Heart arrhythmia diagnosis based on the combination of morphological, frequency and nonlinear features of ECG signals and metaheuristic feature selection algorithm

•A new method for discrimination of seven types of ECG beats is proposed.•This method employs a combination of morphology, frequency, and nonlinear indices.•Application of feature selection (include GA, PSO, DE, and NSGA-II) is discussed.•KNN, RBFNN, FF-net, Fit-net, and Pat-net are employed for cla...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 161; p. 113697
Main Authors: Mazaheri, Vajihe, Khodadadi, Hamed
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 15.12.2020
Elsevier BV
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A new method for discrimination of seven types of ECG beats is proposed.•This method employs a combination of morphology, frequency, and nonlinear indices.•Application of feature selection (include GA, PSO, DE, and NSGA-II) is discussed.•KNN, RBFNN, FF-net, Fit-net, and Pat-net are employed for classification.•High classification accuracy 98.75% is obtained based on the proposed method. Cardiac arrhythmia disorder is known as one of the most common diseases in the world. Today, this disease is considered as the leading cause of death in industrial and semi-industrial societies. Various tools and methods have been developed to study the detection of heart diseases, based on analyzing the electrocardiogram (ECG)signal. Due to the simplicity and noninvasive nature, ECG signals are vastly used by physicians to determine the heart problems and abnormalities. In this paper, a computer-aided diagnosis (CAD) system is provided for the automated classification and accurate diagnosis of seven types of cardiac arrhythmias using the ECG signal. The basis of this method is using machine learning algorithms to classify normal rhythm and six abnormal cardiac functions. In the proposed method, after the pre-processing stage, the ECG signal is segmented, and various morphological characteristics, frequency domain features, and nonlinear indices are extracted for the ECG signal. Several metaheuristic optimization algorithms are used to remove redundant or irrelevant features and reduce the feature space dimension. These are used on the combination of the extracted features in which, non-dominated sorting genetic algorithm (NSGA II) as a multi-objective optimization algorithm has the best performance. Furthermore, various machine learning algorithms include k-nearest neighbor (KNN), feed-forward neural network (FF net), fitting neural network (Fit net), radial basis function neural network (RBFNN) and pattern recognition network (Pat net) are employed for the classification. The highest accuracy obtained based on ten-fold cross-validation from the FF net is 98.75%, demonstrates the efficiency of the proposed method and the achieved improvement compared to the other similar works with the same dataset. The combination of a vast and various features from morphology, frequency, and nonlinear characteristics to demonstrate the diverse aspects of ECG signals as well as employing a multi-objective meta-heuristic optimization algorithm for selecting the more correlated features are the main contributions of this study.
AbstractList •A new method for discrimination of seven types of ECG beats is proposed.•This method employs a combination of morphology, frequency, and nonlinear indices.•Application of feature selection (include GA, PSO, DE, and NSGA-II) is discussed.•KNN, RBFNN, FF-net, Fit-net, and Pat-net are employed for classification.•High classification accuracy 98.75% is obtained based on the proposed method. Cardiac arrhythmia disorder is known as one of the most common diseases in the world. Today, this disease is considered as the leading cause of death in industrial and semi-industrial societies. Various tools and methods have been developed to study the detection of heart diseases, based on analyzing the electrocardiogram (ECG)signal. Due to the simplicity and noninvasive nature, ECG signals are vastly used by physicians to determine the heart problems and abnormalities. In this paper, a computer-aided diagnosis (CAD) system is provided for the automated classification and accurate diagnosis of seven types of cardiac arrhythmias using the ECG signal. The basis of this method is using machine learning algorithms to classify normal rhythm and six abnormal cardiac functions. In the proposed method, after the pre-processing stage, the ECG signal is segmented, and various morphological characteristics, frequency domain features, and nonlinear indices are extracted for the ECG signal. Several metaheuristic optimization algorithms are used to remove redundant or irrelevant features and reduce the feature space dimension. These are used on the combination of the extracted features in which, non-dominated sorting genetic algorithm (NSGA II) as a multi-objective optimization algorithm has the best performance. Furthermore, various machine learning algorithms include k-nearest neighbor (KNN), feed-forward neural network (FF net), fitting neural network (Fit net), radial basis function neural network (RBFNN) and pattern recognition network (Pat net) are employed for the classification. The highest accuracy obtained based on ten-fold cross-validation from the FF net is 98.75%, demonstrates the efficiency of the proposed method and the achieved improvement compared to the other similar works with the same dataset. The combination of a vast and various features from morphology, frequency, and nonlinear characteristics to demonstrate the diverse aspects of ECG signals as well as employing a multi-objective meta-heuristic optimization algorithm for selecting the more correlated features are the main contributions of this study.
Cardiac arrhythmia disorder is known as one of the most common diseases in the world. Today, this disease is considered as the leading cause of death in industrial and semi-industrial societies. Various tools and methods have been developed to study the detection of heart diseases, based on analyzing the electrocardiogram (ECG) signal. Due to the simplicity and noninvasive nature, ECG signals are vastly used by physicians to determine the heart problems and abnormalities. In this paper, a computer-aided diagnosis (CAD) system is provided for the automated classification and accurate diagnosis of seven types of cardiac arrhythmias using the ECG signal. The basis of this method is using machine learning algorithms to classify normal rhythm and six abnormal cardiac functions. In the proposed method, after the pre-processing stage, the ECG signal is segmented, and various morphological characteristics, frequency domain features, and nonlinear indices are extracted for the ECG signal. Several metaheuristic optimization algorithms are used to remove redundant or irrelevant features and reduce the feature space dimension. These are used on the combination of the extracted features in which, non-dominated sorting genetic algorithm (NSGA II) as a multi-objective optimization algorithm has the best performance. Furthermore, various machine learning algorithms include k-nearest neighbor (KNN), feed-forward neural network (FF net), fitting neural network (Fit net), radial basis function neural network (RBFNN) and pattern recognition network (Pat net) are employed for the classification. The highest accuracy obtained based on ten-fold cross-validation from the FF net is 98.75%, demonstrates the efficiency of the proposed method and the achieved improvement compared to the other similar works with the same dataset. The combination of a vast and various features from morphology, frequency, and nonlinear characteristics to demonstrate the diverse aspects of ECG signals as well as employing a multi-objective meta-heuristic optimization algorithm for selecting the more correlated features are the main contributions of this study.
ArticleNumber 113697
Author Mazaheri, Vajihe
Khodadadi, Hamed
Author_xml – sequence: 1
  givenname: Vajihe
  surname: Mazaheri
  fullname: Mazaheri, Vajihe
  email: vajihe.mazaheri@iaukhsh.ac.ir
– sequence: 2
  givenname: Hamed
  surname: Khodadadi
  fullname: Khodadadi, Hamed
  email: khodadadi@iaukhsh.ac.ir
BookMark eNp9kcFu3CAURVGVSp2k-YGskLKtp4AdwFI31ShNKkXKpl0jDM_jN7LNFJhW8z390eKZdJNFVgh0z-O-ey_JxRxmIOSGszVnXH7erSH9sWvBRHngtWzVO7LiWtWVVG19QVasvVNVw1XzgVymtGOMK8bUivx9BBsztTEOxzxMaKlHu51DwkQ7m8DTMNM8AHVh6nC2Gcs99HQKcT-EMWzR2fET7SP8OsDsjtTOnhZzI85lMO3B5kOEtCD3mweacDvbMZ1UE2Q7wCFiyuj-K2mCEdzpFztuQ8Ri6iN53xcIrl_OK_Lz2_2PzWP19PzwffP1qXK10Lnq7J0U4LrWS64FV531zDHWC6mdU53WXnXMSad7KaEBgEY7rTtfW9G2vnf1Fbk9z93HULZJ2ezCIS5-jWgkl7xloikqfVa5GFKK0BuH-ZRLjhZHw5lZKjE7s1RilkrMuZKCilfoPuJk4_Ft6MsZgrL6b4RoksMSNXiMJSnjA76F_wNJTqx7
CitedBy_id crossref_primary_10_3390_asi6050095
crossref_primary_10_1080_10255842_2025_2456487
crossref_primary_10_3390_biomimetics8030310
crossref_primary_10_1002_cpe_6334
crossref_primary_10_35378_gujs_1507978
crossref_primary_10_1016_j_bspc_2021_103260
crossref_primary_10_1016_j_bspc_2024_106772
crossref_primary_10_1007_s10462_025_11266_y
crossref_primary_10_1371_journal_pone_0322934
crossref_primary_10_1109_TIM_2024_3400302
crossref_primary_10_1007_s11277_022_09585_2
crossref_primary_10_1177_24056456241297300
crossref_primary_10_1016_j_cct_2021_106397
crossref_primary_10_1016_j_bspc_2022_104165
crossref_primary_10_1016_j_bspc_2022_104202
crossref_primary_10_1016_j_eswa_2021_115531
crossref_primary_10_1109_TFUZZ_2024_3416217
crossref_primary_10_1007_s11042_022_14227_7
crossref_primary_10_3390_agronomy13020402
crossref_primary_10_1038_s41598_025_93906_5
crossref_primary_10_3390_s21041511
crossref_primary_10_3390_math10020192
crossref_primary_10_1016_j_jksuci_2022_05_009
crossref_primary_10_1080_09540091_2021_2002266
crossref_primary_10_1016_j_ins_2021_03_062
crossref_primary_10_1080_10255842_2024_2332942
crossref_primary_10_1007_s00500_023_09062_3
crossref_primary_10_1016_j_eswa_2021_115688
crossref_primary_10_1016_j_bbe_2022_05_006
crossref_primary_10_1016_j_bspc_2022_103639
crossref_primary_10_1007_s40747_024_01419_x
crossref_primary_10_1016_j_compbiomed_2023_107025
crossref_primary_10_1016_j_smhl_2024_100446
crossref_primary_10_1016_j_compbiomed_2025_110966
crossref_primary_10_1016_j_eswa_2023_121497
crossref_primary_10_1016_j_heliyon_2023_e13601
crossref_primary_10_1155_2022_2898061
crossref_primary_10_1049_htl2_70015
crossref_primary_10_1016_j_jksuci_2024_102096
crossref_primary_10_1016_j_envpol_2023_122564
crossref_primary_10_1109_JBHI_2021_3085318
crossref_primary_10_1016_j_engappai_2023_106839
crossref_primary_10_1038_s41598_025_86438_5
crossref_primary_10_1016_j_heliyon_2024_e26147
crossref_primary_10_1016_j_knosys_2021_107473
crossref_primary_10_1016_j_bspc_2022_104300
crossref_primary_10_1109_TIM_2024_3420364
crossref_primary_10_1016_j_bspc_2023_104718
crossref_primary_10_1016_j_eswa_2021_115271
crossref_primary_10_1016_j_eswa_2023_120019
crossref_primary_10_3389_fninf_2022_1052868
crossref_primary_10_34248_bsengineering_1566475
Cites_doi 10.1016/j.cmpb.2010.07.011
10.1016/j.ins.2017.06.027
10.1016/j.compbiomed.2018.03.016
10.1016/j.asoc.2015.07.010
10.1007/s40846-017-0235-3
10.1109/TBME.2011.2171037
10.1055/s-0038-1667083
10.1117/1.JMM.16.3.034505
10.1007/978-3-319-65981-7_3
10.1016/j.procs.2013.05.405
10.1109/TBME.2012.2191407
10.1007/s00521-018-03980-2
10.1109/CJECE.2016.2586939
10.1016/j.swevo.2017.10.002
10.11648/j.cbb.20160404.11
10.1016/j.eswa.2017.09.022
10.1016/j.knosys.2019.104923
10.1515/slgr-2015-0039
10.1016/j.cmpb.2015.12.008
10.1016/j.compbiomed.2018.06.002
10.1016/j.compbiomed.2017.09.011
10.1016/j.compbiomed.2017.08.022
10.1109/CIBCB.2010.5510702
10.1016/j.eswa.2007.12.016
10.1016/j.compbiomed.2018.09.009
10.3390/s18072090
10.1049/iet-syb.2018.5020
10.1109/TBME.2004.827359
10.1016/j.cmpb.2011.10.002
10.1109/JBHI.2014.2332001
10.1016/j.ins.2016.10.013
10.1016/j.neucom.2011.10.045
10.1007/s11045-016-0446-8
10.1016/j.compbiomed.2018.08.003
10.1109/JTEHM.2018.2878000
10.1016/j.eswa.2018.07.030
10.1016/j.bspc.2014.10.013
10.1016/j.bspc.2011.07.001
10.1049/iet-syb.2018.5130
10.1186/1475-925X-13-90
10.1016/j.bbe.2018.04.004
10.1016/j.cmpb.2019.104992
10.1109/TBME.2012.2213253
10.1016/j.cmpb.2015.12.024
10.1016/j.compbiomed.2013.11.019
10.1007/s11760-018-1237-5
10.18201/ijisae.2018637929
10.1016/j.bbe.2020.02.007
10.1109/TBME.2011.2113395
10.3390/s19235079
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Dec 15, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 15, 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.113697
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_113697
S0957417420305212
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-ba562ecb9d618217bad0c00f268cc7b88d7b0c6c8f66e4eee48c88bd3a299dfc3
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576781400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 30 05:18:21 EST 2025
Sat Nov 29 07:06:02 EST 2025
Tue Nov 18 21:45:04 EST 2025
Fri Feb 23 02:47:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Meta-heuristic optimization algorithm
Cardiac arrhythmia recognition
ECG signal
FF net classifier
Nonlinear indices
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-ba562ecb9d618217bad0c00f268cc7b88d7b0c6c8f66e4eee48c88bd3a299dfc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2461619024
PQPubID 2045477
ParticipantIDs proquest_journals_2461619024
crossref_citationtrail_10_1016_j_eswa_2020_113697
crossref_primary_10_1016_j_eswa_2020_113697
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113697
PublicationCentury 2000
PublicationDate 2020-12-15
PublicationDateYYYYMMDD 2020-12-15
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ganapathy, Swaminathan, Deserno (b0120) 2018; 27
Golrizkhatami, Acan (b0125) 2018; 114
De Lannoy, François, Delbeke, Verleysen (b0095) 2010
Escalona-Morán, Soriano, Fischer, Mirasso (b0115) 2014; 19
Kiani Boroujeni, Rastegari, Khodadadi (b0055) 2019; 13
Elhaj, Salim, Harris, Swee, Ahmed (b0110) 2016; 127
Zomorodi-moghadam, Abdar, Davarzani, Zhou, Pławiak, Acharya (b0315) 2019
Bazi, Alajlan, AlHichri, Malek (b0050) 2013
Das, S., and M. Chakraborty (2011), Comparison of power Spectral Density (pSD) of normal and Abnormal ECGs, paper presented at IJCA, Special Issue on 2nd National Conference-Computing, Communication and Sensor Network, (2): pp-10-14.
Pławiak (b0240) 2018; 39
Khodadadi, Khaki-Sedigh, Ataei, Jahed-Motlagh, Hekmatnia (b0170) 2017; 37
Park, Cho, Lee, Song, Lee, Chee, Kim (b0225) 2008
Andreotti, Carr, Pimentel, Mahdi, De Vos (b0040) 2017; 44
De Chazal, O'Dwyer, Reilly (b0090) 2004; 51
Kumar, Pachori, Acharya (b0180) 2018; 38
Dilmac, Korurek (b0105) 2015; 36
Jung, Zscheischler (b0155) 2013; 18
Alvarado, Lakshminarayan, Principe (b0035) 2012; 59
Pasolli, Melgani (b0230) 2015; 19
Acharya, Krishnan, Spaan, Suri (b0010) 2007
Wang, Chiang, Hsu, Yang (b0275) 2013; 116
Chen, Wang, Wang (b0075) 2018; 16
Kora, P., A. Annavarapu, and S. Borra (2018), ECG based myocardial infarction detection using different classification techniques, in Classification in BioApps, edited, pp. 57-77, Springer.
Rahman, Karim, Al Mahmud, Rahman (b0255) 2016; 4
Zhang, Dong, Luo, Choi, Wu (b0310) 2014; 46
Vivekanandan, Iyengar (b0270) 2017; 90
Kutlu, Kuntalp (b0185) 2012; 105
Mosbah, El-Hawary (b0210) 2016; 39
Acharya, Fujita, Adam, Lih, Sudarshan, Hong, Poo (b0025) 2017; 377
Bassiouni, El-Dahshan, Khalefa, Salem (b0045) 2018; 12
De Lannoy, François, Delbeke, Verleysen (b0100) 2011; 59
Mohebbi, Ghassemian (b0205) 2012; 105
Acharya, Fujita, Oh, Hagiwara, Tan, Adam (b0015) 2017; 415
Ceylan (b0070) 2018; 6
Hernandez-Matamoros, A., H. Fujita, E. Escamilla-Hernandez, H. Perez-Meana, and M. Nakano-Miyatake (2020), Recognition of ECG signals using wavelet based on atomic functions, Biocybernetics and Biomedical Engineering.
Yu, Chou (b0300) 2009; 36
Mar, Zaunseder, Martínez, Llamedo, Poll (b0200) 2011; 58
Oh, Ng, San Tan, Acharya (b0220) 2018; 102
Nabian, Yin, Wormwood, Quigley, Barrett, Ostadabbas (b0215) 2018; 6
Pławiak, P., and U. R. Acharya (2019, Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals, Neural Computing and Applications, 1-25.
Soria, M. L., and J. Martínez (2009), Analysis of multidomain features for ECG classification, paper presented at 2009 36th Annual Computers in Cardiology Conference (CinC), IEEE.
Daamouche, Hamami, Alajlan, Melgani (b0080) 2012; 7
Acharya, Oh, Hagiwara, Tan, Adam, Gertych, San Tan (b0020) 2017; 89
Ahmad, Matti, EssaO, ALhabib, Shaikhow (b0030) 2018; 9
Pławiak (b0235) 2018; 92
Huang, Liu, Zhu, Wang, Hu (b0150) 2014; 13
Hajeb-Mohammadalipour, Ahmadi, Shahghadami, Chon (b0135) 2018; 18
Yıldırım, Pławiak, Tan, Acharya (b0295) 2018; 102
Bouaziz, Boutana, Oulhadj (b0065) 2018
Hassanien, A. E., M. Kilany, and E. H. Houssein (2018), Combining support vector machine and elephant herding optimization for cardiac arrhythmias, arXiv preprint arXiv:1806.08242.
Kandala, Dhuli, Pławiak, Naik, Moeinzadeh, Gargiulo, Gunnam (b0160) 2019; 19
Luz, E. J. d. S., W. R. Schwartz, G. Cámara-Chávez, and D. Menotti (2016), ECG-based heartbeat classification for arrhythmia detection: A survey, Computer methods and programs in biomedicine, 127, 144-164.
Pourbabaee, B., and C. Lucas (2010), Paroxysmal atrial fibrillation diagnosis based on feature extraction and classification, paper presented at 2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, IEEE.
Yang, Si, Wang, Guo (b0280) 2018; 101
Borowska (b0060) 2015; 43
Arab Zade, Khodadadi (b0305) 2018; 13
Tuncer, Dogan, Pławiak, Acharya (b0265) 2019; 186
Lutich (b0190) 2017; 16
Abdar, Książek, Acharya, Tan, Makarenkov, Pławiak (b0005) 2019; 179
Khodadadi, Khaki-Sedigh, Ataei, Jahed-Motlagh (b0165) 2018; 29
Goodfellow, I., Y. Bengio, A. Courville, and Y. Bengio (2016), Deep learning, MIT press Cambridge.
Yildirim (b0290) 2018; 96
Ye, Kumar, Coimbra (b0285) 2012; 59
Acharya (10.1016/j.eswa.2020.113697_b0025) 2017; 377
De Lannoy (10.1016/j.eswa.2020.113697_b0095) 2010
De Chazal (10.1016/j.eswa.2020.113697_b0090) 2004; 51
Kutlu (10.1016/j.eswa.2020.113697_b0185) 2012; 105
Acharya (10.1016/j.eswa.2020.113697_b0015) 2017; 415
Chen (10.1016/j.eswa.2020.113697_b0075) 2018; 16
Huang (10.1016/j.eswa.2020.113697_b0150) 2014; 13
10.1016/j.eswa.2020.113697_b0195
10.1016/j.eswa.2020.113697_b0145
Pasolli (10.1016/j.eswa.2020.113697_b0230) 2015; 19
Rahman (10.1016/j.eswa.2020.113697_b0255) 2016; 4
Bassiouni (10.1016/j.eswa.2020.113697_b0045) 2018; 12
Ganapathy (10.1016/j.eswa.2020.113697_b0120) 2018; 27
Daamouche (10.1016/j.eswa.2020.113697_b0080) 2012; 7
Elhaj (10.1016/j.eswa.2020.113697_b0110) 2016; 127
Yildirim (10.1016/j.eswa.2020.113697_b0290) 2018; 96
Mar (10.1016/j.eswa.2020.113697_b0200) 2011; 58
Kumar (10.1016/j.eswa.2020.113697_b0180) 2018; 38
Mohebbi (10.1016/j.eswa.2020.113697_b0205) 2012; 105
Jung (10.1016/j.eswa.2020.113697_b0155) 2013; 18
Abdar (10.1016/j.eswa.2020.113697_b0005) 2019; 179
Ahmad (10.1016/j.eswa.2020.113697_b0030) 2018; 9
Lutich (10.1016/j.eswa.2020.113697_b0190) 2017; 16
Nabian (10.1016/j.eswa.2020.113697_b0215) 2018; 6
De Lannoy (10.1016/j.eswa.2020.113697_b0100) 2011; 59
10.1016/j.eswa.2020.113697_b0260
10.1016/j.eswa.2020.113697_b0140
Zhang (10.1016/j.eswa.2020.113697_b0310) 2014; 46
Khodadadi (10.1016/j.eswa.2020.113697_b0165) 2018; 29
Ye (10.1016/j.eswa.2020.113697_b0285) 2012; 59
Escalona-Morán (10.1016/j.eswa.2020.113697_b0115) 2014; 19
Ceylan (10.1016/j.eswa.2020.113697_b0070) 2018; 6
Yıldırım (10.1016/j.eswa.2020.113697_b0295) 2018; 102
Dilmac (10.1016/j.eswa.2020.113697_b0105) 2015; 36
Yang (10.1016/j.eswa.2020.113697_b0280) 2018; 101
10.1016/j.eswa.2020.113697_b0130
10.1016/j.eswa.2020.113697_b0175
Bazi (10.1016/j.eswa.2020.113697_b0050) 2013
Kiani Boroujeni (10.1016/j.eswa.2020.113697_b0055) 2019; 13
Vivekanandan (10.1016/j.eswa.2020.113697_b0270) 2017; 90
Wang (10.1016/j.eswa.2020.113697_b0275) 2013; 116
10.1016/j.eswa.2020.113697_b0250
10.1016/j.eswa.2020.113697_b0245
Borowska (10.1016/j.eswa.2020.113697_b0060) 2015; 43
Khodadadi (10.1016/j.eswa.2020.113697_b0170) 2017; 37
Pławiak (10.1016/j.eswa.2020.113697_b0240) 2018; 39
Bouaziz (10.1016/j.eswa.2020.113697_b0065) 2018
Alvarado (10.1016/j.eswa.2020.113697_b0035) 2012; 59
Acharya (10.1016/j.eswa.2020.113697_b0020) 2017; 89
Golrizkhatami (10.1016/j.eswa.2020.113697_b0125) 2018; 114
Andreotti (10.1016/j.eswa.2020.113697_b0040) 2017; 44
Acharya (10.1016/j.eswa.2020.113697_b0010) 2007
Zomorodi-moghadam (10.1016/j.eswa.2020.113697_b0315) 2019
Pławiak (10.1016/j.eswa.2020.113697_b0235) 2018; 92
Yu (10.1016/j.eswa.2020.113697_b0300) 2009; 36
10.1016/j.eswa.2020.113697_b0085
Mosbah (10.1016/j.eswa.2020.113697_b0210) 2016; 39
Hajeb-Mohammadalipour (10.1016/j.eswa.2020.113697_b0135) 2018; 18
Kandala (10.1016/j.eswa.2020.113697_b0160) 2019; 19
Oh (10.1016/j.eswa.2020.113697_b0220) 2018; 102
Tuncer (10.1016/j.eswa.2020.113697_b0265) 2019; 186
Park (10.1016/j.eswa.2020.113697_b0225) 2008
Arab Zade (10.1016/j.eswa.2020.113697_b0305) 2018; 13
References_xml – year: 2013
  ident: b0050
  article-title: Domain adaptation methods for ECG classification
– volume: 59
  start-page: 241
  year: 2011
  end-page: 247
  ident: b0100
  article-title: Weighted conditional random fields for supervised interpatient heartbeat classification
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 415
  start-page: 190
  year: 2017
  end-page: 198
  ident: b0015
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Information Sciences
– volume: 101
  start-page: 22
  year: 2018
  end-page: 32
  ident: b0280
  article-title: Automatic recognition of arrhythmia based on principal component analysis network and linear support vector machine
  publication-title: Computers in Biology and Medicine
– volume: 13
  start-page: 1
  year: 2018
  end-page: 7
  ident: b0305
  article-title: Fuzzy controller design for breast cancer treatment based on fractal dimension using breast thermograms
  publication-title: IET Systems Biology
– volume: 16
  start-page: 131
  year: 2018
  end-page: 138
  ident: b0075
  article-title: Arrhythmia recognition and classification using ECG morphology and segment feature analysis
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– volume: 19
  start-page: 5079
  year: 2019
  ident: b0160
  article-title: Towards real-time heartbeat classification: evaluation of nonlinear morphological features and voting method
  publication-title: Sensors
– volume: 6
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0215
  article-title: An open-source feature extraction tool for the analysis of peripheral physiological data
  publication-title: IEEE Journal of Translational Engineering in Health and Medicine
– reference: Soria, M. L., and J. Martínez (2009), Analysis of multidomain features for ECG classification, paper presented at 2009 36th Annual Computers in Cardiology Conference (CinC), IEEE.
– volume: 36
  start-page: 641
  year: 2015
  end-page: 655
  ident: b0105
  article-title: ECG heart beat classification method based on modified ABC algorithm
  publication-title: Applied Soft Computing
– year: 2019
  ident: b0315
  article-title: Hybrid particle swarm optimization for rule discovery in the diagnosis of coronary artery disease
  publication-title: Expert Systems
– volume: 43
  start-page: 21
  year: 2015
  end-page: 32
  ident: b0060
  article-title: Entropy-based algorithms in the analysis of biomedical signals
  publication-title: Studies in Logic, Grammar and Rhetoric
– year: 2018
  ident: b0065
  article-title: Diagnostic of ECG Arrhythmia using Wavelet Analysis and K-Nearest Neighbor
– reference: Luz, E. J. d. S., W. R. Schwartz, G. Cámara-Chávez, and D. Menotti (2016), ECG-based heartbeat classification for arrhythmia detection: A survey, Computer methods and programs in biomedicine, 127, 144-164.
– reference: Goodfellow, I., Y. Bengio, A. Courville, and Y. Bengio (2016), Deep learning, MIT press Cambridge.
– volume: 186
  year: 2019
  ident: b0265
  article-title: Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals
  publication-title: Knowledge-Based Systems
– year: 2010
  ident: b0095
  article-title: Weighted SVMs and feature relevance assessment in supervised heart beat classification, paper presented at International Joint Conference on Biomedical Engineering Systems and Technologies
– volume: 19
  start-page: 130
  year: 2015
  end-page: 136
  ident: b0230
  article-title: Genetic algorithm-based method for mitigating label noise issue in ECG signal classification
  publication-title: Biomedical Signal Processing and Control
– reference: Pławiak, P., and U. R. Acharya (2019, Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals, Neural Computing and Applications, 1-25.
– reference: Hernandez-Matamoros, A., H. Fujita, E. Escamilla-Hernandez, H. Perez-Meana, and M. Nakano-Miyatake (2020), Recognition of ECG signals using wavelet based on atomic functions, Biocybernetics and Biomedical Engineering.
– volume: 377
  start-page: 17
  year: 2017
  end-page: 29
  ident: b0025
  article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study
  publication-title: Information Sciences
– reference: Das, S., and M. Chakraborty (2011), Comparison of power Spectral Density (pSD) of normal and Abnormal ECGs, paper presented at IJCA, Special Issue on 2nd National Conference-Computing, Communication and Sensor Network, (2): pp-10-14.
– volume: 18
  start-page: 2337
  year: 2013
  end-page: 2346
  ident: b0155
  article-title: A guided hybrid genetic algorithm for feature selection with expensive cost functions
  publication-title: Procedia Computer Science
– volume: 36
  start-page: 2088
  year: 2009
  end-page: 2096
  ident: b0300
  article-title: Selection of significant independent components for ECG beat classification
  publication-title: Expert Systems with Applications
– year: 2008
  ident: b0225
  article-title: Hierarchical support vector machine based heartbeat classification using higher order statistics and hermite basis
– volume: 89
  start-page: 389
  year: 2017
  end-page: 396
  ident: b0020
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Computers in Biology and Medicine
– volume: 114
  start-page: 54
  year: 2018
  end-page: 64
  ident: b0125
  article-title: ECG classification using three-level fusion of different feature descriptors
  publication-title: Expert Systems with Applications
– volume: 18
  start-page: 2090
  year: 2018
  ident: b0135
  article-title: Automated method for discrimination of arrhythmias using time, frequency, and nonlinear features of electrocardiogram signals
  publication-title: Sensors
– volume: 13
  start-page: 90
  year: 2014
  ident: b0150
  article-title: A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals
  publication-title: Biomedical Engineering Online
– volume: 39
  start-page: 283
  year: 2016
  end-page: 291
  ident: b0210
  article-title: Hourly electricity price forecasting for the next month using multilayer neural network
  publication-title: Canadian Journal of Electrical and Computer Engineering
– volume: 90
  start-page: 125
  year: 2017
  end-page: 136
  ident: b0270
  article-title: Optimal feature selection using a modified differential evolution algorithm and its effectiveness for prediction of heart disease
  publication-title: Computers in Biology and Medicine
– volume: 59
  start-page: 2930
  year: 2012
  end-page: 2941
  ident: b0285
  article-title: Heartbeat classification using morphological and dynamic features of ECG signals
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 51
  start-page: 1196
  year: 2004
  end-page: 1206
  ident: b0090
  article-title: Automatic classification of heartbeats using ECG morphology and heartbeat interval features
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 105
  start-page: 257
  year: 2012
  end-page: 267
  ident: b0185
  article-title: Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 102
  start-page: 278
  year: 2018
  end-page: 287
  ident: b0220
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Computers in Biology and Medicine
– volume: 29
  start-page: 19
  year: 2018
  end-page: 33
  ident: b0165
  article-title: Applying a modified version of Lyapunov exponent for cancer diagnosis in biomedical images: The case of breast mammograms
  publication-title: Multidimensional Systems and Signal Processing
– volume: 127
  start-page: 52
  year: 2016
  end-page: 63
  ident: b0110
  article-title: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 58
  start-page: 2168
  year: 2011
  end-page: 2177
  ident: b0200
  article-title: Optimization of ECG classification by means of feature selection
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 96
  start-page: 189
  year: 2018
  end-page: 202
  ident: b0290
  article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification
  publication-title: Computers in Biology and Medicine
– volume: 46
  start-page: 79
  year: 2014
  end-page: 89
  ident: b0310
  article-title: Heartbeat classification using disease-specific feature selection
  publication-title: Computers in Biology and Medicine
– volume: 4
  start-page: 27
  year: 2016
  end-page: 36
  ident: b0255
  article-title: Detection of Abnormality in Electrocardiogram (ECG) Signals Based on Katz’s and Higuchi’s Method Under Fractal Dimensions
  publication-title: Computational Biology and Bioinformatics
– volume: 92
  start-page: 334
  year: 2018
  end-page: 349
  ident: b0235
  article-title: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system
  publication-title: Expert Systems with Applications
– volume: 38
  start-page: 564
  year: 2018
  end-page: 573
  ident: b0180
  article-title: Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform
  publication-title: Biocybernetics and Biomedical Engineering
– volume: 39
  start-page: 192
  year: 2018
  end-page: 208
  ident: b0240
  article-title: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals
  publication-title: Swarm and evolutionary computation
– volume: 9
  start-page: 383
  year: 2018
  end-page: 389
  ident: b0030
  article-title: Features optimization for ECG signals classification
  publication-title: Int. J. Adv. Comput. Sci Appl.
– volume: 12
  start-page: 941
  year: 2018
  end-page: 949
  ident: b0045
  article-title: Intelligent hybrid approaches for human ECG signals identification
  publication-title: Signal, Image and Video Processing
– volume: 116
  start-page: 38
  year: 2013
  end-page: 45
  ident: b0275
  article-title: ECG arrhythmia classification using a probabilistic neural network with a feature reduction method
  publication-title: Neurocomputing
– volume: 27
  start-page: 098
  year: 2018
  end-page: 109
  ident: b0120
  article-title: Deep learning on 1-D biosignals: A taxonomy-based survey
  publication-title: Yearbook of Medical Informatics
– volume: 179
  year: 2019
  ident: b0005
  article-title: A new machine learning technique for an accurate diagnosis of coronary artery disease
  publication-title: Computer methods and programs in biomedicine
– volume: 13
  start-page: 260
  year: 2019
  end-page: 266
  ident: b0055
  article-title: diagnosis of attention deficit hyperactivity disorder using nonlinear analysis of the EEG signal
  publication-title: IET Systems Biology
– reference: Pourbabaee, B., and C. Lucas (2010), Paroxysmal atrial fibrillation diagnosis based on feature extraction and classification, paper presented at 2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, IEEE.
– volume: 105
  start-page: 40
  year: 2012
  end-page: 49
  ident: b0205
  article-title: Prediction of paroxysmal atrial fibrillation based on nonlinear analysis and spectrum and bispectrum features of the heart rate variability signal
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 7
  start-page: 342
  year: 2012
  end-page: 349
  ident: b0080
  article-title: A wavelet optimization approach for ECG signal classification
  publication-title: Biomedical Signal Processing and Control
– volume: 44
  start-page: 1
  year: 2017
  ident: b0040
  article-title: Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECG
  publication-title: Computing
– reference: Hassanien, A. E., M. Kilany, and E. H. Houssein (2018), Combining support vector machine and elephant herding optimization for cardiac arrhythmias, arXiv preprint arXiv:1806.08242.
– year: 2007
  ident: b0010
  article-title: Advances in cardiac signal processing
– volume: 102
  start-page: 411
  year: 2018
  end-page: 420
  ident: b0295
  article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals
  publication-title: Computers in Biology and Medicine
– volume: 59
  start-page: 1641
  year: 2012
  end-page: 1648
  ident: b0035
  article-title: Time-based compression and classification of heartbeats
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 6
  start-page: 40
  year: 2018
  end-page: 46
  ident: b0070
  article-title: The effect of feature extraction based on dictionary learning on ECG signal classification
  publication-title: International Journal of Intelligent Systems and Applications in Engineering
– volume: 37
  start-page: 409
  year: 2017
  end-page: 419
  ident: b0170
  article-title: Nonlinear analysis of the contour boundary irregularity of skin lesion using Lyapunov exponent and KS entropy
  publication-title: Journal of Medical and Biological Engineering
– volume: 16
  year: 2017
  ident: b0190
  article-title: PatterNet: A system to learn compact physical design pattern representations for pattern-based analytics
  publication-title: Journal of Micro/Nanolithography, MEMS, and MOEMS
– reference: Kora, P., A. Annavarapu, and S. Borra (2018), ECG based myocardial infarction detection using different classification techniques, in Classification in BioApps, edited, pp. 57-77, Springer.
– volume: 19
  start-page: 892
  year: 2014
  end-page: 898
  ident: b0115
  article-title: Electrocardiogram classification using reservoir computing with logistic regression
  publication-title: IEEE Journal of Biomedical and health Informatics
– volume: 105
  start-page: 40
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2020.113697_b0205
  article-title: Prediction of paroxysmal atrial fibrillation based on nonlinear analysis and spectrum and bispectrum features of the heart rate variability signal
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2010.07.011
– volume: 415
  start-page: 190
  year: 2017
  ident: 10.1016/j.eswa.2020.113697_b0015
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.06.027
– volume: 96
  start-page: 189
  year: 2018
  ident: 10.1016/j.eswa.2020.113697_b0290
  article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.03.016
– volume: 36
  start-page: 641
  year: 2015
  ident: 10.1016/j.eswa.2020.113697_b0105
  article-title: ECG heart beat classification method based on modified ABC algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.07.010
– volume: 9
  start-page: 383
  issue: 11
  year: 2018
  ident: 10.1016/j.eswa.2020.113697_b0030
  article-title: Features optimization for ECG signals classification
  publication-title: Int. J. Adv. Comput. Sci Appl.
– year: 2013
  ident: 10.1016/j.eswa.2020.113697_b0050
– volume: 37
  start-page: 409
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2020.113697_b0170
  article-title: Nonlinear analysis of the contour boundary irregularity of skin lesion using Lyapunov exponent and KS entropy
  publication-title: Journal of Medical and Biological Engineering
  doi: 10.1007/s40846-017-0235-3
– ident: 10.1016/j.eswa.2020.113697_b0085
– volume: 16
  start-page: 131
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2020.113697_b0075
  article-title: Arrhythmia recognition and classification using ECG morphology and segment feature analysis
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– volume: 59
  start-page: 241
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2020.113697_b0100
  article-title: Weighted conditional random fields for supervised interpatient heartbeat classification
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2011.2171037
– year: 2018
  ident: 10.1016/j.eswa.2020.113697_b0065
– volume: 27
  start-page: 098
  issue: 01
  year: 2018
  ident: 10.1016/j.eswa.2020.113697_b0120
  article-title: Deep learning on 1-D biosignals: A taxonomy-based survey
  publication-title: Yearbook of Medical Informatics
  doi: 10.1055/s-0038-1667083
– volume: 16
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2020.113697_b0190
  article-title: PatterNet: A system to learn compact physical design pattern representations for pattern-based analytics
  publication-title: Journal of Micro/Nanolithography, MEMS, and MOEMS
  doi: 10.1117/1.JMM.16.3.034505
– ident: 10.1016/j.eswa.2020.113697_b0175
  doi: 10.1007/978-3-319-65981-7_3
– volume: 18
  start-page: 2337
  year: 2013
  ident: 10.1016/j.eswa.2020.113697_b0155
  article-title: A guided hybrid genetic algorithm for feature selection with expensive cost functions
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2013.05.405
– volume: 59
  start-page: 1641
  issue: 6
  year: 2012
  ident: 10.1016/j.eswa.2020.113697_b0035
  article-title: Time-based compression and classification of heartbeats
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2191407
– ident: 10.1016/j.eswa.2020.113697_b0245
  doi: 10.1007/s00521-018-03980-2
– volume: 39
  start-page: 283
  issue: 4
  year: 2016
  ident: 10.1016/j.eswa.2020.113697_b0210
  article-title: Hourly electricity price forecasting for the next month using multilayer neural network
  publication-title: Canadian Journal of Electrical and Computer Engineering
  doi: 10.1109/CJECE.2016.2586939
– volume: 39
  start-page: 192
  year: 2018
  ident: 10.1016/j.eswa.2020.113697_b0240
  article-title: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals
  publication-title: Swarm and evolutionary computation
  doi: 10.1016/j.swevo.2017.10.002
– volume: 4
  start-page: 27
  year: 2016
  ident: 10.1016/j.eswa.2020.113697_b0255
  article-title: Detection of Abnormality in Electrocardiogram (ECG) Signals Based on Katz’s and Higuchi’s Method Under Fractal Dimensions
  publication-title: Computational Biology and Bioinformatics
  doi: 10.11648/j.cbb.20160404.11
– volume: 92
  start-page: 334
  year: 2018
  ident: 10.1016/j.eswa.2020.113697_b0235
  article-title: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.09.022
– volume: 186
  year: 2019
  ident: 10.1016/j.eswa.2020.113697_b0265
  article-title: Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.104923
– volume: 43
  start-page: 21
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2020.113697_b0060
  article-title: Entropy-based algorithms in the analysis of biomedical signals
  publication-title: Studies in Logic, Grammar and Rhetoric
  doi: 10.1515/slgr-2015-0039
– ident: 10.1016/j.eswa.2020.113697_b0195
  doi: 10.1016/j.cmpb.2015.12.008
– volume: 102
  start-page: 278
  year: 2018
  ident: 10.1016/j.eswa.2020.113697_b0220
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.06.002
– volume: 90
  start-page: 125
  year: 2017
  ident: 10.1016/j.eswa.2020.113697_b0270
  article-title: Optimal feature selection using a modified differential evolution algorithm and its effectiveness for prediction of heart disease
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2017.09.011
– volume: 89
  start-page: 389
  year: 2017
  ident: 10.1016/j.eswa.2020.113697_b0020
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2017.08.022
– ident: 10.1016/j.eswa.2020.113697_b0250
  doi: 10.1109/CIBCB.2010.5510702
– volume: 36
  start-page: 2088
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2020.113697_b0300
  article-title: Selection of significant independent components for ECG beat classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.12.016
– volume: 102
  start-page: 411
  year: 2018
  ident: 10.1016/j.eswa.2020.113697_b0295
  article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.09.009
– volume: 18
  start-page: 2090
  issue: 7
  year: 2018
  ident: 10.1016/j.eswa.2020.113697_b0135
  article-title: Automated method for discrimination of arrhythmias using time, frequency, and nonlinear features of electrocardiogram signals
  publication-title: Sensors
  doi: 10.3390/s18072090
– volume: 13
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2020.113697_b0305
  article-title: Fuzzy controller design for breast cancer treatment based on fractal dimension using breast thermograms
  publication-title: IET Systems Biology
  doi: 10.1049/iet-syb.2018.5020
– year: 2010
  ident: 10.1016/j.eswa.2020.113697_b0095
– volume: 51
  start-page: 1196
  issue: 7
  year: 2004
  ident: 10.1016/j.eswa.2020.113697_b0090
  article-title: Automatic classification of heartbeats using ECG morphology and heartbeat interval features
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2004.827359
– volume: 105
  start-page: 257
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2020.113697_b0185
  article-title: Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2011.10.002
– volume: 44
  start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2020.113697_b0040
  article-title: Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECG
  publication-title: Computing
– ident: 10.1016/j.eswa.2020.113697_b0140
– year: 2007
  ident: 10.1016/j.eswa.2020.113697_b0010
– volume: 19
  start-page: 892
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2020.113697_b0115
  article-title: Electrocardiogram classification using reservoir computing with logistic regression
  publication-title: IEEE Journal of Biomedical and health Informatics
  doi: 10.1109/JBHI.2014.2332001
– year: 2019
  ident: 10.1016/j.eswa.2020.113697_b0315
  article-title: Hybrid particle swarm optimization for rule discovery in the diagnosis of coronary artery disease
  publication-title: Expert Systems
– volume: 377
  start-page: 17
  year: 2017
  ident: 10.1016/j.eswa.2020.113697_b0025
  article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2016.10.013
– volume: 116
  start-page: 38
  year: 2013
  ident: 10.1016/j.eswa.2020.113697_b0275
  article-title: ECG arrhythmia classification using a probabilistic neural network with a feature reduction method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.10.045
– volume: 29
  start-page: 19
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2020.113697_b0165
  article-title: Applying a modified version of Lyapunov exponent for cancer diagnosis in biomedical images: The case of breast mammograms
  publication-title: Multidimensional Systems and Signal Processing
  doi: 10.1007/s11045-016-0446-8
– volume: 101
  start-page: 22
  year: 2018
  ident: 10.1016/j.eswa.2020.113697_b0280
  article-title: Automatic recognition of arrhythmia based on principal component analysis network and linear support vector machine
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.08.003
– volume: 6
  start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2020.113697_b0215
  article-title: An open-source feature extraction tool for the analysis of peripheral physiological data
  publication-title: IEEE Journal of Translational Engineering in Health and Medicine
  doi: 10.1109/JTEHM.2018.2878000
– ident: 10.1016/j.eswa.2020.113697_b0260
– volume: 114
  start-page: 54
  year: 2018
  ident: 10.1016/j.eswa.2020.113697_b0125
  article-title: ECG classification using three-level fusion of different feature descriptors
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.07.030
– volume: 19
  start-page: 130
  year: 2015
  ident: 10.1016/j.eswa.2020.113697_b0230
  article-title: Genetic algorithm-based method for mitigating label noise issue in ECG signal classification
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2014.10.013
– volume: 7
  start-page: 342
  issue: 4
  year: 2012
  ident: 10.1016/j.eswa.2020.113697_b0080
  article-title: A wavelet optimization approach for ECG signal classification
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2011.07.001
– volume: 13
  start-page: 260
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2020.113697_b0055
  article-title: diagnosis of attention deficit hyperactivity disorder using nonlinear analysis of the EEG signal
  publication-title: IET Systems Biology
  doi: 10.1049/iet-syb.2018.5130
– volume: 13
  start-page: 90
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2020.113697_b0150
  article-title: A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals
  publication-title: Biomedical Engineering Online
  doi: 10.1186/1475-925X-13-90
– volume: 38
  start-page: 564
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2020.113697_b0180
  article-title: Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform
  publication-title: Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2018.04.004
– volume: 179
  year: 2019
  ident: 10.1016/j.eswa.2020.113697_b0005
  article-title: A new machine learning technique for an accurate diagnosis of coronary artery disease
  publication-title: Computer methods and programs in biomedicine
  doi: 10.1016/j.cmpb.2019.104992
– volume: 59
  start-page: 2930
  issue: 10
  year: 2012
  ident: 10.1016/j.eswa.2020.113697_b0285
  article-title: Heartbeat classification using morphological and dynamic features of ECG signals
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2012.2213253
– volume: 127
  start-page: 52
  year: 2016
  ident: 10.1016/j.eswa.2020.113697_b0110
  article-title: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2015.12.024
– year: 2008
  ident: 10.1016/j.eswa.2020.113697_b0225
– volume: 46
  start-page: 79
  year: 2014
  ident: 10.1016/j.eswa.2020.113697_b0310
  article-title: Heartbeat classification using disease-specific feature selection
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2013.11.019
– volume: 12
  start-page: 941
  issue: 5
  year: 2018
  ident: 10.1016/j.eswa.2020.113697_b0045
  article-title: Intelligent hybrid approaches for human ECG signals identification
  publication-title: Signal, Image and Video Processing
  doi: 10.1007/s11760-018-1237-5
– volume: 6
  start-page: 40
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2020.113697_b0070
  article-title: The effect of feature extraction based on dictionary learning on ECG signal classification
  publication-title: International Journal of Intelligent Systems and Applications in Engineering
  doi: 10.18201/ijisae.2018637929
– ident: 10.1016/j.eswa.2020.113697_b0130
– ident: 10.1016/j.eswa.2020.113697_b0145
  doi: 10.1016/j.bbe.2020.02.007
– volume: 58
  start-page: 2168
  issue: 8
  year: 2011
  ident: 10.1016/j.eswa.2020.113697_b0200
  article-title: Optimization of ECG classification by means of feature selection
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2011.2113395
– volume: 19
  start-page: 5079
  issue: 23
  year: 2019
  ident: 10.1016/j.eswa.2020.113697_b0160
  article-title: Towards real-time heartbeat classification: evaluation of nonlinear morphological features and voting method
  publication-title: Sensors
  doi: 10.3390/s19235079
SSID ssj0017007
Score 2.5347877
Snippet •A new method for discrimination of seven types of ECG beats is proposed.•This method employs a combination of morphology, frequency, and nonlinear...
Cardiac arrhythmia disorder is known as one of the most common diseases in the world. Today, this disease is considered as the leading cause of death in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113697
SubjectTerms Abnormalities
Arrhythmia
Cardiac arrhythmia
Cardiac arrhythmia recognition
Classification
Diagnosis
ECG signal
Electrocardiography
Feature extraction
FF net classifier
Genetic algorithms
Heart diseases
Heuristic methods
Machine learning
Meta-heuristic optimization algorithm
Morphology
Multiple objective analysis
Neural networks
Nonlinear indices
Optimization
Optimization algorithms
Pattern recognition
Physicians
Radial basis function
Signal processing
Sorting algorithms
Title Heart arrhythmia diagnosis based on the combination of morphological, frequency and nonlinear features of ECG signals and metaheuristic feature selection algorithm
URI https://dx.doi.org/10.1016/j.eswa.2020.113697
https://www.proquest.com/docview/2461619024
Volume 161
WOSCitedRecordID wos000576781400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3ohdFuQD4hKySpPUdo6rVZcFqsKhW_UWOY5DWvVFmn3A3-EX8A8Zx49uV1DBAVWKqtRuXc-X8Xg88w1CryMmgzDhXZ8p931MitxP4pj7BSUUHqeEZU39lFGfDgZsPE4-t1o_bS7M5YwuFuz6Oln9V1HDPRC2Sp39B3G7L4Ub8B6EDlcQO1z_SvBn8Idqj1dV-a0u5xOu3Ksqmm6y9tSSlZvjARVMDrtiZzHOlzDjVhOqiS8qHWWtCZoWmlKDV14hGy7QJgSkd_LOUxEgioNZtZrLmpfyQrM_25beuqm108Q9z74sqwkMa-tAQLEt14ZT2mbb3ThX3zjNv_PSZMaP-HRSOkx-LJc5h5euwM3nJmHLODPCJjBEp3NqD5vLshlteSqpH3d0MZ8jqfU0o5FPqC6u6BS5pnU3qrjz2wVC-yqmR3J9pVinQl3URocIb7NxDz6lp-f9fjrsjYdvVl99VahMHeibqi130F5Iuwlro73j973xB3d0RQOdo29HbTK1dFDh7Z_9kzV0yy5ojJ3hQ3Tf7FLwsUbXI9SSi8foga0Ags2C8AT9aMCGN2DDDmy4ARteLjCADd8AG14WeAtsb7GDGgYQYQc1bKGmugDUsIFa02oLarYldlDDDmpP0flpb3hy5puyH76IQlb7GQebXIosyQlsfjs043kggqAICROCZozlNAsEEawgRMZSypgJxrI84mBa5YWInqE2jFQ-R7hbBJRkpKBBFsQZmGI0hwVKRrBHV3Z3uI86dvpTYTjxVWmWWWqDH6epElmqRJZqke0jz_VZaUaYna27VqqpsWm1rZoCInf2O7QQSI1yWaeK-5GABR_GB7s_foHubZ6uQ9Suqwv5Et0Vl_VkXb0yiP0FbNXUAA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heart+arrhythmia+diagnosis+based+on+the+combination+of+morphological%2C+frequency+and+nonlinear+features+of+ECG+signals+and+metaheuristic+feature+selection+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Mazaheri%2C+Vajihe&rft.au=Khodadadi%2C+Hamed&rft.date=2020-12-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=161&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2020.113697&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon