A hybrid recommendation system with many-objective evolutionary algorithm
•Recommend the more and novel items based on accurate and diverse recommendations.•Mixing multiple recommendation technologies to improve recommendation performance.•The system is based on rating, which makes the recommendation more objective.•Clustering strategies are used to reduce recommended con...
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 159; s. 113648 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Elsevier Ltd
30.11.2020
Elsevier BV |
| Témata: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | •Recommend the more and novel items based on accurate and diverse recommendations.•Mixing multiple recommendation technologies to improve recommendation performance.•The system is based on rating, which makes the recommendation more objective.•Clustering strategies are used to reduce recommended consumption.
Recommendation system (RS) is a technology that provides accurate recommendations to users. However, it is not comprehensive to only consider the accuracy of the recommendation because users have different requirements. To improve the comprehensive performance, this paper presents a hybrid recommendation model based on many-objective optimization, which can simultaneously optimize the accuracy, diversity, novelty and coverage of recommendation. This model enhances the robustness of recommendations by mixing three different basic recommendation technologies. Additionally, we solve it with many-objective evolutionary algorithm (MaOEA) and test it extensively. Experimental results demonstrate the effectiveness of the presented model, which can provide the recommendations with more and novel items on the basis of accurate and diverse. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0957-4174 1873-6793 |
| DOI: | 10.1016/j.eswa.2020.113648 |