Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism

Prediction of remaining useful life (RUL) is of vital significance in the prognostics health management (PHM) tasks. To deal with the reverse time series and to reflect the difference in RUL prediction results at different time instances, this paper proposes a novel bidirectional gated recurrent uni...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Reliability engineering & system safety Ročník 221; s. 108297
Hlavní autori: Zhang, Jiusi, Jiang, Yuchen, Wu, Shimeng, Li, Xiang, Luo, Hao, Yin, Shen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Barking Elsevier Ltd 01.05.2022
Elsevier BV
Predmet:
ISSN:0951-8320, 1879-0836
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Prediction of remaining useful life (RUL) is of vital significance in the prognostics health management (PHM) tasks. To deal with the reverse time series and to reflect the difference in RUL prediction results at different time instances, this paper proposes a novel bidirectional gated recurrent unit with temporal self-attention mechanism (BiGRU-TSAM) to predict RUL. Specifically, a novel approach is proposed where each of the considered time instance is assigned a self-learned weight according to the degree of significance. Furthermore, the parameter update process of the TSAM is obtained with solid theoretical foundation, and as a sign of interpretability, it is shown that the assigned weights can remain consistency over several independent training processes. On this basis, the BiGRU-TSAM is applied to predict RUL online. An aircraft turbofan engine dataset and a milling dataset are applied to verify the proposed RUL prediction approach. The experimental results show the superiority of the proposed approach over the existing ones based on machine learning and deep learning. •It is proposed to predict RUL with the aid of a novel BiGRU-TSAM network.•Each of the considered time instance is assigned a self-learned weight.•The parameter update process of the TSAM layer is obtained.•The assigned weights can remain consistency over several independent training processes.
AbstractList Prediction of remaining useful life (RUL) is of vital significance in the prognostics health management (PHM) tasks. To deal with the reverse time series and to reflect the difference in RUL prediction results at different time instances, this paper proposes a novel bidirectional gated recurrent unit with temporal self-attention mechanism (BiGRU-TSAM) to predict RUL. Specifically, a novel approach is proposed where each of the considered time instance is assigned a self-learned weight according to the degree of significance. Furthermore, the parameter update process of the TSAM is obtained with solid theoretical foundation, and as a sign of interpretability, it is shown that the assigned weights can remain consistency over several independent training processes. On this basis, the BiGRU-TSAM is applied to predict RUL online. An aircraft turbofan engine dataset and a milling dataset are applied to verify the proposed RUL prediction approach. The experimental results show the superiority of the proposed approach over the existing ones based on machine learning and deep learning. •It is proposed to predict RUL with the aid of a novel BiGRU-TSAM network.•Each of the considered time instance is assigned a self-learned weight.•The parameter update process of the TSAM layer is obtained.•The assigned weights can remain consistency over several independent training processes.
Prediction of remaining useful life (RUL) is of vital significance in the prognostics health management (PHM) tasks. To deal with the reverse time series and to reflect the difference in RUL prediction results at different time instances, this paper proposes a novel bidirectional gated recurrent unit with temporal self-attention mechanism (BiGRU-TSAM) to predict RUL. Specifically, a novel approach is proposed where each of the considered time instance is assigned a self-learned weight according to the degree of significance. Furthermore, the parameter update process of the TSAM is obtained with solid theoretical foundation, and as a sign of interpretability, it is shown that the assigned weights can remain consistency over several independent training processes. On this basis, the BiGRU-TSAM is applied to predict RUL online. An aircraft turbofan engine dataset and a milling dataset are applied to verify the proposed RUL prediction approach. The experimental results show the superiority of the proposed approach over the existing ones based on machine learning and deep learning.
ArticleNumber 108297
Author Wu, Shimeng
Yin, Shen
Li, Xiang
Luo, Hao
Jiang, Yuchen
Zhang, Jiusi
Author_xml – sequence: 1
  givenname: Jiusi
  orcidid: 0000-0001-7971-680X
  surname: Zhang
  fullname: Zhang, Jiusi
  organization: Department of Control Science and Engineering, School of Astronautics, Harbin Institute of Technology, Harbin, China
– sequence: 2
  givenname: Yuchen
  orcidid: 0000-0003-3918-7039
  surname: Jiang
  fullname: Jiang, Yuchen
  organization: Department of Control Science and Engineering, School of Astronautics, Harbin Institute of Technology, Harbin, China
– sequence: 3
  givenname: Shimeng
  surname: Wu
  fullname: Wu, Shimeng
  organization: Department of Control Science and Engineering, School of Astronautics, Harbin Institute of Technology, Harbin, China
– sequence: 4
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
  organization: Department of Control Science and Engineering, School of Astronautics, Harbin Institute of Technology, Harbin, China
– sequence: 5
  givenname: Hao
  surname: Luo
  fullname: Luo, Hao
  email: hao.luo@hit.edu.cn
  organization: Department of Control Science and Engineering, School of Astronautics, Harbin Institute of Technology, Harbin, China
– sequence: 6
  givenname: Shen
  orcidid: 0000-0002-3802-9269
  surname: Yin
  fullname: Yin, Shen
  organization: Department of Mechanical and Industrial Engineering, Faculty of Engineering, Norwegian University of Science and Technology, Trondheim 7034, Norway
BookMark eNp9kMFO3DAQhi20SOwCL8DJUs_Zjp1k7Ui9VAhapJXg0J4txxmDV4mztZ1FvD0O6YkDJ2tmvt_2fBuy8qNHQm4YbBmw3ffDNmCMWw6c5YbkjTgjayZFU4AsdyuyhqZmhSw5XJBNjAcAqJparMnpKWDnTHKjp6OlAQftvPPPdIpop572ziJtdcSOZqJ1nQv4QeuePuuU27meQkCf6ORdoq8uvdCEw3EMGYnY20KnlMfzCwOaF-1dHK7IudV9xOv_5yX5e3_35_Z3sX_89XD7c1-YkstUGIBaSl2XrAPGUUDLtcEaS2Y7rist6layuuoMt7zt0LKWW21lw0UlJApZXpJvy73HMP6bMCZ1GKeQPx8V31UNNCAkZIovlAljjAGtOgY36PCmGKjZrzqo2a-a_arFbw7JTyHjkp7XTEG7_uvojyWKefWTw6CicegNLnZVN7qv4u_O1Jsr
CitedBy_id crossref_primary_10_1016_j_ress_2025_111176
crossref_primary_10_1038_s41598_025_91815_1
crossref_primary_10_1016_j_aei_2025_103692
crossref_primary_10_1016_j_jrras_2023_100691
crossref_primary_10_1109_TR_2025_3547426
crossref_primary_10_3390_a17080321
crossref_primary_10_1016_j_engfailanal_2023_107125
crossref_primary_10_1016_j_ymssp_2025_112987
crossref_primary_10_1016_j_rinp_2023_106558
crossref_primary_10_1109_JSEN_2025_3555616
crossref_primary_10_1093_jcde_qwae018
crossref_primary_10_3390_electronics14122355
crossref_primary_10_1109_TNNLS_2022_3232147
crossref_primary_10_1109_JSEN_2023_3261874
crossref_primary_10_1002_adc2_158
crossref_primary_10_1002_qre_3740
crossref_primary_10_1016_j_advengsoft_2025_103871
crossref_primary_10_1109_JIOT_2024_3376715
crossref_primary_10_1016_j_eswa_2025_127707
crossref_primary_10_1016_j_engappai_2024_108813
crossref_primary_10_1002_qre_70043
crossref_primary_10_1016_j_apenergy_2024_122939
crossref_primary_10_1109_TIM_2025_3527602
crossref_primary_10_1088_1742_6596_2472_1_012012
crossref_primary_10_1007_s11760_025_04150_3
crossref_primary_10_1007_s40998_022_00583_5
crossref_primary_10_1016_j_bspc_2023_104771
crossref_primary_10_2166_hydro_2024_101
crossref_primary_10_3390_app15179813
crossref_primary_10_1007_s13762_023_05092_4
crossref_primary_10_1108_JMTM_02_2022_0093
crossref_primary_10_1016_j_est_2024_112330
crossref_primary_10_1109_TAI_2024_3400929
crossref_primary_10_1088_1361_6501_ad7eee
crossref_primary_10_3390_s22239088
crossref_primary_10_1109_TIE_2023_3301551
crossref_primary_10_1109_TIM_2023_3334339
crossref_primary_10_1016_j_knosys_2024_111738
crossref_primary_10_1016_j_ress_2025_111064
crossref_primary_10_1007_s40747_023_01257_3
crossref_primary_10_1007_s11227_024_06889_x
crossref_primary_10_1016_j_eswa_2025_128370
crossref_primary_10_1109_TIM_2022_3212525
crossref_primary_10_1016_j_ress_2023_109511
crossref_primary_10_1016_j_ress_2023_109514
crossref_primary_10_1038_s41598_024_71795_4
crossref_primary_10_1111_ffe_70070
crossref_primary_10_1109_TPEL_2023_3275791
crossref_primary_10_1016_j_engappai_2024_108161
crossref_primary_10_1016_j_ress_2024_110161
crossref_primary_10_1016_j_ress_2024_110162
crossref_primary_10_1016_j_cja_2023_09_011
crossref_primary_10_1109_TMECH_2022_3202642
crossref_primary_10_1109_TIM_2023_3346507
crossref_primary_10_1016_j_engappai_2023_107538
crossref_primary_10_1109_ACCESS_2025_3573683
crossref_primary_10_3390_app15147884
crossref_primary_10_1016_j_ress_2022_108758
crossref_primary_10_3390_s25020497
crossref_primary_10_1016_j_aei_2025_103817
crossref_primary_10_3390_batteries10090303
crossref_primary_10_1016_j_engappai_2025_111359
crossref_primary_10_1016_j_aei_2024_103083
crossref_primary_10_3233_JIFS_221973
crossref_primary_10_3390_machines13090789
crossref_primary_10_1016_j_ress_2022_108869
crossref_primary_10_3390_s22072490
crossref_primary_10_1088_1742_6596_2591_1_012063
crossref_primary_10_1007_s11227_024_06396_z
crossref_primary_10_1007_s11581_025_06359_1
crossref_primary_10_1016_j_engfailanal_2025_109290
crossref_primary_10_1007_s00500_022_07625_4
crossref_primary_10_1016_j_ymssp_2023_110935
crossref_primary_10_1109_TIM_2025_3551011
crossref_primary_10_1109_TPWRD_2023_3312704
crossref_primary_10_1016_j_ress_2023_109696
crossref_primary_10_1016_j_ecolind_2023_110788
crossref_primary_10_1016_j_jii_2023_100444
crossref_primary_10_1145_3623378
crossref_primary_10_1016_j_jmsy_2024_02_011
crossref_primary_10_1109_JSEN_2022_3185161
crossref_primary_10_3233_JIFS_223461
crossref_primary_10_1007_s11063_024_11651_8
crossref_primary_10_1016_j_isatra_2025_05_010
crossref_primary_10_1109_ACCESS_2022_3211258
crossref_primary_10_1016_j_ijhydene_2024_09_229
crossref_primary_10_1016_j_ress_2023_109666
crossref_primary_10_1016_j_ymssp_2023_110900
crossref_primary_10_1016_j_ress_2023_109662
crossref_primary_10_1016_j_ress_2025_110902
crossref_primary_10_1016_j_rineng_2025_106373
crossref_primary_10_1016_j_ymssp_2023_110221
crossref_primary_10_1016_j_jprocont_2024_103264
crossref_primary_10_1109_JSEN_2023_3269030
crossref_primary_10_3390_atmos16070802
crossref_primary_10_1016_j_chemolab_2025_105535
crossref_primary_10_1016_j_ress_2024_110273
crossref_primary_10_1109_JIOT_2024_3464854
crossref_primary_10_1109_TIM_2023_3273676
crossref_primary_10_1016_j_ress_2024_110398
crossref_primary_10_1007_s11227_024_06878_0
crossref_primary_10_1080_10589759_2025_2450063
crossref_primary_10_1016_j_isatra_2023_06_020
crossref_primary_10_3389_fenrg_2024_1362371
crossref_primary_10_1109_JIOT_2024_3421365
crossref_primary_10_1016_j_aei_2024_102422
crossref_primary_10_1016_j_ress_2022_108966
crossref_primary_10_1088_1361_6501_ae0144
crossref_primary_10_1016_j_anucene_2024_111157
crossref_primary_10_1109_TR_2023_3277332
crossref_primary_10_1002_qre_3494
crossref_primary_10_1155_2024_6465566
crossref_primary_10_1016_j_engappai_2025_110855
crossref_primary_10_1016_j_eswa_2024_125995
crossref_primary_10_3233_JIFS_224370
crossref_primary_10_1016_j_measurement_2024_115714
crossref_primary_10_1109_TIM_2025_3577829
crossref_primary_10_1016_j_ress_2025_110928
crossref_primary_10_1016_j_jss_2024_112167
crossref_primary_10_1007_s40430_025_05400_8
crossref_primary_10_1016_j_ress_2023_109247
crossref_primary_10_1016_j_ress_2023_109123
crossref_primary_10_1016_j_ress_2023_109244
crossref_primary_10_3390_s25134224
crossref_primary_10_1016_j_aei_2023_102195
crossref_primary_10_1016_j_asoc_2023_110836
crossref_primary_10_1080_10589759_2025_2558066
crossref_primary_10_1109_ACCESS_2025_3607733
crossref_primary_10_1109_TIM_2022_3227956
crossref_primary_10_1016_j_ress_2024_110770
crossref_primary_10_1109_TII_2022_3217758
crossref_primary_10_1142_S0218539325500111
crossref_primary_10_3390_su142416414
crossref_primary_10_1109_JSEN_2024_3514168
crossref_primary_10_3390_s25113429
crossref_primary_10_1016_j_engappai_2025_111201
crossref_primary_10_4271_01_18_02_0009
crossref_primary_10_1016_j_knosys_2025_114214
crossref_primary_10_1109_TIM_2023_3240208
crossref_primary_10_1016_j_aei_2023_102066
crossref_primary_10_1088_1361_6501_ac84f6
crossref_primary_10_1016_j_jfca_2025_107993
crossref_primary_10_1016_j_est_2024_111197
crossref_primary_10_1016_j_ress_2025_110919
crossref_primary_10_1016_j_jmsy_2024_01_008
crossref_primary_10_1109_JAS_2025_125126
crossref_primary_10_1016_j_ress_2022_109074
crossref_primary_10_1109_ACCESS_2023_3263196
crossref_primary_10_1016_j_cie_2022_108211
crossref_primary_10_1109_JSEN_2022_3214608
crossref_primary_10_3390_machines10110974
crossref_primary_10_1016_j_aei_2025_103275
crossref_primary_10_1016_j_measurement_2024_116345
crossref_primary_10_3390_electronics11213595
crossref_primary_10_1109_JSTARS_2025_3603895
crossref_primary_10_1016_j_ymssp_2022_109679
crossref_primary_10_1109_TIM_2025_3545540
crossref_primary_10_1088_1361_6501_ad78f5
crossref_primary_10_3390_sym14112243
crossref_primary_10_1016_j_aej_2025_06_020
crossref_primary_10_1109_TIE_2023_3265054
crossref_primary_10_3390_act13100413
crossref_primary_10_1016_j_ymssp_2024_111551
crossref_primary_10_1109_TII_2022_3181692
crossref_primary_10_1088_1361_6501_ad3b2c
crossref_primary_10_1016_j_conengprac_2024_106015
crossref_primary_10_1134_S1061830922600502
crossref_primary_10_1016_j_cie_2024_110581
crossref_primary_10_3390_math10224243
crossref_primary_10_1016_j_ress_2022_108646
crossref_primary_10_1177_14759217241302370
crossref_primary_10_1016_j_ress_2023_109231
crossref_primary_10_3390_aerospace11020138
crossref_primary_10_1109_TIM_2022_3221142
crossref_primary_10_1007_s00170_022_09771_3
crossref_primary_10_3103_S0735272723070026
crossref_primary_10_1016_j_ress_2023_109292
crossref_primary_10_1007_s10845_023_02154_9
crossref_primary_10_1016_j_ress_2025_111492
crossref_primary_10_1007_s10639_025_13456_1
crossref_primary_10_3390_machines10090789
crossref_primary_10_1088_1361_6501_ad07b6
crossref_primary_10_1016_j_jmsy_2024_08_025
crossref_primary_10_1016_j_ress_2022_108599
crossref_primary_10_1088_1361_6501_acda52
crossref_primary_10_1016_j_asoc_2024_111726
crossref_primary_10_1016_j_ress_2025_111121
crossref_primary_10_1016_j_ress_2023_109182
crossref_primary_10_1016_j_ress_2024_110210
crossref_primary_10_1109_TII_2022_3193414
crossref_primary_10_1007_s00226_024_01615_5
crossref_primary_10_1016_j_ijhydene_2024_11_194
crossref_primary_10_1016_j_isatra_2024_06_022
crossref_primary_10_3390_s23125669
crossref_primary_10_1109_JSEN_2024_3494020
crossref_primary_10_1007_s11760_024_03534_1
crossref_primary_10_1088_1361_6501_aca115
crossref_primary_10_1088_1361_6501_ad5c8c
crossref_primary_10_1088_1742_6596_2853_1_012068
crossref_primary_10_1007_s00034_023_02518_9
crossref_primary_10_1016_j_psep_2022_11_076
crossref_primary_10_1007_s11219_024_09692_2
crossref_primary_10_1016_j_eswa_2025_127100
crossref_primary_10_1088_1361_6501_ad2d50
crossref_primary_10_1088_1361_6501_ad6c73
crossref_primary_10_1016_j_heliyon_2023_e17118
crossref_primary_10_1088_1361_6501_ad5746
crossref_primary_10_1088_1361_6501_ad58ff
crossref_primary_10_1109_JSEN_2023_3310479
crossref_primary_10_3390_aerospace12030259
crossref_primary_10_1016_j_neucom_2022_05_056
crossref_primary_10_1016_j_autcon_2024_105648
crossref_primary_10_1038_s41598_025_02500_2
crossref_primary_10_1016_j_engappai_2024_109615
crossref_primary_10_1109_ACCESS_2024_3380480
crossref_primary_10_1088_1361_6501_adea8c
crossref_primary_10_1016_j_engappai_2023_107241
crossref_primary_10_1088_1361_6501_ad05a1
crossref_primary_10_1016_j_ress_2023_109821
crossref_primary_10_1080_15481603_2025_2514330
crossref_primary_10_1109_TII_2022_3206339
crossref_primary_10_3390_s24113454
crossref_primary_10_1016_j_ress_2024_110666
crossref_primary_10_1016_j_rser_2023_114193
crossref_primary_10_1016_j_asoc_2023_110419
crossref_primary_10_1109_TII_2023_3266403
crossref_primary_10_1109_TTE_2023_3323976
crossref_primary_10_1007_s40430_022_03638_0
crossref_primary_10_1016_j_engappai_2023_105860
crossref_primary_10_3390_aerospace11040293
crossref_primary_10_1016_j_ress_2025_111261
crossref_primary_10_1088_1361_6501_ac7f80
crossref_primary_10_1088_1361_6501_ad2bcc
crossref_primary_10_1016_j_ymssp_2025_112611
crossref_primary_10_1109_TIM_2024_3370801
crossref_primary_10_1007_s11581_024_05954_y
Cites_doi 10.1016/j.ress.2020.106926
10.1109/ICPHM.2017.7998311
10.1016/j.ress.2017.05.024
10.1109/TNNLS.2016.2582798
10.1109/TII.2019.2895054
10.1016/j.ymssp.2019.05.005
10.1016/j.measurement.2019.06.004
10.1016/j.ymssp.2017.11.016
10.1098/rsta.2020.0360
10.3390/app9194156
10.1109/TII.2020.2987840
10.1016/j.ress.2020.107194
10.1109/TIE.2019.2891463
10.1016/j.conengprac.2020.104673
10.1016/j.ress.2020.107257
10.1016/j.future.2018.12.009
10.1016/j.ress.2019.01.006
10.1016/j.ress.2017.11.021
10.1016/j.ress.2021.107560
10.1016/j.ress.2021.107813
10.1016/j.physd.2005.12.006
10.5516/NET.04.2014.722
10.1109/MIE.2019.2938025
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV May 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV May 2022
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2021.108297
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2021_108297
S0951832021007687
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
SOI
ID FETCH-LOGICAL-c328t-c00588a531d012e70b2ace5e31fd2a4a75b8154dc2f2bdef1b2faf8927478e783
ISICitedReferencesCount 277
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771556500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Wed Aug 13 02:43:36 EDT 2025
Sat Nov 29 07:08:28 EST 2025
Tue Nov 18 20:43:08 EST 2025
Fri Feb 23 02:40:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Prognostics health management
Remaining useful life
Bidirectional gated recurrent unit
Temporal self-attention mechanism
Prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-c00588a531d012e70b2ace5e31fd2a4a75b8154dc2f2bdef1b2faf8927478e783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7971-680X
0000-0003-3918-7039
0000-0002-3802-9269
PQID 2649090780
PQPubID 2045406
ParticipantIDs proquest_journals_2649090780
crossref_primary_10_1016_j_ress_2021_108297
crossref_citationtrail_10_1016_j_ress_2021_108297
elsevier_sciencedirect_doi_10_1016_j_ress_2021_108297
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Huang, Huang, Li (b27) 2019; 66
Han, Wang, Xie, He, Li, Wang (b4) 2021; 210
Forti, Grazzini, Nistri, Pancioni (b22) 2006; 214
Compare, Bellani, Zio (b1) 2017; 168
Zheng, Ristovski, Farahat, Gupta (b12) 2017
Lei, Li, Guo, Li, Yan, Lin (b3) 2018; 104
Jiang, Yin, Kaynak (b6) 2020; 17
Liu, Lei, Pan, Hu, Zuo (b15) 2021
Cao, Ding, Jia, Tian (b21) 2021
Ren, Cheng, Wang, Cui, Zhang (b18) 2019; 94
Babu, Zhao, Li (b23) 2016
Kong, Cui, Xia, Lv (b24) 2019; 9
Chen J, Chen D, Liu G. Using temporal convolution network for remaining useful lifetime prediction. Eng Rep e12305.
Zhao, Zhang, Wang, Zhou, Cheng (b25) 2019; 146
Deng, Wang, Jia, Tong, Li (b17) 2019; 15
Moradi, Groth (b2) 2020; 204
Zhang, Jiang, Luo, Yin (b9) 2021; 107
Agogino, Goebel (b28) 2007
Zhang, Dong, Wen, Lu, Li (b14) 2019
Saxena, Goebel, Simon, Eklund (b20) 2008
Li, Ding, Sun (b13) 2018; 172
Shi, Chehade (b16) 2021; 205
Malhotra, TV, Ramakrishnan, Anand, Vig, Agarwal, Shroff (b30) 2016
Coble, HINES (b31) 2014; 46
Jiang, Yin, Li, Luo, Kaynak (b7) 2021; 379
Yu, Kim, Mechefske (b11) 2020; 199
Yu, Kim, Mechefske (b29) 2019; 129
Zhang, Lim, Qin, Tan (b10) 2016; 28
Yin, Rodriguez-Andina, Jiang (b5) 2019; 13
Wang, Wen, Yang, Liu (b26) 2018
Chen, Jing, Chang, Liu (b19) 2019; 185
Jiang, Yin, Dong, Kaynak (b8) 2020
Zheng (10.1016/j.ress.2021.108297_b12) 2017
Cao (10.1016/j.ress.2021.108297_b21) 2021
Lei (10.1016/j.ress.2021.108297_b3) 2018; 104
Yu (10.1016/j.ress.2021.108297_b29) 2019; 129
Yin (10.1016/j.ress.2021.108297_b5) 2019; 13
Zhao (10.1016/j.ress.2021.108297_b25) 2019; 146
Zhang (10.1016/j.ress.2021.108297_b14) 2019
Huang (10.1016/j.ress.2021.108297_b27) 2019; 66
Saxena (10.1016/j.ress.2021.108297_b20) 2008
Coble (10.1016/j.ress.2021.108297_b31) 2014; 46
Liu (10.1016/j.ress.2021.108297_b15) 2021
Jiang (10.1016/j.ress.2021.108297_b7) 2021; 379
Zhang (10.1016/j.ress.2021.108297_b9) 2021; 107
Li (10.1016/j.ress.2021.108297_b13) 2018; 172
Jiang (10.1016/j.ress.2021.108297_b8) 2020
Zhang (10.1016/j.ress.2021.108297_b10) 2016; 28
Kong (10.1016/j.ress.2021.108297_b24) 2019; 9
Jiang (10.1016/j.ress.2021.108297_b6) 2020; 17
Yu (10.1016/j.ress.2021.108297_b11) 2020; 199
Ren (10.1016/j.ress.2021.108297_b18) 2019; 94
Compare (10.1016/j.ress.2021.108297_b1) 2017; 168
Babu (10.1016/j.ress.2021.108297_b23) 2016
Forti (10.1016/j.ress.2021.108297_b22) 2006; 214
Malhotra (10.1016/j.ress.2021.108297_b30) 2016
Chen (10.1016/j.ress.2021.108297_b19) 2019; 185
Deng (10.1016/j.ress.2021.108297_b17) 2019; 15
Han (10.1016/j.ress.2021.108297_b4) 2021; 210
Shi (10.1016/j.ress.2021.108297_b16) 2021; 205
Agogino (10.1016/j.ress.2021.108297_b28) 2007
Moradi (10.1016/j.ress.2021.108297_b2) 2020; 204
Wang (10.1016/j.ress.2021.108297_b26) 2018
10.1016/j.ress.2021.108297_b32
References_xml – volume: 9
  start-page: 4156
  year: 2019
  ident: b24
  article-title: Convolution and long short-term memory hybrid deep neural networks for remaining useful life prognostics
  publication-title: Appl Sci
– year: 2021
  ident: b15
  article-title: Prediction of remaining useful life of multi-stage aero-engine based on clustering and lstm fusion
  publication-title: Reliab Eng Syst Saf
– start-page: 88
  year: 2017
  end-page: 95
  ident: b12
  article-title: Long short-term memory network for remaining useful life estimation
  publication-title: 2017 ieee international conference on prognostics and health management (icphm)
– volume: 17
  start-page: 1449
  year: 2020
  end-page: 1458
  ident: b6
  article-title: Optimized design of parity relation-based residual generator for fault detection: Data-driven approaches
  publication-title: IEEE Trans Ind Inf
– year: 2021
  ident: b21
  article-title: A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings
  publication-title: Reliab Eng Syst Saf
– reference: Chen J, Chen D, Liu G. Using temporal convolution network for remaining useful lifetime prediction. Eng Rep e12305.
– volume: 66
  start-page: 8792
  year: 2019
  end-page: 8802
  ident: b27
  article-title: A bidirectional lstm prognostics method under multiple operational conditions
  publication-title: IEEE Trans Ind Electron
– volume: 46
  start-page: 773
  year: 2014
  end-page: 782
  ident: b31
  article-title: Incorporating prior belief in the general path model: a comparison of information sources
  publication-title: Nucl Eng Technol
– volume: 185
  start-page: 372
  year: 2019
  end-page: 382
  ident: b19
  article-title: Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process
  publication-title: Reliab Eng Syst Saf
– volume: 94
  start-page: 601
  year: 2019
  end-page: 609
  ident: b18
  article-title: Multi-scale dense gate recurrent unit networks for bearing remaining useful life prediction
  publication-title: Future Gener Comput Syst
– start-page: 214
  year: 2016
  end-page: 228
  ident: b23
  article-title: Deep convolutional neural network based regression approach for estimation of remaining useful life
  publication-title: International conference on database systems for advanced applications
– volume: 146
  start-page: 279
  year: 2019
  end-page: 288
  ident: b25
  article-title: A recurrent neural network approach for remaining useful life prediction utilizing a novel trend features construction method
  publication-title: Measurement
– volume: 204
  year: 2020
  ident: b2
  article-title: Modernizing risk assessment: A systematic integration of pra and phm techniques
  publication-title: Reliab Eng Syst Saf
– volume: 28
  start-page: 2306
  year: 2016
  end-page: 2318
  ident: b10
  article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics
  publication-title: IEEE Trans Neural Netw Learn Syst
– start-page: 1037
  year: 2018
  end-page: 1042
  ident: b26
  article-title: Remaining useful life estimation in prognostics using deep bidirectional lstm neural network
  publication-title: 2018 prognostics and system health management conference (phm-chongqing)
– volume: 15
  start-page: 4481
  year: 2019
  end-page: 4493
  ident: b17
  article-title: A sequence-to-sequence deep learning architecture based on bidirectional GRU for type recognition and time location of combined power quality disturbance
  publication-title: IEEE Trans Ind Inf
– volume: 168
  start-page: 4
  year: 2017
  end-page: 11
  ident: b1
  article-title: Reliability model of a component equipped with PHM capabilities
  publication-title: Reliab Eng Syst Saf
– start-page: 1
  year: 2008
  end-page: 9
  ident: b20
  article-title: Damage propagation modeling for aircraft engine run-to-failure simulation
  publication-title: 2008 international conference on prognostics and health management
– volume: 199
  year: 2020
  ident: b11
  article-title: An improved similarity-based prognostic algorithm for rul estimation using an rnn autoencoder scheme
  publication-title: Reliab Eng Syst Saf
– year: 2007
  ident: b28
  article-title: Milling data set
– volume: 205
  year: 2021
  ident: b16
  article-title: A dual-lstm framework combining change point detection and remaining useful life prediction
  publication-title: Reliab Eng Syst Saf
– start-page: 317
  year: 2019
  end-page: 322
  ident: b14
  article-title: Remaining useful life estimation based on a new convolutional and recurrent neural network
  publication-title: 2019 ieee 15th international conference on automation science and engineering (case)
– volume: 13
  start-page: 38
  year: 2019
  end-page: 47
  ident: b5
  article-title: Real-time monitoring and control of industrial cyberphysical systems: With integrated plant-wide monitoring and control framework
  publication-title: IEEE Ind Electron Mag
– year: 2020
  ident: b8
  article-title: A review on soft sensors for monitoring, control and optimization of industrial processes
  publication-title: IEEE Sens J
– volume: 104
  start-page: 799
  year: 2018
  end-page: 834
  ident: b3
  article-title: Machinery health prognostics: A systematic review from data acquisition to rul prediction
  publication-title: Mech Syst Signal Process
– volume: 129
  start-page: 764
  year: 2019
  end-page: 780
  ident: b29
  article-title: Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme
  publication-title: Mech Syst Signal Process
– volume: 210
  year: 2021
  ident: b4
  article-title: Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence
  publication-title: Reliab Eng Syst Saf
– volume: 214
  start-page: 88
  year: 2006
  end-page: 99
  ident: b22
  article-title: Generalized lyapunov approach for convergence of neural networks with discontinuous or non-lipschitz activations
  publication-title: Physica D
– volume: 172
  start-page: 1
  year: 2018
  end-page: 11
  ident: b13
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab Eng Syst Saf
– volume: 379
  year: 2021
  ident: b7
  article-title: Industrial applications of digital twins
  publication-title: Phil Trans R Soc A
– volume: 107
  year: 2021
  ident: b9
  article-title: Prediction of material removal rate in chemical mechanical polishing via residual convolutional neural network
  publication-title: Control Eng Pract
– year: 2016
  ident: b30
  article-title: Multi-sensor prognostics using an unsupervised health index based on lstm encoder-decoder
– volume: 199
  year: 2020
  ident: 10.1016/j.ress.2021.108297_b11
  article-title: An improved similarity-based prognostic algorithm for rul estimation using an rnn autoencoder scheme
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.106926
– start-page: 317
  year: 2019
  ident: 10.1016/j.ress.2021.108297_b14
  article-title: Remaining useful life estimation based on a new convolutional and recurrent neural network
  publication-title: 2019 ieee 15th international conference on automation science and engineering (case)
– ident: 10.1016/j.ress.2021.108297_b32
– start-page: 1037
  year: 2018
  ident: 10.1016/j.ress.2021.108297_b26
  article-title: Remaining useful life estimation in prognostics using deep bidirectional lstm neural network
– start-page: 88
  year: 2017
  ident: 10.1016/j.ress.2021.108297_b12
  article-title: Long short-term memory network for remaining useful life estimation
  publication-title: 2017 ieee international conference on prognostics and health management (icphm)
  doi: 10.1109/ICPHM.2017.7998311
– start-page: 1
  year: 2008
  ident: 10.1016/j.ress.2021.108297_b20
  article-title: Damage propagation modeling for aircraft engine run-to-failure simulation
– year: 2020
  ident: 10.1016/j.ress.2021.108297_b8
  article-title: A review on soft sensors for monitoring, control and optimization of industrial processes
  publication-title: IEEE Sens J
– volume: 168
  start-page: 4
  year: 2017
  ident: 10.1016/j.ress.2021.108297_b1
  article-title: Reliability model of a component equipped with PHM capabilities
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.05.024
– volume: 28
  start-page: 2306
  issue: 10
  year: 2016
  ident: 10.1016/j.ress.2021.108297_b10
  article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2582798
– year: 2016
  ident: 10.1016/j.ress.2021.108297_b30
– start-page: 214
  year: 2016
  ident: 10.1016/j.ress.2021.108297_b23
  article-title: Deep convolutional neural network based regression approach for estimation of remaining useful life
– volume: 15
  start-page: 4481
  issue: 8
  year: 2019
  ident: 10.1016/j.ress.2021.108297_b17
  article-title: A sequence-to-sequence deep learning architecture based on bidirectional GRU for type recognition and time location of combined power quality disturbance
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2019.2895054
– volume: 129
  start-page: 764
  year: 2019
  ident: 10.1016/j.ress.2021.108297_b29
  article-title: Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2019.05.005
– volume: 146
  start-page: 279
  year: 2019
  ident: 10.1016/j.ress.2021.108297_b25
  article-title: A recurrent neural network approach for remaining useful life prediction utilizing a novel trend features construction method
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.06.004
– volume: 104
  start-page: 799
  year: 2018
  ident: 10.1016/j.ress.2021.108297_b3
  article-title: Machinery health prognostics: A systematic review from data acquisition to rul prediction
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.11.016
– volume: 379
  issue: 2207
  year: 2021
  ident: 10.1016/j.ress.2021.108297_b7
  article-title: Industrial applications of digital twins
  publication-title: Phil Trans R Soc A
  doi: 10.1098/rsta.2020.0360
– volume: 9
  start-page: 4156
  issue: 19
  year: 2019
  ident: 10.1016/j.ress.2021.108297_b24
  article-title: Convolution and long short-term memory hybrid deep neural networks for remaining useful life prognostics
  publication-title: Appl Sci
  doi: 10.3390/app9194156
– volume: 17
  start-page: 1449
  issue: 2
  year: 2020
  ident: 10.1016/j.ress.2021.108297_b6
  article-title: Optimized design of parity relation-based residual generator for fault detection: Data-driven approaches
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2020.2987840
– volume: 204
  year: 2020
  ident: 10.1016/j.ress.2021.108297_b2
  article-title: Modernizing risk assessment: A systematic integration of pra and phm techniques
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107194
– volume: 66
  start-page: 8792
  issue: 11
  year: 2019
  ident: 10.1016/j.ress.2021.108297_b27
  article-title: A bidirectional lstm prognostics method under multiple operational conditions
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2019.2891463
– year: 2021
  ident: 10.1016/j.ress.2021.108297_b15
  article-title: Prediction of remaining useful life of multi-stage aero-engine based on clustering and lstm fusion
  publication-title: Reliab Eng Syst Saf
– volume: 107
  year: 2021
  ident: 10.1016/j.ress.2021.108297_b9
  article-title: Prediction of material removal rate in chemical mechanical polishing via residual convolutional neural network
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2020.104673
– volume: 205
  year: 2021
  ident: 10.1016/j.ress.2021.108297_b16
  article-title: A dual-lstm framework combining change point detection and remaining useful life prediction
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107257
– volume: 94
  start-page: 601
  year: 2019
  ident: 10.1016/j.ress.2021.108297_b18
  article-title: Multi-scale dense gate recurrent unit networks for bearing remaining useful life prediction
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2018.12.009
– volume: 185
  start-page: 372
  year: 2019
  ident: 10.1016/j.ress.2021.108297_b19
  article-title: Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.01.006
– volume: 172
  start-page: 1
  year: 2018
  ident: 10.1016/j.ress.2021.108297_b13
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.11.021
– volume: 210
  year: 2021
  ident: 10.1016/j.ress.2021.108297_b4
  article-title: Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107560
– year: 2021
  ident: 10.1016/j.ress.2021.108297_b21
  article-title: A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107813
– volume: 214
  start-page: 88
  issue: 1
  year: 2006
  ident: 10.1016/j.ress.2021.108297_b22
  article-title: Generalized lyapunov approach for convergence of neural networks with discontinuous or non-lipschitz activations
  publication-title: Physica D
  doi: 10.1016/j.physd.2005.12.006
– volume: 46
  start-page: 773
  issue: 6
  year: 2014
  ident: 10.1016/j.ress.2021.108297_b31
  article-title: Incorporating prior belief in the general path model: a comparison of information sources
  publication-title: Nucl Eng Technol
  doi: 10.5516/NET.04.2014.722
– year: 2007
  ident: 10.1016/j.ress.2021.108297_b28
– volume: 13
  start-page: 38
  issue: 4
  year: 2019
  ident: 10.1016/j.ress.2021.108297_b5
  article-title: Real-time monitoring and control of industrial cyberphysical systems: With integrated plant-wide monitoring and control framework
  publication-title: IEEE Ind Electron Mag
  doi: 10.1109/MIE.2019.2938025
SSID ssj0004957
Score 2.6984255
Snippet Prediction of remaining useful life (RUL) is of vital significance in the prognostics health management (PHM) tasks. To deal with the reverse time series and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108297
SubjectTerms Bidirectional gated recurrent unit
Datasets
Deep learning
Machine learning
Milling (machining)
Prediction
Predictions
Process parameters
Prognostics health management
Reliability engineering
Remaining useful life
Temporal self-attention mechanism
Turbofan engines
Useful life
Title Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism
URI https://dx.doi.org/10.1016/j.ress.2021.108297
https://www.proquest.com/docview/2649090780
Volume 221
WOSCitedRecordID wos000771556500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKxgEOiJ9iMJAP7BRlSpykcY4TtIKpGjt0UE6R49iQKetK21Tjv-JP5L3YTtsJKjhwiSInTqK8z8_Pz-99j5A3mcxUIWPpx1Es_JgFkS_6TPmyz2LV5yIJQtkWm0jPzvhkkp33ej9dLsyqTqdTfnOTzf6rqKENhI2ps_8g7u6h0ADnIHQ4gtjh-FeCP5_j3oszBOfqytSA8JqFwnjkutLKw7mrxH2CojJzmnEIoksNs1mkJW1qYLxbT61hsKq9haq1j5ycJkrySmHmsKMhdETfqq4M_fcPT635DluUGeZobyG0JSDZ8lqfVs2i6oJ6Ktv6pQFkdSD-3LQe229YluCraxy1QQkT7LHpx4AlcBc1aJxrXYLNpy0nZeiDzjE7N8qoaJ5mLaf2pg5nJs3aauHwt3ODcVNcHqMb4xi-IMT4Smaig7eJuM8-5sOL0SgfDybjo2g4--5jlTLczT-K3hnE3CH7LE0y0KP7Jx8Gk9N1Lm5m2GXdl9tELRNTePvVfzKGbpkFra0zfkge2EUKPTHgekR6avqY3N-grnxCVmuY0WtNO5hRAzOKMKMtzCjcsQUz2sKMdjCjCDOKMKMOZnQbZrSD2VNyMRyM3773bQ0PX0aML32JdSthyEdhCaaQSoOCCakSFYW6ZCIWaVJwsOJLyTQrSqXDgmmheYbOEq5SHj0je9PrqXpOKCtUyLRMBS-TuBCCBzJCa1TzvoZVBz8gofuZubQE91hnpc5dJONljgLIUQC5EcAB8bo-M0PvsvPuxMkotwaq-Xs5YGxnv0Mn0NxqCrjej7MgAws9eLH78ktybz1eDsnect6oV-SuXC2rxfy1xd8vW5K-6A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+remaining+useful+life+based+on+bidirectional+gated+recurrent+unit+with+temporal+self-attention+mechanism&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Zhang%2C+Jiusi&rft.au=Jiang%2C+Yuchen&rft.au=Wu%2C+Shimeng&rft.au=Li%2C+Xiang&rft.date=2022-05-01&rft.pub=Elsevier+BV&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=221&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ress.2021.108297&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon