Think deep in the tractography game: deep learning for tractography computing and analysis

Tractography is a challenging process with complex rules, driving continuous algorithmic evolution to address its challenges. Meanwhile, deep learning has tackled similarly difficult tasks, such as mastering the Go board game and animating sophisticated robots. Given its transformative impact in the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Brain Structure and Function Ročník 230; číslo 6; s. 100
Hlavní autori: Zhang, Fan, Théberge, Antoine, Jodoin, Pierre-Marc, Descoteaux, Maxime, O’Donnell, Lauren J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 16.06.2025
Springer Nature B.V
Predmet:
ISSN:1863-2661, 1863-2653, 1863-2661, 0340-2061
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Tractography is a challenging process with complex rules, driving continuous algorithmic evolution to address its challenges. Meanwhile, deep learning has tackled similarly difficult tasks, such as mastering the Go board game and animating sophisticated robots. Given its transformative impact in these areas, deep learning has the potential to revolutionize tractography within the framework of existing rules. This work provides a brief summary of recent advances and challenges in deep learning-based tractography computing and analysis.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:1863-2661
1863-2653
1863-2661
0340-2061
DOI:10.1007/s00429-025-02938-0