bib0023
  article-title: Bidding strategy of virtual power plant for participating in energy and spinning reserve markets-Part II: Numerical analysis
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2010.2070883
– year: 2020
  ident: 10.1016/j.epsr.2021.107714_bib0021
  article-title: Downlink transmit power control in ultra-dense UAV network based on mean field game and deep reinforcement learning
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3043851
– ident: 10.1016/j.epsr.2021.107714_bib0029
– volume: 8
  start-page: 3075
  issue: 5
  year: 2021
  ident: 10.1016/j.epsr.2021.107714_bib0002
  article-title: CDDPG: a deep-reinforcement-learning-based approach for electric vehicle charging control
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3015204
– volume: 30
  start-page: 136
  issue: 23
  year: 2015
  ident: 10.1016/j.epsr.2021.107714_bib0025
  article-title: Optimal scheduling model of virtual power plant in a unified electricity trading market
  publication-title: Trans. China Electrotech. Soc.
– year: 2020
  ident: 10.1016/j.epsr.2021.107714_bib0020
  article-title: Multi-agent actor-critic network-based incentive mechanism for mobile crowdsensing in industrial systems
  publication-title: IEEE Trans. Ind. Inf.
– ident: 10.1016/j.epsr.2021.107714_bib0035
  doi: 10.37478/jpe.v6i1.981
– volume: 7
  start-page: 510
  issue: 1
  year: 2015
  ident: 10.1016/j.epsr.2021.107714_bib0006
  article-title: Interactive dispatch modes and bidding strategy of multiple virtual power plants based on demand response and game theory
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2015.2409121
– volume: 35
  start-page: 36
  issue: 14
  year: 2011
  ident: 10.1016/j.epsr.2021.107714_bib0034
  article-title: Study on plug-in electric vehicles charging load calculating
  publication-title: Autom. Electr. Power Syst.
– volume: 56
  start-page: 5901
  issue: 5
  year: 2020
  ident: 10.1016/j.epsr.2021.107714_bib0005
  article-title: A deep reinforcement learning method for pricing electric vehicles with discrete charging levels
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2020.2984614
– volume: 54
  start-page: 3044
  issue: 4
  year: 2018
  ident: 10.1016/j.epsr.2021.107714_bib0011
  article-title: A bidding strategy for virtual power plants with the Intraday demand response exchange market using the stochastic programming
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2018.2828379
– volume: 19
  start-page: 2316
  issue: 10
  year: 2019
  ident: 10.1016/j.epsr.2021.107714_bib0019
  article-title: Free market of multi-leader multi-follower mobile crowdsensing: an incentive mechanism design by deep reinforcement learning
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2019.2927314
– volume: 2
  start-page: 1
  issue: 1
  year: 1973
  ident: 10.1016/j.epsr.2021.107714_bib0038
  article-title: Games with randomly disturbed payoffs: a new rationale for mixed-strategy equilibrium points
  publication-title: Int. J. Game Theory
  doi: 10.1007/BF01737554
– volume: 24
  start-page: 795
  issue: 3
  year: 2021
  ident: 10.1016/j.epsr.2021.107714_bib0027
  article-title: Optimum sitting and sizing of WTs, PVs, ESSs and EVCSs using hybrid soccer league competition-pattern search algorithm
  publication-title: Eng. Sci. Technol.Int. J.
SSID ssj0006975
Score 2.5718927
Snippet •VPP agent and EV charging station agent games to obtain electricity price.•The VPP tends to use mixed strategy, while EVs tend to use pure strategies.•Using...
Virtual power plants (VPPs), which aggregate customer-side flexibility resources, provide an effective way for customers to participate in the electricity...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107714
SubjectTerms Algorithms
Customers
Deep learning
Deep reinforcement learning
Distributed generation
Electric vehicle
Electric vehicle charging
Electric vehicle charging stations
Electric vehicles
Electricity distribution
Energy sources
Game theory
Machine learning
Real-time dispatch
Resource scheduling
Scheduling
Stackelberg game
Stochastic strategy
Strategy
Virtual power plant
Virtual power plants
Title Virtual power plant containing electric vehicles scheduling strategies based on deep reinforcement learning
URI https://dx.doi.org/10.1016/j.epsr.2021.107714
https://www.proquest.com/docview/2673620496
Volume 205
WOSCitedRecordID wos000793739800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgM8IK5iMJAfeIsitXFjx48TGgI0TUgMVJ4ix3bWblVWtU21X8Dv5hxfkq4TEyDxElVuY1c-X3wuOec7hLyrQQtUsmLpWFiRjk1epdLqccoAH9YOtcyU61pyIk5Pi8lEfhkMfsZamM1cNE1xfS0X_1XUMAbCxtLZvxB3NykMwGcQOlxB7HD9I8F_ny1dTcgC-59hl-hm7RLSfSuIxPe9melkY6cuJS4B_xb0zdwHFiJzRILqzeCrBGPtIllax7CqXTAxtpo4vxHWj_P6dT1DNL6T2AqXucB9SAEGWMYZMP2n9SHbaYvMHd1R1IaMgOZ8NW3j6MkszPEDEIvfbUcuwOntE15cOO1WSY0v4wK3VggZ-LH9qVwIBjIOscpwbGeuXPu2CvDRiAvQ5ivke81GMCSEr1Tdodb-iovhWuD3DrnMxT2yn4lcwgG_f_TpePK50-lcOsrm7s-F8iufKbi70u9MnB1l7yyYs8fkUXA96JGHzBMysM1T8nCLkPIZuQzgoU6I1IGH9uChETw0gof24KE9eKgDD71qKIKH3gAPjeB5Tr59OD57_zEN7ThSzbJinRpeiWqkC65yw8HR5dYoZhja4DnXNViqUlthVQ1nem2V0EwaZoXgw3qotGXsBdlrrhr7ktCxqlSmRrUc1QYMokrxGjsraAPuMxiR4oCM4g6WOnDVY8uUeRmTEi9K3PUSd730u35Aku6ehWdqufPXeRRMGWxNb0OWgKM77zuMUizDQ78qM0yOBHxK_uofp31NHvRPyCHZWy9b-4bc15v1bLV8G9D4Cwwus30
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtual+power+plant+containing+electric+vehicles+scheduling+strategies+based+on+deep+reinforcement+learning&rft.jtitle=Electric+power+systems+research&rft.au=Wang%2C+Jianing&rft.au=Guo%2C+Chunlin&rft.au=Yu%2C+Changshu&rft.au=Liang%2C+Yanchang&rft.date=2022-04-01&rft.pub=Elsevier+B.V&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=205&rft_id=info:doi/10.1016%2Fj.epsr.2021.107714&rft.externalDocID=S0378779621006957
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon