Enabling Multi-User M-MIMO for High-Mobility Users with Predictor Antennas: A Deep Analysis Based on Experimental NLOS Measurements

Predictor antenna channel measurements from a 64-antenna base station are used to investigate the effects of channel aging on the precoder design for high-mobility users in a non-line-of-sight (NLOS) massive multiple-input multiple-output (M-MIMO) environment. The effects are evaluated in terms of r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on vehicular technology Jg. 71; H. 7; S. 7456 - 7471
Hauptverfasser: Bjorsell, Joachim, Sternad, Mikael, Phan-Huy, Dinh-Thuy
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9545, 1939-9359, 1939-9359
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Predictor antenna channel measurements from a 64-antenna base station are used to investigate the effects of channel aging on the precoder design for high-mobility users in a non-line-of-sight (NLOS) massive multiple-input multiple-output (M-MIMO) environment. The effects are evaluated in terms of received downlink (DL) signal-to-interference-and-noise ratio (SINR) and the corresponding ergodic capacity bound. A simulated velocity of 150 km/h is used with a carrier frequency of 2.18 GHz. Maximum ratio (MR) and a codebook-based precoders are used to evaluate single-user transmission; and zero-forcing (ZF), regularized zero-forcing (RZF), and minimum mean-squared error (MMSE) precoders are used to evaluate multi-user transmission with up to nine active users in a cell. Furthermore, predictor antenna predictions are evaluated as a mean of combating channel aging. It is also investigated how the predictor antenna can be used during data reception. Simulations show that outdated channel estimates significantly reduce the SINR and consequently the capacity for all investigated transmission techniques. Basic predictor antenna predictions outperform the use of outdated channel estimates for delays larger than 0.6 ms. In single-user transmission, channel prediction can improve the capacity by 6-14%. The gain from multi-user transmission typically disappears when using outdated channel estimates older than 1 ms. In contrast, the use of predictor antennas enables MIMO for these high-mobility users, which is demonstrated to increase the capacity bound by 100% compared to 1 ms old channel estimates.
AbstractList Predictor antenna channel measurements from a 64-antenna base station are used to investigate the effects of channel aging on the precoder design for high-mobility users in a non-line-of-sight (NLOS) massive multiple-input multiple-output (M-MIMO) environment. The effects are evaluated in terms of received downlink (DL) signal-to-interference-and-noise ratio (SINR) and the corresponding ergodic capacity bound. A simulated velocity of 150 km/h is used with a carrier frequency of 2.18 GHz. Maximum ratio (MR) and a codebook-based precoders are used to evaluate single-user transmission; and zero-forcing (ZF), regularized zero-forcing (RZF), and minimum mean-squared error (MMSE) precoders are used to evaluate multi-user transmission with up to nine active users in a cell. Furthermore, predictor antenna predictions are evaluated as a mean of combating channel aging. It is also investigated how the predictor antenna can be used during data reception. Simulations show that outdated channel estimates significantly reduce the SINR and consequently the capacity for all investigated transmission techniques. Basic predictor antenna predictions outperform the use of outdated channel estimates for delays larger than 0.6 ms. In single-user transmission, channel prediction can improve the capacity by 6–14%. The gain from multi-user transmission typically disappears when using outdated channel estimates older than 1 ms. In contrast, the use of predictor antennas enables MIMO for these high-mobility users, which is demonstrated to increase the capacity bound by 100% compared to 1 ms old channel estimates.
Predictor antenna channel measurements from a 64-antenna base station are used to investigate the effects of channel aging on the precoder design for high-mobility users in a non-line-of-sight (NLOS) massive multiple-input multiple-output (M-MIMO) environment. The effects are evaluated in terms of received downlink (DL) signal-to-interference-and-noise ratio (SINR) and the corresponding ergodic capacity bound. A simulated velocity of 150 km/h is used with a carrier frequency of 2.18 GHz. Maximum ratio (MR) and a codebook-based precoders are used to evaluate single-user transmission and zero-forcing (ZF), regularized zero-forcing (RZF), and minimum mean-squared error (MMSE) precoders are used to evaluate multi-user transmission with up to nine active users in a cell. Furthermore, predictor antenna predictions are evaluated as a mean of combating channel aging. It is also investigated how the predictor antenna can be used during data reception. Simulations show that outdated channel estimates significantly reduce the SINR and consequently the capacity for all investigated transmission techniques. Basic predictor antenna predictions outperform the use of outdated channel estimates for delays larger than 0.6 ms. In single-user transmission, channel prediction can improve the capacity by 6–14%. The gain from multi-user transmission typically disappears when using outdated channel estimates older than 1 ms. In contrast, the use of predictor antennas enables multi-user MIMO for these high-mobility users, which is demonstrated to increase the capacity bound by 100% compared to 1 ms old channel estimates. 
Author Bjorsell, Joachim
Sternad, Mikael
Phan-Huy, Dinh-Thuy
Author_xml – sequence: 1
  givenname: Joachim
  orcidid: 0000-0002-6254-3348
  surname: Bjorsell
  fullname: Bjorsell, Joachim
  email: joachim.bjorsell@angstrom.uu.se
  organization: Department of Electrical Engineering, Uppsala University, Uppsala, Sweden
– sequence: 2
  givenname: Mikael
  orcidid: 0000-0003-0981-2665
  surname: Sternad
  fullname: Sternad, Mikael
  email: mikael.sternad@angstrom.uu.se
  organization: Department of Electrical Engineering, Uppsala University, Uppsala, Sweden
– sequence: 3
  givenname: Dinh-Thuy
  orcidid: 0000-0001-6827-2940
  surname: Phan-Huy
  fullname: Phan-Huy, Dinh-Thuy
  email: dinhthuy.phanhuy@orange.com
  organization: Orange Innovation, Châtillon, France
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-470622$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNp9kb1v2zAQxYkiBeqk3Qt0IdC1cvghiWI3N3GbAFZcoE5WgqJPDgOVVEkKqef-46XhIEOGTId7_L07Ht4pOnHeAUIfKZlTSuT55m4zZ4SxOae1qDl5g2ZUcllIXskTNCOENoWsyuodOo3xIbdlKekM_Vs63Q3W7XA7DckWtxECbov2ul3j3gd8ZXf3Res7O9i0x4fXiB9tusc_A2ytSRlZuATO6fgVL_AlwJgFPeyjjfibjrDF3uHl3xGC_Q0u6QHfrNa_cAs6TgEOUnyP3vZ6iPDhqZ6h2-_LzcVVsVr_uL5YrArDWZMKI0kpqDZVX4NhkmkuBK1A9iA63feGmrLe0qrXUmYiH5-FToieGyJFDYSfoS_HufERxqlTY_6SDnvltVWX9m6hfNipaVKlIDVjGf98xMfg_0wQk3rwU8i3RcXqRjZEVA3NFDlSJvgYA_TPYylRh2RUTkYdklFPyWRL_cJibNLJepeCtsNrxk9HowWA5z1SVKIpOf8PoFCdjQ
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_TVT_2024_3427648
crossref_primary_10_1109_TVT_2022_3168225
crossref_primary_10_1109_LCOMM_2024_3363155
crossref_primary_10_1109_TVT_2023_3343617
Cites_doi 10.1109/VTCFall.2017.8288043
10.1109/CC.2016.7405718
10.1109/MWSYM.2014.6848613
10.1109/TVT.2016.2594031
10.1109/26.795811
10.1109/GLOCOM.2000.891231
10.1109/MCOM.2013.6525596
10.1109/JPROC.2007.904443
10.1109/PIMRC.2017.8292235
10.1109/MCOM.001.2001205
10.1109/5GWF.2018.8517035
10.1109/MSP.2014.2312183
10.1109/TCOMM.2015.2493998
10.1561/2000000093
10.1109/PIMRC.2018.8580703
10.1155/2007/49393
10.1109/TWC.2010.092810.091092
10.1109/TVT.2022.3168225
10.1109/JSAC.2020.3005492
10.1109/TSP.2013.2260331
10.1109/CommNet49926.2020.9199631
10.1109/TIT.2014.2354403
10.1049/iet-map.2018.5633
10.1109/WCNCW.2012.6215501
10.1109/LSP.2016.2604347
10.1109/VTC2020-Spring48590.2020.9129578
10.1109/EuCAP.2014.6902201
10.1109/JCN.2013.000065
10.1109/TSP.2005.850331
10.1109/ICCW.2017.7962633
10.1109/PIMRC.2018.8581030
10.1109/LWC.2020.3010579
10.1109/MCOM.2014.6815892
10.1109/LWC.2019.2958353
10.1109/TWC.2005.850327
10.1109/TVT.2016.2570742
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ADTPV
AOWAS
DF2
DOI 10.1109/TVT.2022.3167630
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 7471
ExternalDocumentID oai_DiVA_org_uu_470622
10_1109_TVT_2022_3167630
9757843
Genre orig-research
GrantInformation_xml – fundername: Uppsala Universitet; Uppsala University
  grantid: H1221
  funderid: 10.13039/501100007051
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-c328t-c90471ac5f6ec292a37715e9fe7baffc1c46d15fa99f6e1931c4b77f3c0976e03
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000876768200049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9545
1939-9359
IngestDate Tue Nov 04 17:16:49 EST 2025
Mon Jun 30 10:14:59 EDT 2025
Sat Nov 29 02:59:01 EST 2025
Tue Nov 18 21:59:36 EST 2025
Wed Aug 27 02:25:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-c90471ac5f6ec292a37715e9fe7baffc1c46d15fa99f6e1931c4b77f3c0976e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0981-2665
0000-0001-6827-2940
0000-0002-6254-3348
PQID 2689807581
PQPubID 85454
PageCount 16
ParticipantIDs ieee_primary_9757843
crossref_citationtrail_10_1109_TVT_2022_3167630
proquest_journals_2689807581
crossref_primary_10_1109_TVT_2022_3167630
swepub_primary_oai_DiVA_org_uu_470622
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref32
Phan-Huy (ref33) 2018
ref2
ref17
ref39
ref16
ref38
ref19
ref18
Aronsson (ref42) 2011
ref24
ref23
Phan-Huy (ref22) 2016
ref25
Phan-Huy (ref26) 2021
ref20
ref41
ref21
(ref1) 2017
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref9
  doi: 10.1109/VTCFall.2017.8288043
– ident: ref2
  doi: 10.1109/CC.2016.7405718
– ident: ref14
  doi: 10.1109/MWSYM.2014.6848613
– ident: ref7
  doi: 10.1109/TVT.2016.2594031
– ident: ref13
  doi: 10.1109/26.795811
– ident: ref36
  doi: 10.1109/GLOCOM.2000.891231
– start-page: 1
  volume-title: Proc. Int. ITG Workshop Smart Antennas
  year: 2021
  ident: ref26
  article-title: Predictor antenna for robust non reciprocity based beamforming at high speed
– ident: ref18
  doi: 10.1109/MCOM.2013.6525596
– ident: ref39
  doi: 10.1109/JPROC.2007.904443
– ident: ref24
  doi: 10.1109/PIMRC.2017.8292235
– ident: ref32
  doi: 10.1109/MCOM.001.2001205
– ident: ref10
  doi: 10.1109/5GWF.2018.8517035
– ident: ref16
  doi: 10.1109/MSP.2014.2312183
– ident: ref5
  doi: 10.1109/TCOMM.2015.2493998
– start-page: 1
  volume-title: Proc. IEEE Globecom Workshops
  year: 2016
  ident: ref22
– ident: ref17
  doi: 10.1561/2000000093
– ident: ref12
  doi: 10.1109/PIMRC.2018.8580703
– ident: ref40
  doi: 10.1155/2007/49393
– ident: ref3
  doi: 10.1109/TWC.2010.092810.091092
– ident: ref27
  doi: 10.1109/TVT.2022.3168225
– ident: ref19
  doi: 10.1109/JSAC.2020.3005492
– ident: ref35
  doi: 10.1109/TSP.2013.2260331
– year: 2017
  ident: ref1
  article-title: Minimum requirements related to technical performance for IMT-2020 radio interface(s)
– ident: ref30
  doi: 10.1109/CommNet49926.2020.9199631
– start-page: 1
  volume-title: Proc. Int. ITG Workshop Smart Antennas
  year: 2018
  ident: ref33
  article-title: Adaptive massive MIMO for fast moving connected vehicles : It will work with predictor antennas!
– ident: ref38
  doi: 10.1109/TIT.2014.2354403
– ident: ref28
  doi: 10.1049/iet-map.2018.5633
– ident: ref20
  doi: 10.1109/WCNCW.2012.6215501
– ident: ref8
  doi: 10.1109/LSP.2016.2604347
– ident: ref11
  doi: 10.1109/VTC2020-Spring48590.2020.9129578
– ident: ref21
  doi: 10.1109/EuCAP.2014.6902201
– ident: ref4
  doi: 10.1109/JCN.2013.000065
– ident: ref15
  doi: 10.1109/TSP.2005.850331
– ident: ref23
  doi: 10.1109/ICCW.2017.7962633
– ident: ref25
  doi: 10.1109/PIMRC.2018.8581030
– ident: ref31
  doi: 10.1109/LWC.2020.3010579
– year: 2011
  ident: ref42
  article-title: Channel estimation and prediction for MIMO OFDM systems - Key design and performance aspects of Kalman-based algorithms
– ident: ref41
  doi: 10.1109/MCOM.2014.6815892
– ident: ref29
  doi: 10.1109/LWC.2019.2958353
– ident: ref37
  doi: 10.1109/TWC.2005.850327
– ident: ref6
  doi: 10.1109/TVT.2016.2570742
SSID ssj0014491
Score 2.404256
Snippet Predictor antenna channel measurements from a 64-antenna base station are used to investigate the effects of channel aging on the precoder design for...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7456
SubjectTerms Aging
Antenna arrays
Antenna measurements
Antennas
Carrier frequencies
Channel estimation
Channel prediction
Delays
Electrical Engineering with specialization in Signal Processing
Elektroteknik med inriktning mot signalbehandling
Estimates
Evaluation
High-mobility
M-MIMO
MIMO communication
outdated channel state information (CSI)
Precoding
Predictor antenna
Title Enabling Multi-User M-MIMO for High-Mobility Users with Predictor Antennas: A Deep Analysis Based on Experimental NLOS Measurements
URI https://ieeexplore.ieee.org/document/9757843
https://www.proquest.com/docview/2689807581
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-470622
Volume 71
WOSCitedRecordID wos000876768200049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFBZt2WE77Fc3mq0bOmyHwdRIsmJFu2VrygZ1WlgaehOyLEFhOCVOBj33H997suNlMAa7GVsygk_ifU_vve8R8i5oEZV0GYu5dExhbY8DVsA4rzTwESN1qnpfnOvZbHx9bS73yMe-FiaEkJLPwgk-plh-tfQbvCobGhRfV9k-2dc6b2u1-oiBUl13PAEHGGjBNiTJzXC-mIMjKOUJVn3nmO-8Y4JST5U_6eWuZGgyM2dP_m-BT8njjk7SSYv_M7IX6ufk0Y7I4CG5n2J5FDzSVGzLrmDT0YIV34oLCoyVYqYHK5YpSfaO4teG4u0svVxhEAd8cjrBPPfaNZ_ohJ6GcEu3Uib0MxjBii5rOt3pFEBn5xffafH79rF5Qa7OpvMvX1nXeoH5TI7XzBsOVsv5UcyDlwbA1FqMgolBly5GL7zKKzGKzhgYASQQXpRax8xz4DeBZy_JQb2swxGhEns58TLzrpSqAm8rD67k0VRCBCWUGJDhFg3rO11ybI_xwyb_hBsL-FnEz3b4DciHfsZtq8nxj7GHCFM_rkNoQI63gNvu0DZW5mOD2sxjWNP7dhP081CF-_RmMbGAt91srNI8l_LV3__-mjzENbRZvcfkYL3ahDfkgf-5vmlWb9O-_QUt0eoy
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbGQGI8jB8DURjgB3hAwqvtuHG9t8I6baLpJtFVe7Mcx5EmTenUtEg8849z56ShSAiJtyixI0vfWfedffcdIe-DFqWSLmFlKh1TWNvjgBUwzgsNfMRIHave5xM9nQ6vr83lDvnU1cKEEGLyWTjCx3iXXyz8Go_K-gbF11Vyj9wfKCV5U63V3Rko1fbHE7CFgRhsLiW56c_mMwgFpTzCuu8UM563nFDsqvInwdwWDY2O5vTx_y3xCdlvCSUdNRbwlOyE6hl5tCUzeEB-jrFACh5pLLdlV2B2NGPZeXZBgbNSzPVg2SKmyf6g-LWmeD5LL5d4jQNROR1hpnvl6mM6oich3NGNmAn9DG6woIuKjrd6BdDp5OIbzX6fP9bPydXpePbljLXNF5hP5HDFvOHgt5wflGnw0gCcWotBMGXQuStLL7xKCzEonTEwAmggvMi1LhPPgeEEnrwgu9WiCi8JldjNieeJd7lUBcRbaXA5L00hRFBCiR7pb9CwvlUmxwYZtzZGKNxYwM8ifrbFr0c-djPuGlWOf4w9QJi6cS1CPXK4Ady227a2Mh0aVGcewpo-NEbQzUMd7pOb-cgC3na9tkrzVMpXf__7O_LwbJZN7OR8-vU12cP1NDm-h2R3tVyHN-SB_766qZdvow3_An5N7Xk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enabling+Multi-User+M-MIMO+for+High-Mobility+Users+with+Predictor+Antennas%3A+A+Deep+Analysis+Based+on+Experimental+NLOS+Measurements&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Bjorsell%2C+Joachim&rft.au=Sternad%2C+Mikael&rft.au=Phan-Huy%2C+Dinh-Thuy&rft.date=2022-07-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=71&rft.issue=7&rft.spage=7456&rft.epage=7471&rft_id=info:doi/10.1109%2FTVT.2022.3167630&rft.externalDocID=9757843
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon