KR-DBSCAN: A density-based clustering algorithm based on reverse nearest neighbor and influence space

Density-based clustering is one of the most commonly used analysis methods in data mining and machine learning, with the advantage of locating non-ball-shaped clusters without specifying the number of clusters in advance. However, it has notable shortcomings, such as an inability to distinguish adja...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 186; p. 115763
Main Authors: Hu, Lihua, Liu, Hongkai, Zhang, Jifu, Liu, Aiqin
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 30.12.2021
Elsevier BV
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Density-based clustering is one of the most commonly used analysis methods in data mining and machine learning, with the advantage of locating non-ball-shaped clusters without specifying the number of clusters in advance. However, it has notable shortcomings, such as an inability to distinguish adjacent clusters of different densities. We propose a density-based clustering algorithm, KR-DBSCAN, which is based on the reverse nearest neighbor and influence space. The core objects are identified according to the reverse nearest neighborhood, and their influence spaces are determined by calculating the k-nearest neighborhood and reverse nearest neighborhood for each data object under the Euclidean distance metric. In particular, a new cluster expansion condition is defined using the reverse nearest neighborhood and its influence space, and when the core objects are within their influence spaces, they are added to the cluster by breadth-first traversal. As a result, adjacent clusters with different densities are effectively distinguished, and the computational load is substantially reduced. Boundary objects and noise objects are identified, also using k-nearest neighbors. KR-DBSCAN is experimentally validated on the UCI dataset and some synthetic datasets. •We define a new cluster expanding condition for the density-based clustering.•We design a new noise removal approach in the density-based clustering analysis.•We propose a density-based clustering algorithm KR-DBSCAN.•KR-DBSCAN is evaluated through extensive experiments.
AbstractList Density-based clustering is one of the most commonly used analysis methods in data mining and machine learning, with the advantage of locating non-ball-shaped clusters without specifying the number of clusters in advance. However, it has notable shortcomings, such as an inability to distinguish adjacent clusters of different densities. We propose a density-based clustering algorithm, KR-DBSCAN, which is based on the reverse nearest neighbor and influence space. The core objects are identified according to the reverse nearest neighborhood, and their influence spaces are determined by calculating the k-nearest neighborhood and reverse nearest neighborhood for each data object under the Euclidean distance metric. In particular, a new cluster expansion condition is defined using the reverse nearest neighborhood and its influence space, and when the core objects are within their influence spaces, they are added to the cluster by breadth-first traversal. As a result, adjacent clusters with different densities are effectively distinguished, and the computational load is substantially reduced. Boundary objects and noise objects are identified, also using k-nearest neighbors. KR-DBSCAN is experimentally validated on the UCI dataset and some synthetic datasets. •We define a new cluster expanding condition for the density-based clustering.•We design a new noise removal approach in the density-based clustering analysis.•We propose a density-based clustering algorithm KR-DBSCAN.•KR-DBSCAN is evaluated through extensive experiments.
Density-based clustering is one of the most commonly used analysis methods in data mining and machine learning, with the advantage of locating non-ball-shaped clusters without specifying the number of clusters in advance. However, it has notable shortcomings, such as an inability to distinguish adjacent clusters of different densities. We propose a density-based clustering algorithm, KR-DBSCAN, which is based on the reverse nearest neighbor and influence space. The core objects are identified according to the reverse nearest neighborhood, and their influence spaces are determined by calculating the k-nearest neighborhood and reverse nearest neighborhood for each data object under the Euclidean distance metric. In particular, a new cluster expansion condition is defined using the reverse nearest neighborhood and its influence space, and when the core objects are within their influence spaces, they are added to the cluster by breadth-first traversal. As a result, adjacent clusters with different densities are effectively distinguished, and the computational load is substantially reduced. Boundary objects and noise objects are identified, also using k-nearest neighbors. KR-DBSCAN is experimentally validated on the UCI dataset and some synthetic datasets.
ArticleNumber 115763
Author Hu, Lihua
Liu, Aiqin
Liu, Hongkai
Zhang, Jifu
Author_xml – sequence: 1
  givenname: Lihua
  surname: Hu
  fullname: Hu, Lihua
  email: sxtyhlh@126.com
– sequence: 2
  givenname: Hongkai
  surname: Liu
  fullname: Liu, Hongkai
  email: liuhongkai0422@qq.com
– sequence: 3
  givenname: Jifu
  orcidid: 0000-0002-0396-8901
  surname: Zhang
  fullname: Zhang, Jifu
  email: jifuzh@sina.com
– sequence: 4
  givenname: Aiqin
  surname: Liu
  fullname: Liu, Aiqin
  email: 103125260@qq.com
BookMark eNp9kD1PwzAQhi0EEm3hDzBZYk6xkyaOEUspn6ICiY_ZcuxL6yi1i-0W9d-TKkwMnW64e-7ufYbo2DoLCF1QMqaEFlfNGMKPHKckpWNKc1ZkR2hAS5YlBePZMRoQnrNkQtnkFA1DaAihjBA2QPDyntzdfsymr9d4ijXYYOIuqWQAjVW7CRG8sQss24XzJi5XuG85iz1swQfAFqSHELtqFsvKeSytxsbW7QasAhzWUsEZOqllG-D8r47Q18P95-wpmb89Ps-m80RlaRkTVWqZAijefU4Llkui8pwqogsFHJisteIcaikV4brq0rG0poqSSutMy7rKRuiy37v27nvTfSUat_G2OynSnHNKiyzl3VTaTynvQvBQi7U3K-l3ghKx1ykasdcp9jpFr7ODyn-QMlFG42z00rSH0ZsehS761oAXQZm9HG08qCi0M4fwX11Mk_4
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3457587
crossref_primary_10_3389_fpubh_2024_1413031
crossref_primary_10_1007_s11227_022_04634_w
crossref_primary_10_1080_1331677X_2022_2078850
crossref_primary_10_1016_j_measurement_2023_113410
crossref_primary_10_1016_j_eswa_2022_119484
crossref_primary_10_1109_JSEN_2023_3273218
crossref_primary_10_1016_j_eswa_2024_123407
crossref_primary_10_1109_JSEN_2024_3403232
crossref_primary_10_1109_ACCESS_2023_3252374
crossref_primary_10_1007_s10586_022_03917_4
crossref_primary_10_1007_s13042_023_01968_6
crossref_primary_10_1016_j_knosys_2025_113498
crossref_primary_10_1016_j_jhydrol_2024_131161
crossref_primary_10_1109_ACCESS_2024_3450502
crossref_primary_10_1016_j_engappai_2024_108551
crossref_primary_10_1016_j_asoc_2024_111779
crossref_primary_10_1109_ACCESS_2023_3312287
crossref_primary_10_1016_j_eswa_2023_120633
crossref_primary_10_7717_peerj_cs_2016
crossref_primary_10_1007_s10115_023_02038_7
crossref_primary_10_1016_j_eswa_2025_128197
crossref_primary_10_1109_TIM_2025_3558231
crossref_primary_10_1016_j_eswa_2023_120195
Cites_doi 10.1016/j.oceaneng.2018.12.019
10.1016/j.eswa.2019.01.046
10.1016/j.engappai.2018.09.012
10.1109/TC.2018.2879332
10.1007/s11277-017-5044-z
10.1109/TIT.1967.1053964
10.1016/j.neucom.2015.05.109
10.1186/s12918-019-0690-2
10.1016/j.eswa.2019.03.031
10.1016/j.is.2012.09.001
10.1088/1402-4896/ab0a9f
10.1007/s11222-007-9033-z
10.1016/j.neucom.2018.06.087
10.1109/TKDE.2017.2787640
10.1007/s11704-013-3158-3
10.1016/j.apr.2018.06.006
10.1145/3068335
10.1002/widm.30
10.1016/j.eswa.2019.02.030
10.1126/science.1242072
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Dec 30, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 30, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.115763
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_115763
S0957417421011374
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-c8da2eec91871675a0c551c0d6ce9e7afdc99efaac09db87372f1c10bdd3dafb3
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000705531600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Fri Jul 25 07:44:40 EDT 2025
Sat Nov 29 07:10:38 EST 2025
Tue Nov 18 22:31:42 EST 2025
Fri Feb 23 02:40:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reverse nearest neighborhood
Influence space
Cluster expansion
Core object
Density-based clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-c8da2eec91871675a0c551c0d6ce9e7afdc99efaac09db87372f1c10bdd3dafb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0396-8901
PQID 2599116329
PQPubID 2045477
ParticipantIDs proquest_journals_2599116329
crossref_primary_10_1016_j_eswa_2021_115763
crossref_citationtrail_10_1016_j_eswa_2021_115763
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115763
PublicationCentury 2000
PublicationDate 2021-12-30
PublicationDateYYYYMMDD 2021-12-30
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-30
  day: 30
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Pang, Zhang, Zhang, Qin (b16) 2019; 86
Pla-Sacristan, Gonzalez-Diaz, Martinez-Cortes, Diaz-de Maria (b20) 2019; 123
Pang, Zhang, Zhang, Qin, Cai (b17) 2019; 126
Agudelo-Castaneda, Teixeira, Marcel, Silvia, Silva, Beddows, Harrison, Xavier (b1) 2019; 10
von Luxburg (b12) 2007; 17
Chinta, Sivaram, Rengaswamy (b6) 2019; 77
Xia (b27) 2009; 26
Schubert, Sander, Ester, Kriegel, Xu (b23) 2017; 42
Vadapalli, Valluri, Karlapalem (b24) 2007
Cassisi, Ferro, Giugno, Pigola, Pulvirenti (b5) 2013; 38
Cover, Hart (b7) 1967; 13
Lu, Zhou, Qiao, Yu, Liang, Zhao, Zhao, Lu, Chi (b11) 2019; 94
Pang, Zhang, Qin (b15) 2018; 44
Ye, Ho (b29) 2019; 13
Zhao, Shi (b30) 2019; 172
Kriegel, Pfeifle (b9) 2005
Peng, Dong, Wu (b19) 2007
Parmar, Wang, Zhang, Tan, Miao, Jiang, Zhou (b18) 2019; 348
Cappozzo, Greselin, Murphy (b4) 2019
Wang, Peng, Han, Liu (b25) 2017; 28
Yaobin, Tan, Luo, Feng, Fan (b28) 2014; 8
Ros, Guillaume (b22) 2019; 128
Bryant, Cios (b3) 2018; 30
Xia (b26) 2009; 26
Brown, Japa, Shi (b2) 2019
Kriegel, KrGer, Sander, Zimek (b8) 2011; 1
Li, Gu, Luo, Chambers, Wang (b10) 2019
Manogaran, Vijayakumar, Varatharajan, Malarvizhi Kumar, Sundarasekar, Hsu (b14) 2018; 102
Lv, Ma, Tang, Cao, Tian, Al-Dhelaan, Al-Rodhaan (b13) 2016; 171
Rodriguez, Laio (b21) 2014; 344
Li (10.1016/j.eswa.2021.115763_b10) 2019
Xia (10.1016/j.eswa.2021.115763_b26) 2009; 26
Vadapalli (10.1016/j.eswa.2021.115763_b24) 2007
Schubert (10.1016/j.eswa.2021.115763_b23) 2017; 42
Cover (10.1016/j.eswa.2021.115763_b7) 1967; 13
Chinta (10.1016/j.eswa.2021.115763_b6) 2019; 77
Manogaran (10.1016/j.eswa.2021.115763_b14) 2018; 102
Lu (10.1016/j.eswa.2021.115763_b11) 2019; 94
Parmar (10.1016/j.eswa.2021.115763_b18) 2019; 348
Agudelo-Castaneda (10.1016/j.eswa.2021.115763_b1) 2019; 10
Bryant (10.1016/j.eswa.2021.115763_b3) 2018; 30
Ye (10.1016/j.eswa.2021.115763_b29) 2019; 13
Cappozzo (10.1016/j.eswa.2021.115763_b4) 2019
Kriegel (10.1016/j.eswa.2021.115763_b9) 2005
Ros (10.1016/j.eswa.2021.115763_b22) 2019; 128
von Luxburg (10.1016/j.eswa.2021.115763_b12) 2007; 17
Kriegel (10.1016/j.eswa.2021.115763_b8) 2011; 1
Xia (10.1016/j.eswa.2021.115763_b27) 2009; 26
Pang (10.1016/j.eswa.2021.115763_b15) 2018; 44
Pla-Sacristan (10.1016/j.eswa.2021.115763_b20) 2019; 123
Wang (10.1016/j.eswa.2021.115763_b25) 2017; 28
Lv (10.1016/j.eswa.2021.115763_b13) 2016; 171
Pang (10.1016/j.eswa.2021.115763_b17) 2019; 126
Zhao (10.1016/j.eswa.2021.115763_b30) 2019; 172
Peng (10.1016/j.eswa.2021.115763_b19) 2007
Yaobin (10.1016/j.eswa.2021.115763_b28) 2014; 8
Pang (10.1016/j.eswa.2021.115763_b16) 2019; 86
Cassisi (10.1016/j.eswa.2021.115763_b5) 2013; 38
Rodriguez (10.1016/j.eswa.2021.115763_b21) 2014; 344
Brown (10.1016/j.eswa.2021.115763_b2) 2019
References_xml – start-page: 1
  year: 2007
  end-page: 4
  ident: b19
  article-title: VDBSCAN: Varied density based spatial clustering of applications with noise
  publication-title: Service systems and service management, 2007 international conference on
– volume: 128
  start-page: 96
  year: 2019
  end-page: 108
  ident: b22
  article-title: A hierarchical clustering algorithm and an improvement of the single linkage criterion to deal with noise
  publication-title: Expert Systems with Application
– volume: 26
  start-page: 539
  year: 2009
  end-page: 548
  ident: b26
  article-title: Maximum density clustering algorithm
  publication-title: Journal of the Graduate School of the Chinese Academy of Sciences
– volume: 172
  start-page: 456
  year: 2019
  end-page: 467
  ident: b30
  article-title: A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition
  publication-title: Ocean Engineering
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: b7
  article-title: Nearest neighbor pattern classification. IEEE trans inf theory IT-13(1):21-27
  publication-title: IEEE Transactions on Information Theory
– volume: 13
  start-page: 35
  year: 2019
  end-page: 42
  ident: b29
  article-title: Ultrafast clustering of single-cell flow cytometry data using FlowGrid
  publication-title: Bmc Systems Biology
– volume: 28
  start-page: 2836
  year: 2017
  end-page: 2850
  ident: b25
  article-title: Density-based distributed clustering method
  publication-title: Journal of Software
– volume: 77
  start-page: 125
  year: 2019
  end-page: 135
  ident: b6
  article-title: Prediction error-based clustering approach for multiple-model learning using statistical testing
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 102
  start-page: 2099
  year: 2018
  end-page: 2116
  ident: b14
  article-title: Machine learning based big data processing framework for cancer diagnosis using hidden Markov model and GM clustering
  publication-title: Wireless Personal Communications
– volume: 42
  start-page: 19.1
  year: 2017
  end-page: 19.21
  ident: b23
  article-title: DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN
  publication-title: Acm Transactions on Database Systems
– start-page: 0048
  year: 2019
  end-page: 0054
  ident: b2
  article-title: A fast density-grid based clustering method
  publication-title: 2019 IEEE 9th annual computing and communication workshop and conference (CCWC)
– volume: 123
  start-page: 315
  year: 2019
  end-page: 327
  ident: b20
  article-title: Finding landmarks within settled areas using hierarchical density-based clustering and meta-data from publicly available images
  publication-title: Expert Systems with Application
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: b21
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– start-page: 1
  year: 2007
  end-page: 5
  ident: b24
  article-title: A simple yet effective data clustering algorithm
  publication-title: Data mining, 2006. ICDM ’06. Sixth international conference on
– volume: 17
  start-page: 395
  year: 2007
  end-page: 416
  ident: b12
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and Computing
– volume: 86
  start-page: 542
  year: 2019
  end-page: 555
  ident: b16
  article-title: Parallel hierarchical subspace clustering of categorical data
  publication-title: IEEE Transactions on Computers
– start-page: 672
  year: 2005
  end-page: 677
  ident: b9
  article-title: Hierarchical density-based clustering of uncertain data
  publication-title: The eleventh ACM SIGKDD international conference on knowledge discovery in data mining(KDD’05)
– volume: 94
  year: 2019
  ident: b11
  article-title: Amplitude jitter compensation of PAM-8 VLC system employing time-amplitude two-dimensional re-estimation base on density clustering of machine learning
  publication-title: Physica Scripta
– volume: 171
  start-page: 9
  year: 2016
  end-page: 22
  ident: b13
  article-title: An efficient and scalable density-based clustering algorithm for datasets with complex structures
  publication-title: Neurocomputing
– volume: 26
  start-page: 530
  year: 2009
  end-page: 538
  ident: b27
  article-title: SA-DBSCAN:A self-adaptive density-based clustering algorithm
  publication-title: Journal of the Graduate School of the Chinese Academy of Sciences
– start-page: 45
  year: 2019
  end-page: 52
  ident: b4
  article-title: A robust approach to model-based classification based on trimming and constraints
  publication-title: Advances in Data Analysis and Classification
– volume: 38
  start-page: 317
  year: 2013
  end-page: 330
  ident: b5
  article-title: Enhancing density-based clustering: Parameter reduction and outlier detection
  publication-title: Information Systems
– volume: 1
  start-page: 231
  year: 2011
  end-page: 240
  ident: b8
  article-title: Density-based clustering
  publication-title: Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery
– volume: 10
  start-page: 45
  year: 2019
  end-page: 52
  ident: b1
  article-title: Cluster analysis of urban ultrafine particles size distributions
  publication-title: Atmospheric Pollution Research
– volume: 44
  start-page: 517
  year: 2018
  end-page: 532
  ident: b15
  article-title: A subspace clustering algorithm of categorical data using multiple attribute weights
  publication-title: Zidonghua Xuebao Acta Automatica Sinica
– start-page: 11
  year: 2019
  end-page: 15
  ident: b10
  article-title: Enhanced streaming based subspace clustering applied to acoustic scene data clustering
  publication-title: Icassp IEEE international conference on acoustics
– volume: 126
  start-page: 233
  year: 2019
  end-page: 245
  ident: b17
  article-title: PUMA: Parallel subspace clustering of categorical data using multi-attribute weights
  publication-title: Expert Systems with Applications
– volume: 348
  start-page: 82
  year: 2019
  end-page: 96
  ident: b18
  article-title: REDPC: A residual error-based density peak clustering algorithm
  publication-title: Neurocomputing
– volume: 30
  start-page: 1109
  year: 2018
  end-page: 1121
  ident: b3
  article-title: RNN-DBSCAN: A density-based clustering algorithm using reverse nearest neighbor density estimates
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 8
  start-page: 83
  year: 2014
  end-page: 99
  ident: b28
  article-title: MR-DBSCAN: a scalable MapReduce-based DBSCAN algorithm for heavily skewed data
  publication-title: Frontiers of Computer Science
– volume: 172
  start-page: 456
  year: 2019
  ident: 10.1016/j.eswa.2021.115763_b30
  article-title: A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2018.12.019
– volume: 123
  start-page: 315
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.115763_b20
  article-title: Finding landmarks within settled areas using hierarchical density-based clustering and meta-data from publicly available images
  publication-title: Expert Systems with Application
  doi: 10.1016/j.eswa.2019.01.046
– volume: 77
  start-page: 125
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.115763_b6
  article-title: Prediction error-based clustering approach for multiple-model learning using statistical testing
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2018.09.012
– volume: 86
  start-page: 542
  issue: 4
  year: 2019
  ident: 10.1016/j.eswa.2021.115763_b16
  article-title: Parallel hierarchical subspace clustering of categorical data
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/TC.2018.2879332
– volume: 102
  start-page: 2099
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2021.115763_b14
  article-title: Machine learning based big data processing framework for cancer diagnosis using hidden Markov model and GM clustering
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-017-5044-z
– start-page: 1
  year: 2007
  ident: 10.1016/j.eswa.2021.115763_b19
  article-title: VDBSCAN: Varied density based spatial clustering of applications with noise
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 10.1016/j.eswa.2021.115763_b7
  article-title: Nearest neighbor pattern classification. IEEE trans inf theory IT-13(1):21-27
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 171
  start-page: 9
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2021.115763_b13
  article-title: An efficient and scalable density-based clustering algorithm for datasets with complex structures
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.109
– volume: 13
  start-page: 35
  issue: S2
  year: 2019
  ident: 10.1016/j.eswa.2021.115763_b29
  article-title: Ultrafast clustering of single-cell flow cytometry data using FlowGrid
  publication-title: Bmc Systems Biology
  doi: 10.1186/s12918-019-0690-2
– volume: 44
  start-page: 517
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2021.115763_b15
  article-title: A subspace clustering algorithm of categorical data using multiple attribute weights
  publication-title: Zidonghua Xuebao Acta Automatica Sinica
– start-page: 1
  year: 2007
  ident: 10.1016/j.eswa.2021.115763_b24
  article-title: A simple yet effective data clustering algorithm
– volume: 128
  start-page: 96
  issue: 8
  year: 2019
  ident: 10.1016/j.eswa.2021.115763_b22
  article-title: A hierarchical clustering algorithm and an improvement of the single linkage criterion to deal with noise
  publication-title: Expert Systems with Application
  doi: 10.1016/j.eswa.2019.03.031
– volume: 28
  start-page: 2836
  issue: 11
  year: 2017
  ident: 10.1016/j.eswa.2021.115763_b25
  article-title: Density-based distributed clustering method
  publication-title: Journal of Software
– volume: 38
  start-page: 317
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2021.115763_b5
  article-title: Enhancing density-based clustering: Parameter reduction and outlier detection
  publication-title: Information Systems
  doi: 10.1016/j.is.2012.09.001
– volume: 94
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2021.115763_b11
  article-title: Amplitude jitter compensation of PAM-8 VLC system employing time-amplitude two-dimensional re-estimation base on density clustering of machine learning
  publication-title: Physica Scripta
  doi: 10.1088/1402-4896/ab0a9f
– volume: 26
  start-page: 530
  issue: 4
  year: 2009
  ident: 10.1016/j.eswa.2021.115763_b27
  article-title: SA-DBSCAN:A self-adaptive density-based clustering algorithm
  publication-title: Journal of the Graduate School of the Chinese Academy of Sciences
– volume: 26
  start-page: 539
  issue: 4
  year: 2009
  ident: 10.1016/j.eswa.2021.115763_b26
  article-title: Maximum density clustering algorithm
  publication-title: Journal of the Graduate School of the Chinese Academy of Sciences
– volume: 17
  start-page: 395
  year: 2007
  ident: 10.1016/j.eswa.2021.115763_b12
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-007-9033-z
– volume: 348
  start-page: 82
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2021.115763_b18
  article-title: REDPC: A residual error-based density peak clustering algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.087
– start-page: 0048
  year: 2019
  ident: 10.1016/j.eswa.2021.115763_b2
  article-title: A fast density-grid based clustering method
– volume: 30
  start-page: 1109
  issue: 6
  year: 2018
  ident: 10.1016/j.eswa.2021.115763_b3
  article-title: RNN-DBSCAN: A density-based clustering algorithm using reverse nearest neighbor density estimates
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2017.2787640
– volume: 8
  start-page: 83
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2021.115763_b28
  article-title: MR-DBSCAN: a scalable MapReduce-based DBSCAN algorithm for heavily skewed data
  publication-title: Frontiers of Computer Science
  doi: 10.1007/s11704-013-3158-3
– volume: 10
  start-page: 45
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.115763_b1
  article-title: Cluster analysis of urban ultrafine particles size distributions
  publication-title: Atmospheric Pollution Research
  doi: 10.1016/j.apr.2018.06.006
– start-page: 45
  year: 2019
  ident: 10.1016/j.eswa.2021.115763_b4
  article-title: A robust approach to model-based classification based on trimming and constraints
  publication-title: Advances in Data Analysis and Classification
– start-page: 672
  year: 2005
  ident: 10.1016/j.eswa.2021.115763_b9
  article-title: Hierarchical density-based clustering of uncertain data
– volume: 42
  start-page: 19.1
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2021.115763_b23
  article-title: DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN
  publication-title: Acm Transactions on Database Systems
  doi: 10.1145/3068335
– volume: 1
  start-page: 231
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2021.115763_b8
  article-title: Density-based clustering
  publication-title: Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery
  doi: 10.1002/widm.30
– start-page: 11
  year: 2019
  ident: 10.1016/j.eswa.2021.115763_b10
  article-title: Enhanced streaming based subspace clustering applied to acoustic scene data clustering
– volume: 126
  start-page: 233
  year: 2019
  ident: 10.1016/j.eswa.2021.115763_b17
  article-title: PUMA: Parallel subspace clustering of categorical data using multi-attribute weights
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.02.030
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 10.1016/j.eswa.2021.115763_b21
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
SSID ssj0017007
Score 2.543206
Snippet Density-based clustering is one of the most commonly used analysis methods in data mining and machine learning, with the advantage of locating non-ball-shaped...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115763
SubjectTerms Algorithms
Cluster expansion
Clustering
Core object
Data mining
Datasets
Density-based clustering
Euclidean geometry
Influence space
Machine learning
Neighborhoods
Reverse nearest neighborhood
Space density
Title KR-DBSCAN: A density-based clustering algorithm based on reverse nearest neighbor and influence space
URI https://dx.doi.org/10.1016/j.eswa.2021.115763
https://www.proquest.com/docview/2599116329
Volume 186
WOSCitedRecordID wos000705531600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKx4EL34iNgXxAXCJX-U68WxidxqgKgg71ZjmOs2WUpGvTMf4M_mPs2E7WAhUcuKSVnaSV38_v2c_v_R4AL11GheGIPJnREyKfsQDFsZci6oeeIya657u0KTYRjcfxdIo_9Ho_TC7M1Swqy_j6Gs__q6hFmxC2TJ39B3G3LxUN4rsQurgKsYvrXwn-3Uf05vWnw2Ssks4zGaFef0fSXGUWm60kM0KTmTg7qxZFff7VUl2VTGyRQRrcKiWx7bIWn2Lrnuowy8KUM7GEEmJrEUQNX3KtWaFNvtyNk_EOO8oNcL5qjcGoaNqOq_LsCy1-cWOfFPlq49akuNRs4dpZ4ToNJaLdedDaLJrPa57ICPmOKtYz4EoPS_iEkSqe2Cnqm6rW-a0BUL6IiwFffpOsUq4zkGxCWoeusW2P35Oj09GITIbTyav5JZKFyOSBva7KcgvsuFGA4z7YSd4Opyft0VRkqxx88691JpYKGtz82T-tdjbsfrOYmdwHd_UuBCYKPQ9Aj5cPwT1T4QNqhf8I8BZMBzCBa1CCHZRgCyWouqoSaihBDSVooAQFlGALJdhA6TE4PRpODo-RLsyBmOfGNWJxRl3OGXbkdjsKqM3EwpvZWcg45hHNM4YxzyllNs7SWFZCyh3m2GmWeRnNU-8J6JdVyZ8CaPOAh16e2QHjfuz6KcOeH-R-ZDMcMD_fBY4ZQMI0a70snjIjJjzxgshBJ3LQiRr0XWC1z8wVZ8vWuwMjF6JXnWo1SQSmtj63b4RI9PRfEjcQ-y2xxXHx3vbuZ-BONz_2Qb9erPhzcJtd1cVy8UJj7if1l6xZ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KR-DBSCAN%3A+A+density-based+clustering+algorithm+based+on+reverse+nearest+neighbor+and+influence+space&rft.jtitle=Expert+systems+with+applications&rft.au=Hu%2C+Lihua&rft.au=Liu%2C+Hongkai&rft.au=Zhang%2C+Jifu&rft.au=Liu%2C+Aiqin&rft.date=2021-12-30&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=186&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2021.115763&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon