Algorithms for Bayesian network modeling and reliability inference of complex multistate systems: Part I – Independent systems

•Multistate compression and inference algorithms are applicable to any complex systems.•Given the evidence, backward inference algorithm can update the probability distributions of all nodes.•The potential application of the proposed algorithms in the reliability-based optimization for complex engin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Reliability engineering & system safety Ročník 202; s. 107011
Hlavní autori: Zheng, Xiaohu, Yao, Wen, Xu, Yingchun, Chen, Xiaoqian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Barking Elsevier Ltd 01.10.2020
Elsevier BV
Predmet:
ISSN:0951-8320, 1879-0836
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Multistate compression and inference algorithms are applicable to any complex systems.•Given the evidence, backward inference algorithm can update the probability distributions of all nodes.•The potential application of the proposed algorithms in the reliability-based optimization for complex engineering systems. As the number of complex multistate systems’ components increases, one major challenge to analyze the reliabilities of complex multistate systems by Bayesian network (BN) is that the memory storage requirements (MSRs) of conditional probability table (CPT) increase exponentially. When the components reach a certain amount, the MSRs of CPT will exceed the computer's random access memory (RAM). To solve this problem, this two-part paper proposes a novel multistate compression algorithm to compress the CPT so that the MSRs of CPT can be reduced apparently. In this Part I, an independent multistate inference algorithm is proposed to perform the inference of BN based on the compressed CPT for the complex multistate independent systems. Given the evidence of system, the backward inference algorithm is proposed to update the probability distributions of compoents. The above proposed algorithms can be generally applied to any complex multistate independent system without constraints on system structure and state configurations. In addition, the Part II studies the application of compression idea in the complex multistate dependent systems. Finally, two case studies are used to validate the performance of the proposed algorithms.
AbstractList •Multistate compression and inference algorithms are applicable to any complex systems.•Given the evidence, backward inference algorithm can update the probability distributions of all nodes.•The potential application of the proposed algorithms in the reliability-based optimization for complex engineering systems. As the number of complex multistate systems’ components increases, one major challenge to analyze the reliabilities of complex multistate systems by Bayesian network (BN) is that the memory storage requirements (MSRs) of conditional probability table (CPT) increase exponentially. When the components reach a certain amount, the MSRs of CPT will exceed the computer's random access memory (RAM). To solve this problem, this two-part paper proposes a novel multistate compression algorithm to compress the CPT so that the MSRs of CPT can be reduced apparently. In this Part I, an independent multistate inference algorithm is proposed to perform the inference of BN based on the compressed CPT for the complex multistate independent systems. Given the evidence of system, the backward inference algorithm is proposed to update the probability distributions of compoents. The above proposed algorithms can be generally applied to any complex multistate independent system without constraints on system structure and state configurations. In addition, the Part II studies the application of compression idea in the complex multistate dependent systems. Finally, two case studies are used to validate the performance of the proposed algorithms.
As the number of complex multistate systems' components increases, one major challenge to analyze the reliabilities of complex multistate systems by Bayesian network (BN) is that the memory storage requirements (MSRs) of conditional probability table (CPT) increase exponentially. When the components reach a certain amount, the MSRs of CPT will exceed the computer's random access memory (RAM). To solve this problem, this two-part paper proposes a novel multistate compression algorithm to compress the CPT so that the MSRs of CPT can be reduced apparently. In this Part I, an independent multistate inference algorithm is proposed to perform the inference of BN based on the compressed CPT for the complex multistate independent systems. Given the evidence of system, the backward inference algorithm is proposed to update the probability distributions of compoents. The above proposed algorithms can be generally applied to any complex multistate independent system without constraints on system structure and state configurations. In addition, the Part II studies the application of compression idea in the complex multistate dependent systems. Finally, two case studies are used to validate the performance of the proposed algorithms.
ArticleNumber 107011
Author Zheng, Xiaohu
Xu, Yingchun
Chen, Xiaoqian
Yao, Wen
Author_xml – sequence: 1
  givenname: Xiaohu
  surname: Zheng
  fullname: Zheng, Xiaohu
  organization: College of Aerospace Science and Engineering, National University of Defense Technology, No. 109 Deya Road, Kaifu District, Changsha, Hunan Province, China 410073
– sequence: 2
  givenname: Wen
  surname: Yao
  fullname: Yao, Wen
  email: wendy0782@126.com
  organization: National Innovation Institute of Defense Technology, Chinese Academy of Military Science, No.53, East Main Street, Fengtai District, Beijing, China 100071
– sequence: 3
  givenname: Yingchun
  surname: Xu
  fullname: Xu, Yingchun
  organization: College of Aerospace Science and Engineering, National University of Defense Technology, No. 109 Deya Road, Kaifu District, Changsha, Hunan Province, China 410073
– sequence: 4
  givenname: Xiaoqian
  surname: Chen
  fullname: Chen, Xiaoqian
  organization: National Innovation Institute of Defense Technology, Chinese Academy of Military Science, No.53, East Main Street, Fengtai District, Beijing, China 100071
BookMark eNp9kDtOxDAQQC0EEsvnAlSWqLP4k8QJogHEZyUkKKC2HGcMXhJ7sb3AdtyBG3ISEi00FDQzo5l5tubtoE3nHSB0QMmUEloezacBYpwywsaGIJRuoAmtRJ2RipebaELqgmYVZ2Qb7cQ4J4TkdSEm6OO0e_TBpqc-YuMDPlMriFY57CC9-fCMe99CZ90jVq7FYShVYzubVtg6AwGcBuwN1r5fdPCO-2WXbEwqAY6rmKCPx_hOhYRn-OvjE89cCwsYgku_8z20ZVQXYf8n76KHy4v78-vs5vZqdn56k2nOqpS1NM9Z05qcF6LkBFRBTFPpBnhTmRxKphshhCHQiJwKVQCteVmrFqDhkEPOd9Hh-t1F8C9LiEnO_TK44UvJClIIRmtaDFtsvaWDjzGAkYtgexVWkhI5mpZzOZqWo2m5Nj1A1R9I20GB9S4FZbv_0ZM1CsPprxaCjNqOUlsbQCfZevsf_g3eBJ-T
CitedBy_id crossref_primary_10_1002_qre_3313
crossref_primary_10_3390_e27090897
crossref_primary_10_1016_j_eswa_2024_124875
crossref_primary_10_1016_j_engappai_2023_106354
crossref_primary_10_1016_j_ress_2024_110036
crossref_primary_10_1016_j_microrel_2023_114904
crossref_primary_10_1007_s40747_023_01167_4
crossref_primary_10_1007_s12206_024_0726_4
crossref_primary_10_1016_j_ress_2022_108813
crossref_primary_10_1007_s00158_022_03383_x
crossref_primary_10_1007_s10479_023_05262_0
crossref_primary_10_1016_j_ress_2021_107952
crossref_primary_10_1016_j_ress_2022_108732
crossref_primary_10_1016_j_ress_2023_109568
crossref_primary_10_1016_j_apm_2023_06_024
crossref_primary_10_1016_j_ress_2024_110225
crossref_primary_10_1016_j_ress_2021_108050
crossref_primary_10_1016_j_ress_2023_109663
Cites_doi 10.1016/S0167-4730(01)00017-0
10.1016/S0951-8320(03)00121-2
10.1016/j.ress.2019.04.011
10.1016/j.ress.2013.02.014
10.1109/TIT.1977.1055714
10.1016/j.jneumeth.2011.10.025
10.1016/j.ress.2017.05.003
10.1061/(ASCE)CP.1943-5487.0000699
10.1016/j.ress.2005.11.037
10.1016/j.ress.2013.12.001
10.1016/0004-3702(86)90072-X
10.1016/j.paerosci.2011.05.001
10.1061/(ASCE)IS.1943-555X.0000384
10.1109/TR.2015.2419620
10.1016/j.ress.2016.07.022
10.1007/BFb0055097
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Oct 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Oct 2020
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2020.107011
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2020_107011
S0951832020305123
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
SOI
ID FETCH-LOGICAL-c328t-d1442bdf4357630ea50fb8cbe3b8f4e62cb777f0eb7417a5e19369adeeb3e4e43
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564277900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Wed Aug 13 04:18:32 EDT 2025
Tue Nov 18 22:38:29 EST 2025
Sat Nov 29 07:11:32 EST 2025
Fri Feb 23 02:46:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Complex multistate independent systems
compression algorithm
reliability analysis
Bayesian network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-d1442bdf4357630ea50fb8cbe3b8f4e62cb777f0eb7417a5e19369adeeb3e4e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2505721915
PQPubID 2045406
ParticipantIDs proquest_journals_2505721915
crossref_primary_10_1016_j_ress_2020_107011
crossref_citationtrail_10_1016_j_ress_2020_107011
elsevier_sciencedirect_doi_10_1016_j_ress_2020_107011
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Tien, Kiureghian (bib0009) 2017; 23
Zheng, Yao, Xu, Chen (bib0026) 2019; 189
Tien (bib0010) 2017
Gu, Yang (bib0024) 2013
Hauck EL. Data compression using run length encoding and statistical encoding. US Patent 4626829 A; 1986.
Li, Li, Liu, Uk Kim (bib0021) 2014; 124
Pearl (bib0006) 1986; 29
Zhang, Zhang, Wang, Wang (bib0023) 2016; 7
Mahadevan, Zhang, Smith (bib0004) 2001; 23
Mi, Li, Liu, Yang, Huang (bib0017) 2015; 64
Zheng, Yao, Xu, Chen (bib0027) 2019
Plandowski, Rytter (bib0014) 1998; 1443
Hauck, Wilson (bib0012) 2002
Mi, Cheng, Song, Bai, Chen (bib0015) 2019
Tien, Kiureghian (bib0008) 2016; 156
Mi, Li, Peng, Huang (bib0016) 2018
Yao, Chen, Huang, Van (bib0001) 2013; 116
Pearl (bib0005) 1988
Xu, Yao, Zheng, Chen (bib0003) 2019
Zhang, Agravat, Derado, Chen, McIntosh, Bowman (bib0032) 2012; 204
Yao, Chen, Luo, Tooren, Guo (bib0002) 2011; 47
Ziv, Lempel (bib0013) 1977; 23
Murphy (bib0031) 2001
Langseth, Portinale (bib0007) 2005; 92
Levitin (bib0018) 2003; 82
Su, Lin, Fu (bib0022) 2016; 230
Tong, Tien (bib0025) 2017; 31
Dechter (bib0028) 1998
Dialsingh (bib0030) 2014; 41
Fenton N, Neil M. Risk Assessment and Decision Analysis with Bayesian Networks: Taylor and Francis.
Levitin, Jia, Yi, Song, Dai (bib0019) 2017; 167
Zhou Z, Jin G, Dong D, Zhou J. Reliability analysis of multistate systems based on Bayesian networks. IEEE. p. 6 pp.-352.
Yao (10.1016/j.ress.2020.107011_bib0002) 2011; 47
Mi (10.1016/j.ress.2020.107011_bib0016) 2018
Mi (10.1016/j.ress.2020.107011_bib0017) 2015; 64
Tien (10.1016/j.ress.2020.107011_bib0010) 2017
Langseth (10.1016/j.ress.2020.107011_bib0007) 2005; 92
Zheng (10.1016/j.ress.2020.107011_bib0027) 2019
10.1016/j.ress.2020.107011_bib0029
Yao (10.1016/j.ress.2020.107011_bib0001) 2013; 116
Murphy (10.1016/j.ress.2020.107011_bib0031) 2001
Li (10.1016/j.ress.2020.107011_bib0021) 2014; 124
Ziv (10.1016/j.ress.2020.107011_bib0013) 1977; 23
Tien (10.1016/j.ress.2020.107011_bib0008) 2016; 156
Su (10.1016/j.ress.2020.107011_bib0022) 2016; 230
10.1016/j.ress.2020.107011_bib0020
Gu (10.1016/j.ress.2020.107011_bib0024) 2013
Levitin (10.1016/j.ress.2020.107011_bib0018) 2003; 82
Pearl (10.1016/j.ress.2020.107011_bib0006) 1986; 29
Hauck (10.1016/j.ress.2020.107011_bib0012) 2002
Zhang (10.1016/j.ress.2020.107011_bib0023) 2016; 7
Pearl (10.1016/j.ress.2020.107011_bib0005) 1988
Zhang (10.1016/j.ress.2020.107011_bib0032) 2012; 204
Xu (10.1016/j.ress.2020.107011_bib0003) 2019
Dechter (10.1016/j.ress.2020.107011_bib0028) 1998
Mahadevan (10.1016/j.ress.2020.107011_bib0004) 2001; 23
10.1016/j.ress.2020.107011_bib0011
Levitin (10.1016/j.ress.2020.107011_bib0019) 2017; 167
Dialsingh (10.1016/j.ress.2020.107011_bib0030) 2014; 41
Tien (10.1016/j.ress.2020.107011_bib0009) 2017; 23
Mi (10.1016/j.ress.2020.107011_bib0015) 2019
Tong (10.1016/j.ress.2020.107011_bib0025) 2017; 31
Zheng (10.1016/j.ress.2020.107011_bib0026) 2019; 189
Plandowski (10.1016/j.ress.2020.107011_bib0014) 1998; 1443
References_xml – volume: 189
  start-page: 123
  year: 2019
  end-page: 142
  ident: bib0026
  article-title: Improved compression inference algorithm for reliability analysis of complex multistate satellite system based on multilevel Bayesian network
  publication-title: Reliability Engineering & System Safety
– year: 2018
  ident: bib0016
  article-title: Reliability modeling and analysis of complex multi-state system based on interval fuzzy Bayesian network
  publication-title: Scientia Sinica
– volume: 204
  start-page: 133
  year: 2012
  end-page: 143
  ident: bib0032
  article-title: BSMac: a MATLAB toolbox implementing a Bayesian spatial model for brain activation and connectivity
  publication-title: Journal Of Neuroscience Methods
– volume: 47
  start-page: 450
  year: 2011
  end-page: 479
  ident: bib0002
  article-title: Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles
  publication-title: Progress in Aerospace Sciences
– start-page: 417
  year: 2017
  end-page: 452
  ident: bib0010
  article-title: Bayesian Network Methods for Modeling and Reliability Assessment of Infrastructure Systems
  publication-title: Risk and Reliability Analysis: Theory and Applications
– volume: 92
  start-page: 92
  year: 2005
  end-page: 108
  ident: bib0007
  article-title: Bayesian networks in reliability
  publication-title: Reliability Engineering & System Safety
– year: 1998
  ident: bib0028
  article-title: Bucket Elimination: A Unifying Framework for Probabilistic Inference
– volume: 29
  start-page: 241
  year: 1986
  end-page: 288
  ident: bib0006
  article-title: Fusion, propagation, and structuring in belief networks
  publication-title: Artificial Intelligence
– volume: 124
  start-page: 158
  year: 2014
  end-page: 164
  ident: bib0021
  article-title: Bayesian modeling of multi-state hierarchical systems with multi-level information aggregation
  publication-title: Reliability Engineering and System Safety
– year: 2001
  ident: bib0031
  article-title: The Bayes Net Toolbox for Matlab
  publication-title: Computing Science and Statistics: Proceedings of the Interface
– volume: 116
  start-page: 28
  year: 2013
  end-page: 37
  ident: bib0001
  article-title: An enhanced unified uncertainty analysis approach based on first order reliability method with single-level optimization
  publication-title: Reliability Engineering & System Safety
– year: 1988
  ident: bib0005
  article-title: Reasoning in Intelligent Systems: Networks of Plausible Inference
– volume: 156
  start-page: 134
  year: 2016
  end-page: 147
  ident: bib0008
  article-title: Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems
  publication-title: Reliability Engineering & System Safety
– reference: Fenton N, Neil M. Risk Assessment and Decision Analysis with Bayesian Networks: Taylor and Francis.
– year: 2019
  ident: bib0015
  article-title: Application of dynamic evidential networks in reliability analysis of complex systems with epistemic uncertainty and multiple life distributions
  publication-title: Annals of Operations Research
– volume: 64
  start-page: 1
  year: 2015
  end-page: 10
  ident: bib0017
  article-title: Belief Universal Generating Function Analysis of Multi-State Systems Under Epistemic Uncertainty and Common Cause Failures
  publication-title: IEEE Transactions on Reliability
– volume: 23
  start-page: 231
  year: 2001
  end-page: 251
  ident: bib0004
  article-title: Bayesian networks for system reliability reassessment
  publication-title: Structural Safety
– volume: 167
  start-page: 192
  year: 2017
  end-page: 197
  ident: bib0019
  article-title: Reliability of multi-state systems with free access to repairable standby elements
  publication-title: Reliability Engineering & System Safety
– volume: 23
  start-page: 337
  year: 1977
  end-page: 343
  ident: bib0013
  article-title: A Universal Algorithm for Sequential Data Compression
  publication-title: IEEE Transactions on Information Theory
– year: 2019
  ident: bib0027
  article-title: Algorithms for Bayesian network modeling and reliability inference of complex multistate system: Part II – Dependent system
  publication-title: Reliability Engineering & System Safety
– volume: 41
  start-page: 910
  year: 2014
  ident: bib0030
  article-title: Risk assessment and decision analysis with Bayesian networks
  publication-title: Journal of Applied Statistics
– volume: 7
  start-page: 16
  year: 2016
  end-page: 24
  ident: bib0023
  article-title: Reliability evaluation of a multi-state system based on interval-valued triangular fuzzy Bayesian networks
  publication-title: International Journal of System Assurance Engineering and Management
– volume: 82
  start-page: 55
  year: 2003
  end-page: 62
  ident: bib0018
  article-title: Common supply failures in linear multi-state sliding window systems
  publication-title: Reliability Engineering & System Safety
– start-page: 1234
  year: 2019
  end-page: 1240
  ident: bib0003
  article-title: Multi-prior integration method for system reliability analysis based on bayesian network and bayesian melding method
  publication-title: International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering
– reference: Hauck EL. Data compression using run length encoding and statistical encoding. US Patent 4626829 A; 1986.
– start-page: 286
  year: 2002
  ident: bib0012
  article-title: Runlength Compression Techniques for FPGA Configurations
  publication-title: IEEE Symposium on Field-programmable Custom Computing Machines
– volume: 31
  year: 2017
  ident: bib0025
  article-title: Algorithms for Bayesian Network Modeling, Inference, and Reliability Assessment for Multistate Flow Networks
  publication-title: Journal of Computing in Civil Engineering
– volume: 230
  start-page: 533
  year: 2016
  end-page: 544
  ident: bib0022
  article-title: Multi-state reliability assessment for hydraulic lifting system based on the theory of dynamic Bayesian networks
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability
– volume: 23
  year: 2017
  ident: bib0009
  article-title: Reliability Assessment of Critical Infrastructure Using Bayesian Networks
  publication-title: Journal of Infrastructure Systems
– reference: Zhou Z, Jin G, Dong D, Zhou J. Reliability analysis of multistate systems based on Bayesian networks. IEEE. p. 6 pp.-352.
– volume: 1443
  start-page: 731
  year: 1998
  end-page: 742
  ident: bib0014
  article-title: Application of Lempel-Ziv encodings to the solution of word equations
  publication-title: Automata, Languages and Programming
– start-page: 332
  year: 2013
  end-page: 336
  ident: bib0024
  article-title: Reliability analysis of multi-state systems based on Bayesian network
  publication-title: International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering
– volume: 23
  start-page: 231
  year: 2001
  ident: 10.1016/j.ress.2020.107011_bib0004
  article-title: Bayesian networks for system reliability reassessment
  publication-title: Structural Safety
  doi: 10.1016/S0167-4730(01)00017-0
– start-page: 417
  year: 2017
  ident: 10.1016/j.ress.2020.107011_bib0010
  article-title: Bayesian Network Methods for Modeling and Reliability Assessment of Infrastructure Systems
– year: 2019
  ident: 10.1016/j.ress.2020.107011_bib0015
  article-title: Application of dynamic evidential networks in reliability analysis of complex systems with epistemic uncertainty and multiple life distributions
  publication-title: Annals of Operations Research
– volume: 82
  start-page: 55
  year: 2003
  ident: 10.1016/j.ress.2020.107011_bib0018
  article-title: Common supply failures in linear multi-state sliding window systems
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/S0951-8320(03)00121-2
– year: 2019
  ident: 10.1016/j.ress.2020.107011_bib0027
  article-title: Algorithms for Bayesian network modeling and reliability inference of complex multistate system: Part II – Dependent system
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2019.04.011
– volume: 116
  start-page: 28
  year: 2013
  ident: 10.1016/j.ress.2020.107011_bib0001
  article-title: An enhanced unified uncertainty analysis approach based on first order reliability method with single-level optimization
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2013.02.014
– start-page: 332
  year: 2013
  ident: 10.1016/j.ress.2020.107011_bib0024
  article-title: Reliability analysis of multi-state systems based on Bayesian network
– volume: 23
  start-page: 337
  issue: 3
  year: 1977
  ident: 10.1016/j.ress.2020.107011_bib0013
  article-title: A Universal Algorithm for Sequential Data Compression
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1977.1055714
– volume: 189
  start-page: 123
  year: 2019
  ident: 10.1016/j.ress.2020.107011_bib0026
  article-title: Improved compression inference algorithm for reliability analysis of complex multistate satellite system based on multilevel Bayesian network
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2019.04.011
– start-page: 286
  year: 2002
  ident: 10.1016/j.ress.2020.107011_bib0012
  article-title: Runlength Compression Techniques for FPGA Configurations
– volume: 204
  start-page: 133
  year: 2012
  ident: 10.1016/j.ress.2020.107011_bib0032
  article-title: BSMac: a MATLAB toolbox implementing a Bayesian spatial model for brain activation and connectivity
  publication-title: Journal Of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2011.10.025
– volume: 167
  start-page: 192
  year: 2017
  ident: 10.1016/j.ress.2020.107011_bib0019
  article-title: Reliability of multi-state systems with free access to repairable standby elements
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2017.05.003
– volume: 31
  year: 2017
  ident: 10.1016/j.ress.2020.107011_bib0025
  article-title: Algorithms for Bayesian Network Modeling, Inference, and Reliability Assessment for Multistate Flow Networks
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)CP.1943-5487.0000699
– volume: 92
  start-page: 92
  year: 2005
  ident: 10.1016/j.ress.2020.107011_bib0007
  article-title: Bayesian networks in reliability
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2005.11.037
– ident: 10.1016/j.ress.2020.107011_bib0011
– volume: 124
  start-page: 158
  year: 2014
  ident: 10.1016/j.ress.2020.107011_bib0021
  article-title: Bayesian modeling of multi-state hierarchical systems with multi-level information aggregation
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2013.12.001
– ident: 10.1016/j.ress.2020.107011_bib0029
– volume: 29
  start-page: 241
  year: 1986
  ident: 10.1016/j.ress.2020.107011_bib0006
  article-title: Fusion, propagation, and structuring in belief networks
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(86)90072-X
– volume: 47
  start-page: 450
  year: 2011
  ident: 10.1016/j.ress.2020.107011_bib0002
  article-title: Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles
  publication-title: Progress in Aerospace Sciences
  doi: 10.1016/j.paerosci.2011.05.001
– start-page: 1234
  year: 2019
  ident: 10.1016/j.ress.2020.107011_bib0003
  article-title: Multi-prior integration method for system reliability analysis based on bayesian network and bayesian melding method
– year: 1998
  ident: 10.1016/j.ress.2020.107011_bib0028
– year: 1988
  ident: 10.1016/j.ress.2020.107011_bib0005
– volume: 23
  year: 2017
  ident: 10.1016/j.ress.2020.107011_bib0009
  article-title: Reliability Assessment of Critical Infrastructure Using Bayesian Networks
  publication-title: Journal of Infrastructure Systems
  doi: 10.1061/(ASCE)IS.1943-555X.0000384
– volume: 64
  start-page: 1
  year: 2015
  ident: 10.1016/j.ress.2020.107011_bib0017
  article-title: Belief Universal Generating Function Analysis of Multi-State Systems Under Epistemic Uncertainty and Common Cause Failures
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2015.2419620
– volume: 156
  start-page: 134
  year: 2016
  ident: 10.1016/j.ress.2020.107011_bib0008
  article-title: Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2016.07.022
– volume: 7
  start-page: 16
  year: 2016
  ident: 10.1016/j.ress.2020.107011_bib0023
  article-title: Reliability evaluation of a multi-state system based on interval-valued triangular fuzzy Bayesian networks
  publication-title: International Journal of System Assurance Engineering and Management
– volume: 41
  start-page: 910
  year: 2014
  ident: 10.1016/j.ress.2020.107011_bib0030
  article-title: Risk assessment and decision analysis with Bayesian networks
  publication-title: Journal of Applied Statistics
– volume: 1443
  start-page: 731
  year: 1998
  ident: 10.1016/j.ress.2020.107011_bib0014
  article-title: Application of Lempel-Ziv encodings to the solution of word equations
  publication-title: Automata, Languages and Programming
  doi: 10.1007/BFb0055097
– volume: 230
  start-page: 533
  year: 2016
  ident: 10.1016/j.ress.2020.107011_bib0022
  article-title: Multi-state reliability assessment for hydraulic lifting system based on the theory of dynamic Bayesian networks
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability
– ident: 10.1016/j.ress.2020.107011_bib0020
– year: 2018
  ident: 10.1016/j.ress.2020.107011_bib0016
  article-title: Reliability modeling and analysis of complex multi-state system based on interval fuzzy Bayesian network
  publication-title: Scientia Sinica
– year: 2001
  ident: 10.1016/j.ress.2020.107011_bib0031
  article-title: The Bayes Net Toolbox for Matlab
SSID ssj0004957
Score 2.4359233
Snippet •Multistate compression and inference algorithms are applicable to any complex systems.•Given the evidence, backward inference algorithm can update the...
As the number of complex multistate systems' components increases, one major challenge to analyze the reliabilities of complex multistate systems by Bayesian...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107011
SubjectTerms Algorithms
Bayesian analysis
Bayesian network
Complex multistate independent systems
Component reliability
Compression
compression algorithm
Conditional probability
Inference
Network reliability
Random access memory
reliability analysis
Reliability engineering
Storage requirements
Title Algorithms for Bayesian network modeling and reliability inference of complex multistate systems: Part I – Independent systems
URI https://dx.doi.org/10.1016/j.ress.2020.107011
https://www.proquest.com/docview/2505721915
Volume 202
WOSCitedRecordID wos000564277900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE9RKGgP9GS58vqRtbmFkoigKFQoLb6t1va6oYqcNCRVeut_4C_xS_glzL5st4IIDlwsax9ey9-3s7PjmVmE3pQB51LouSQsuRvGXLhxoSYeDajn54mvfHNOR3Q8jtM0Oe50fthYmMsZrap4s0kW_xVqKAOwZejsP8BdPxQK4B5AhyvADte_Ar43O5vDjn-qMy047_iVUIGSlXb41mff2NDEJdzqTN1Xyi9L55y1ruZiox0OVdSRSfqsXOiOYVxn6FhPiQDEjD1Nd2XbtdXez61hRJMBUfFON3e-8dKkJNF2bKGFUPqVz6frWjZxZdn90sSvpWu1iMDD8um6Lj0yMSey94WdAMa2ARtZ6yVnDG510M3pDcMlcUEO6b85QovtmCYqz3Zbrvue35LM5LfrhTZdnB9K08ahfAMoop4R_zeSc48_scHJaMQm_XRyEAwWF648uUz-4T8I3msW3UG7Po0SkK27vWE__djE5yY646x9cxO8pf0Mbw_9JwXplqqg9J_JQ_TAbFxwTxPuEeqI6jG630pn-QRdN9TDQD1sqYcN9bClHgbq4Rb1cE09PC-xoR5uqIcNpd5iSTw8xD-vv-MW5Wz9U3Qy6E-OPrjmhA83D_x45RawnfezogSdHdY5T_DIK7M4z0SQxWUoun6eUUpLT2Sg-FIeCSLPn-SFEFkgQhEGz9BONa_Ec4S5T7qwetGSCD_k3SxJyrhLClpEUezRnOwhYj8ry036e3kKy4xZP8dzJqFgEgqmodhDTt1noZO_bG0dWbSYUV-1WsqAbVv77VtomZEjUC8NB6BNkOjF9uqX6F4zc_bRzmq5Fq_Q3fwSEFq-Nkz8BWm4x6s
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithms+for+Bayesian+network+modeling+and+reliability+inference+of+complex+multistate+systems%3A+Part+I+%E2%80%93+Independent+systems&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Zheng%2C+Xiaohu&rft.au=Yao%2C+Wen&rft.au=Xu%2C+Yingchun&rft.au=Chen%2C+Xiaoqian&rft.date=2020-10-01&rft.pub=Elsevier+BV&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=202&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ress.2020.107011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon