ASCA-PSO: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment

•Sine cosine algorithm is enhanced by hybridizing particle swarm optimization.•The hybridization is based on low level co-evolutionary hybrid scheme.•The proposed scheme produced better performance on mathematical benchmark functions.•Finding longest consecutive substring problem was used as testing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 99; S. 56 - 70
Hauptverfasser: Issa, Mohamed, Hassanien, Aboul Ella, Oliva, Diego, Helmi, Ahmed, Ziedan, Ibrahim, Alzohairy, Ahmed
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Ltd 01.06.2018
Elsevier BV
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Sine cosine algorithm is enhanced by hybridizing particle swarm optimization.•The hybridization is based on low level co-evolutionary hybrid scheme.•The proposed scheme produced better performance on mathematical benchmark functions.•Finding longest consecutive substring problem was used as testing case study. The sine cosine algorithm (SCA), a recently proposed population-based optimization algorithm, is based on the use of sine and cosine trigonometric functions as operators to update the movements of the search agents. To optimize performance, different parameters on the SCA must be appropriately tuned. Setting such parameters is challenging because they permit the algorithm to escape from local optima and avoid premature convergence. The main drawback of the SCA is that the parameter setting only affects the exploitation of the prominent regions. However, the SCA has good exploration capabilities. This article presents an enhanced version of the SCA by merging it with particle swarm optimization (PSO). PSO exploits the search space better than the operators of the standard SCA. The proposed algorithm, called ASCA-PSO, has been tested over several unimodal and multimodal benchmark functions, which show its superiority over the SCA and other recent and standard meta-heuristic algorithms. Moreover, to verify the capabilities of the SCA, the SCA has been used to solve the real-world problem of a pairwise local alignment algorithm that tends to find the longest consecutive substrings between two biological sequences. Experimental results provide evidence of the good performance of the ASCA-PSO solutions in terms of accuracy and computational time.
AbstractList The sine cosine algorithm (SCA), a recently proposed population-based optimization algorithm, is based on the use of sine and cosine trigonometric functions as operators to update the movements of the search agents. To optimize performance, different parameters on the SCA must be appropriately tuned. Setting such parameters is challenging because they permit the algorithm to escape from local optima and avoid premature convergence. The main drawback of the SCA is that the parameter setting only affects the exploitation of the prominent regions. However, the SCA has good exploration capabilities. This article presents an enhanced version of the SCA by merging it with particle swarm optimization (PSO). PSO exploits the search space better than the operators of the standard SCA. The proposed algorithm, called ASCA-PSO, has been tested over several unimodal and multimodal benchmark functions, which show its superiority over the SCA and other recent and standard meta-heuristic algorithms. Moreover, to verify the capabilities of the SCA, the SCA has been used to solve the real-world problem of a pairwise local alignment algorithm that tends to find the longest consecutive substrings between two biological sequences. Experimental results provide evidence of the good performance of the ASCA-PSO solutions in terms of accuracy and computational time.
•Sine cosine algorithm is enhanced by hybridizing particle swarm optimization.•The hybridization is based on low level co-evolutionary hybrid scheme.•The proposed scheme produced better performance on mathematical benchmark functions.•Finding longest consecutive substring problem was used as testing case study. The sine cosine algorithm (SCA), a recently proposed population-based optimization algorithm, is based on the use of sine and cosine trigonometric functions as operators to update the movements of the search agents. To optimize performance, different parameters on the SCA must be appropriately tuned. Setting such parameters is challenging because they permit the algorithm to escape from local optima and avoid premature convergence. The main drawback of the SCA is that the parameter setting only affects the exploitation of the prominent regions. However, the SCA has good exploration capabilities. This article presents an enhanced version of the SCA by merging it with particle swarm optimization (PSO). PSO exploits the search space better than the operators of the standard SCA. The proposed algorithm, called ASCA-PSO, has been tested over several unimodal and multimodal benchmark functions, which show its superiority over the SCA and other recent and standard meta-heuristic algorithms. Moreover, to verify the capabilities of the SCA, the SCA has been used to solve the real-world problem of a pairwise local alignment algorithm that tends to find the longest consecutive substrings between two biological sequences. Experimental results provide evidence of the good performance of the ASCA-PSO solutions in terms of accuracy and computational time.
Author Issa, Mohamed
Alzohairy, Ahmed
Ziedan, Ibrahim
Oliva, Diego
Helmi, Ahmed
Hassanien, Aboul Ella
Author_xml – sequence: 1
  givenname: Mohamed
  surname: Issa
  fullname: Issa, Mohamed
  organization: Computer Engineering and Systems Department, Faculty of Engineering, Zagazig University, Egypt
– sequence: 2
  givenname: Aboul Ella
  orcidid: 0000-0002-9989-6681
  surname: Hassanien
  fullname: Hassanien, Aboul Ella
  email: aboitcairo@fci-cu.edu.eg
  organization: Faculty of Computers and Information, Cairo University, Egypt
– sequence: 3
  givenname: Diego
  surname: Oliva
  fullname: Oliva, Diego
  email: doliva@ucm.es
  organization: Departamento de Ciencias Computacionales, Universidad de Guadalajara, Mexico
– sequence: 4
  givenname: Ahmed
  surname: Helmi
  fullname: Helmi, Ahmed
  organization: Computer Engineering and Systems Department, Faculty of Engineering, Zagazig University, Egypt
– sequence: 5
  givenname: Ibrahim
  surname: Ziedan
  fullname: Ziedan, Ibrahim
  organization: Computer Engineering and Systems Department, Faculty of Engineering, Zagazig University, Egypt
– sequence: 6
  givenname: Ahmed
  surname: Alzohairy
  fullname: Alzohairy, Ahmed
  organization: Genetic Department, Faculty of Agriculture, Zagazig University, Egypt
BookMark eNp9kE1rHDEMhk1IIJukf6AnQ8-zted7Si_L0i8IpJD2bDQazVbLjL21nSzNr68nm1MOAYHgRY9sPVfi3DpLQrzXaq2Vrj_u1xSOsM6VbtdKp-rOxEq3TZHVTVeci5XqqiYrdVNeiqsQ9krpRqlmJZ4299tN9vP-7pPcDHCI_EgysCWJ7rm5FM38BJGdlTDtnOf4Z5ZsI-08RBrkMQXyAD4yTok9gp_l6HyK2B85kJwcwiQD_X0gi5SW8M7OZOONuBhhCvTupV-L31-__Np-z27vvv3Ybm4zLPI2Zj1UpR5qTT0Cos4LqABKzAFHBeXY5303VgU21YC9LrECNQxFX9V1r-q6a6m4Fh9Oew_epT-EaPbuwdv0pMnVoqRqyzZNtacp9C4ET6NBjs9nRw88Ga3MYtrszWLaLKaN0qm6hOav0IPnGfy_t6HPJ4jS6Y9M3gTkRdDAnjCawfFb-H9uMJ0i
CitedBy_id crossref_primary_10_1016_j_enconman_2019_05_057
crossref_primary_10_1016_j_eswa_2019_113113
crossref_primary_10_1016_j_engappai_2021_104506
crossref_primary_10_1016_j_eswa_2020_113486
crossref_primary_10_1515_ijeeps_2020_0256
crossref_primary_10_1093_jcde_qwac119
crossref_primary_10_1109_ACCESS_2019_2960890
crossref_primary_10_1049_cit2_12070
crossref_primary_10_1093_jcde_qwac075
crossref_primary_10_1007_s42235_025_00703_x
crossref_primary_10_1016_j_isci_2025_111867
crossref_primary_10_1093_jcde_qwac111
crossref_primary_10_3389_fenrg_2022_875332
crossref_primary_10_1155_2020_6084917
crossref_primary_10_1007_s00500_020_05227_6
crossref_primary_10_1111_exsy_12854
crossref_primary_10_1016_j_isci_2023_107896
crossref_primary_10_1007_s10462_020_09909_3
crossref_primary_10_1016_j_bspc_2024_107392
crossref_primary_10_1016_j_jocs_2020_101219
crossref_primary_10_1007_s00366_020_00962_8
crossref_primary_10_1016_j_compbiomed_2024_108437
crossref_primary_10_3389_fninf_2022_1041799
crossref_primary_10_1016_j_eswa_2022_118372
crossref_primary_10_1109_ACCESS_2020_2966582
crossref_primary_10_1016_j_rineng_2024_103703
crossref_primary_10_1007_s12530_025_09683_z
crossref_primary_10_1016_j_asoc_2022_109682
crossref_primary_10_1016_j_compbiomed_2021_104582
crossref_primary_10_1109_ACCESS_2020_2981968
crossref_primary_10_1007_s00521_024_09534_z
crossref_primary_10_1016_j_eswa_2021_116417
crossref_primary_10_1016_j_asoc_2020_106293
crossref_primary_10_1016_j_bbe_2022_07_009
crossref_primary_10_3390_sym14020331
crossref_primary_10_1007_s12065_019_00266_x
crossref_primary_10_1109_ACCESS_2020_2983451
crossref_primary_10_1016_j_swevo_2019_04_011
crossref_primary_10_1007_s00366_020_01083_y
crossref_primary_10_1016_j_eswa_2018_11_032
crossref_primary_10_1007_s10462_021_10026_y
crossref_primary_10_1016_j_asoc_2025_113492
crossref_primary_10_1016_j_eswa_2019_112883
crossref_primary_10_1155_2019_8164083
crossref_primary_10_1016_j_bspc_2023_104647
crossref_primary_10_1016_j_displa_2024_102799
crossref_primary_10_1016_j_neucom_2024_128289
crossref_primary_10_1007_s10586_024_04770_3
crossref_primary_10_1007_s10462_021_10052_w
crossref_primary_10_1016_j_asoc_2020_106683
crossref_primary_10_1371_journal_pone_0279572
crossref_primary_10_3390_pr9112044
crossref_primary_10_1016_j_compbiomed_2024_108297
crossref_primary_10_1007_s13369_020_05046_9
crossref_primary_10_1016_j_enconman_2020_112615
crossref_primary_10_1016_j_matcom_2021_08_016
crossref_primary_10_1038_s41598_025_95545_2
crossref_primary_10_1109_ACCESS_2021_3111033
crossref_primary_10_1016_j_eswa_2020_113395
crossref_primary_10_3390_en13010215
crossref_primary_10_1016_j_compbiomed_2021_105137
crossref_primary_10_1016_j_bspc_2023_104638
crossref_primary_10_1016_j_eswa_2022_116856
crossref_primary_10_3390_e21040404
crossref_primary_10_1080_01605682_2024_2385467
crossref_primary_10_1016_j_eswa_2021_114778
crossref_primary_10_1049_iet_wss_2019_0163
crossref_primary_10_1007_s00500_023_09470_5
crossref_primary_10_1007_s13369_022_07136_2
crossref_primary_10_1016_j_matcom_2022_02_030
crossref_primary_10_1007_s00500_020_05099_w
crossref_primary_10_1371_journal_pone_0255269
crossref_primary_10_1016_j_apenergy_2019_114131
crossref_primary_10_1016_j_jocs_2023_102105
crossref_primary_10_1155_2021_7621692
crossref_primary_10_1186_s13638_022_02117_3
crossref_primary_10_1016_j_asoc_2021_107197
crossref_primary_10_1080_08839514_2020_1848276
crossref_primary_10_1007_s10586_025_05287_z
crossref_primary_10_1016_j_compbiomed_2021_105181
crossref_primary_10_1016_j_knosys_2020_106461
crossref_primary_10_1093_jcde_qwad073
crossref_primary_10_1080_02626667_2020_1828889
crossref_primary_10_1016_j_eswa_2020_113974
crossref_primary_10_1007_s12065_019_00251_4
crossref_primary_10_1155_2021_3576357
crossref_primary_10_32604_cmes_2023_024247
crossref_primary_10_1016_j_compbiomed_2022_105618
crossref_primary_10_1007_s10489_019_01570_w
crossref_primary_10_1016_j_compbiomed_2024_108599
crossref_primary_10_1038_s41598_024_63739_9
crossref_primary_10_1016_j_jocs_2021_101477
crossref_primary_10_1016_j_compbiomed_2024_108638
crossref_primary_10_3390_computation12020032
crossref_primary_10_1007_s10462_022_10277_3
crossref_primary_10_1016_j_asoc_2019_105725
crossref_primary_10_1007_s00607_019_00782_9
crossref_primary_10_1016_j_knosys_2022_109326
crossref_primary_10_1007_s11831_021_09694_4
crossref_primary_10_1016_j_chaos_2023_113672
crossref_primary_10_1038_s41598_024_61359_x
crossref_primary_10_1016_j_eswa_2021_116063
crossref_primary_10_1016_j_renene_2019_08_070
crossref_primary_10_1016_j_compbiomed_2023_106975
crossref_primary_10_1016_j_eswa_2022_119017
crossref_primary_10_1007_s10489_023_04473_z
crossref_primary_10_1093_jcde_qwac014
crossref_primary_10_1007_s00521_019_04177_x
crossref_primary_10_1155_2022_6215574
crossref_primary_10_1007_s13198_023_02008_w
crossref_primary_10_1109_ACCESS_2021_3072336
crossref_primary_10_1007_s11042_022_13819_7
crossref_primary_10_1016_j_enconman_2019_112461
crossref_primary_10_1038_s41598_024_65292_x
crossref_primary_10_32604_cmc_2022_021719
crossref_primary_10_1007_s42235_024_00590_8
crossref_primary_10_1016_j_fuel_2022_126162
crossref_primary_10_1038_s41598_025_03270_7
crossref_primary_10_3390_math10071166
crossref_primary_10_1111_exsy_13002
crossref_primary_10_1016_j_compbiomed_2022_105356
crossref_primary_10_1016_j_compbiomed_2022_105510
crossref_primary_10_1080_15325008_2023_2185835
crossref_primary_10_1155_2018_4231647
crossref_primary_10_3390_electronics9111786
crossref_primary_10_1007_s11831_024_10218_z
crossref_primary_10_1155_2021_5526127
crossref_primary_10_1007_s10586_024_04602_4
crossref_primary_10_1007_s10586_024_04644_8
crossref_primary_10_1049_cit2_12387
crossref_primary_10_1007_s42235_023_00476_1
Cites_doi 10.1016/0022-2836(82)90398-9
10.1016/j.ins.2013.02.041
10.1093/nar/gkw1099
10.1016/j.advengsoft.2013.12.007
10.1038/s41598-017-04605-9
10.5539/cis.v1n4p139
10.1016/j.ins.2009.03.004
10.1101/pdb.ip59
10.1023/A:1008202821328
10.1016/j.neucom.2015.11.018
10.1016/j.asoc.2012.11.026
10.1145/322063.322075
10.1016/j.advengsoft.2016.01.008
10.1007/s00521-015-1870-7
10.1038/scientificamerican0792-66
10.1016/j.cad.2010.12.015
10.1016/j.ins.2014.02.123
10.1016/j.renene.2014.12.072
10.1016/j.advengsoft.2017.07.002
10.1109/TIE.2014.2349478
10.1016/j.mechatronics.2017.03.001
10.1016/j.amc.2009.03.090
10.1016/0022-2836(81)90087-5
10.1016/j.knosys.2015.07.006
10.1007/s00202-015-0357-y
10.1109/4235.585893
10.1007/s00170-015-7991-4
10.1504/IJMMNO.2013.055204
10.1145/1031120.1031122
10.1002/pro.5560050113
10.1016/j.amc.2015.11.001
10.1016/j.knosys.2015.12.022
10.1073/pnas.89.22.10915
10.1109/TEC.2017.2669518
10.1016/j.asoc.2015.03.035
10.1016/0076-6879(90)83025-5
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Jun 1, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 1, 2018
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2018.01.019
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 70
ExternalDocumentID 10_1016_j_eswa_2018_01_019
S0957417418300253
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-ba541d61ebcacc123a5aa4c2acf0a4fb2b9f53c75dcb14c5a0dd3b566b06698e3
ISICitedReferencesCount 137
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426330600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 09 06:41:18 EST 2025
Sat Nov 29 04:44:49 EST 2025
Tue Nov 18 21:18:31 EST 2025
Fri Feb 23 02:24:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sine cosine algorithm (SCA)
Particle swarm optimization (PSO)
Smith-Waterman alignment algorithm
Longest consecutive substrings
Meta-heuristics algorithms
Pairwise local alignment
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-ba541d61ebcacc123a5aa4c2acf0a4fb2b9f53c75dcb14c5a0dd3b566b06698e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9989-6681
PQID 2041745848
PQPubID 2045477
PageCount 15
ParticipantIDs proquest_journals_2041745848
crossref_citationtrail_10_1016_j_eswa_2018_01_019
crossref_primary_10_1016_j_eswa_2018_01_019
elsevier_sciencedirect_doi_10_1016_j_eswa_2018_01_019
PublicationCentury 2000
PublicationDate 2018-06-01
2018-06-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wang, Guo, Duan, Liu, Wang (bib0042) 2012; 2012
Kumar, Hussain, Singh, Panigrahi (bib0021) 2017; 32
Holland (bib0015) 1992; 267
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (bib0028) 2017
Cormen (bib0007) 2009
Berger, B., & Rozener, M. (1998). Introduction to computational molecular biology. MIT Computer Science & Artificial Intelligence, 1998.
Jamil, Yang (bib0016) 2013; 4
Wang, Deb, Gandomi, Alavi (bib0040) 2016; 177
Wolpert, Macready (bib0043) 1997; 1
Higgins, J. J. (2003). Introduction to modern nonparametric statistics.
Cao, Li, Chaovalitwongse (bib0005) 2017, July
Mirjalili, Mirjalili, Lewis (bib0023) 2014; 69
Henikoff, Henikoff (bib0013) 1992; 89
Boussaïd, Lepagnot, Siarry (bib0003) 2013; 237
Javidy, Hatamlou, Mirjalili (bib0017) 2015; 32
Mirjalili, Lewis (bib0027) 2016; 95
Tuvayanond, Parnichkun (bib0039) 2017; 43
Gusfield (bib0048) 1997
Karaboga, Akay (bib0018) 2009; 214
Premalatha, Natarajan (bib0032) 2008; 1
Sadollah, Bahreininejad, Eskandar, Hamdi (bib0034) 2013; 13
Santra, Mukherjee, Sarker, Chatterjee (bib0035) 2016, October
Mount (bib0029) 2008; 2008
Di Francesco, Garnier, Munson (bib0008) 1996; 5
Gotoh (bib0011) 1982; 162
Mirjalili (bib0025) 2016; 96
Abd ElAziz, Xiong, Selim (bib0001) 2017; 7
Rashedi, Nezamabadi-Pour, Saryazdi (bib0046) 2009; 179
Garg (bib0010) 2016; 274
Feng, Doolittle (bib0009) 1990; 183
Storn, Price (bib0037) 1997; 11
Cohen (bib0006) 2004; 36
Güçyetmez, Çam (bib0012) 2016; 98
Calvini, Carpita, Formentini, Marchesoni (bib0004) 2015; 62
Yang, Wang, Lin, Chen (bib0045) 2016, December
Talbi (bib0038) 2009; Vol. 74
Wang, Guo, Gandomi, Hao, Wang (bib0041) 2014; 274
Mirjalili, Hatamlou (bib0026) 2016; 27
Mirjalili (bib0024) 2015; 89
Li, Khuri (bib0022) 2004; Vol. 4
Rao, Savsani, Vakharia (bib0033) 2011; 43
Smith, Waterman (bib0036) 1981; 147
Mudhsh, Xiong, El Aziz, Hassanien, Duan (bib0030) 2017
UniProt: the universal protein knowledge base (bib0049) 2017; 45
Xiong (bib0044) 2006
Maier (bib0047) 1978; 25
Khanna, Das, Bisht, Singh (bib0020) 2015; 78
Kennedy (bib0019) 1995
Petrović, Mitić, Vuković, Miljković (bib0031) 2016; 85
Wang (10.1016/j.eswa.2018.01.019_bib0042) 2012; 2012
Mirjalili (10.1016/j.eswa.2018.01.019_bib0028) 2017
Mount (10.1016/j.eswa.2018.01.019_bib0029) 2008; 2008
Güçyetmez (10.1016/j.eswa.2018.01.019_bib0012) 2016; 98
Storn (10.1016/j.eswa.2018.01.019_bib0037) 1997; 11
Li (10.1016/j.eswa.2018.01.019_bib0022) 2004; Vol. 4
Mirjalili (10.1016/j.eswa.2018.01.019_bib0027) 2016; 95
Petrović (10.1016/j.eswa.2018.01.019_bib0031) 2016; 85
Wolpert (10.1016/j.eswa.2018.01.019_bib0043) 1997; 1
Calvini (10.1016/j.eswa.2018.01.019_bib0004) 2015; 62
Yang (10.1016/j.eswa.2018.01.019_bib0045) 2016
Cormen (10.1016/j.eswa.2018.01.019_bib0007) 2009
UniProt: the universal protein knowledge base (10.1016/j.eswa.2018.01.019_bib0049) 2017; 45
Henikoff (10.1016/j.eswa.2018.01.019_bib0013) 1992; 89
Holland (10.1016/j.eswa.2018.01.019_bib0015) 1992; 267
Wang (10.1016/j.eswa.2018.01.019_bib0040) 2016; 177
Rao (10.1016/j.eswa.2018.01.019_bib0033) 2011; 43
Mirjalili (10.1016/j.eswa.2018.01.019_bib0025) 2016; 96
10.1016/j.eswa.2018.01.019_bib0002
Di Francesco (10.1016/j.eswa.2018.01.019_bib0008) 1996; 5
Feng (10.1016/j.eswa.2018.01.019_bib0009) 1990; 183
Abd ElAziz (10.1016/j.eswa.2018.01.019_bib0001) 2017; 7
Gotoh (10.1016/j.eswa.2018.01.019_bib0011) 1982; 162
Jamil (10.1016/j.eswa.2018.01.019_bib0016) 2013; 4
Santra (10.1016/j.eswa.2018.01.019_bib0035) 2016
Khanna (10.1016/j.eswa.2018.01.019_bib0020) 2015; 78
Mirjalili (10.1016/j.eswa.2018.01.019_bib0026) 2016; 27
Maier (10.1016/j.eswa.2018.01.019_bib0047) 1978; 25
Karaboga (10.1016/j.eswa.2018.01.019_bib0018) 2009; 214
Talbi (10.1016/j.eswa.2018.01.019_bib0038) 2009; Vol. 74
Sadollah (10.1016/j.eswa.2018.01.019_bib0034) 2013; 13
Cao (10.1016/j.eswa.2018.01.019_bib0005) 2017
10.1016/j.eswa.2018.01.019_bib0014
Mirjalili (10.1016/j.eswa.2018.01.019_bib0024) 2015; 89
Mudhsh (10.1016/j.eswa.2018.01.019_bib0030) 2017
Garg (10.1016/j.eswa.2018.01.019_bib0010) 2016; 274
Gusfield (10.1016/j.eswa.2018.01.019_bib0048) 1997
Smith (10.1016/j.eswa.2018.01.019_bib0036) 1981; 147
Kennedy (10.1016/j.eswa.2018.01.019_bib0019) 1995
Rashedi (10.1016/j.eswa.2018.01.019_bib0046) 2009; 179
Premalatha (10.1016/j.eswa.2018.01.019_bib0032) 2008; 1
Xiong (10.1016/j.eswa.2018.01.019_bib0044) 2006
Wang (10.1016/j.eswa.2018.01.019_bib0041) 2014; 274
Mirjalili (10.1016/j.eswa.2018.01.019_bib0023) 2014; 69
Tuvayanond (10.1016/j.eswa.2018.01.019_bib0039) 2017; 43
Kumar (10.1016/j.eswa.2018.01.019_bib0021) 2017; 32
Cohen (10.1016/j.eswa.2018.01.019_bib0006) 2004; 36
Boussaïd (10.1016/j.eswa.2018.01.019_bib0003) 2013; 237
Javidy (10.1016/j.eswa.2018.01.019_bib0017) 2015; 32
References_xml – volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: bib0027
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: bib0023
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
– volume: 274
  start-page: 17
  year: 2014
  end-page: 34
  ident: bib0041
  article-title: Chaotic krill herd algorithm
  publication-title: Information Sciences
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: bib0024
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowledge-Based Systems
– volume: 85
  start-page: 2535
  year: 2016
  end-page: 2555
  ident: bib0031
  article-title: Chaotic particle swarm optimization algorithm for flexible process planning
  publication-title: The International Journal of Advanced Manufacturing Technology
– year: 1997
  ident: bib0048
  article-title: Algorithms on strings, trees and sequences: Computer science and computational biology
– reference: Berger, B., & Rozener, M. (1998). Introduction to computational molecular biology. MIT Computer Science & Artificial Intelligence, 1998.
– start-page: 148
  year: 2017, July
  end-page: 157
  ident: bib0005
  article-title: Hybrid comprehensive learning particle swarm optimizer with adaptive starting local search
  publication-title: International conference in swarm intelligence
– volume: 2008
  year: 2008
  ident: bib0029
  article-title: Comparison of the PAM and BLOSUM amino acid substitution matrices
  publication-title: Cold Spring Harbor Protocols
– year: 1995
  ident: bib0019
  article-title: Particle swarm optimization
  publication-title: Neural networks 1995. Proceedings
– volume: 43
  start-page: 40
  year: 2017
  end-page: 55
  ident: bib0039
  article-title: Position control of a pneumatic surgical robot using PSO based 2-DOF H∞ loop shaping structured controller
  publication-title: Mechatronics
– volume: 89
  start-page: 10915
  year: 1992
  end-page: 10919
  ident: bib0013
  article-title: Amino acid substitution matrices from protein blocks
  publication-title: Proceedings of the National Academy of Sciences
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: bib0043
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 226
  year: 2016, October
  end-page: 230
  ident: bib0035
  article-title: Hybrid PSO-ACO algorithm to solve economic load dispatch problem with transmission loss for small scale power system
  publication-title: International conference on intelligent control power and instrumentation (ICICPI)
– volume: 25
  start-page: 322
  year: 1978
  end-page: 336
  ident: bib0047
  article-title: The complexity of some problems on subsequences and supersequences
  publication-title: Journal of the ACM (JACM)
– volume: 162
  start-page: 705
  year: 1982
  end-page: 708
  ident: bib0011
  article-title: An improved algorithm for matching biological sequences
  publication-title: Journal of Molecular Biology
– year: 2017
  ident: bib0028
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
– volume: 4
  start-page: 150
  year: 2013
  end-page: 194
  ident: bib0016
  article-title: A literature survey of benchmark functions for global optimisation problems
  publication-title: International Journal of Mathematical Modelling and Numerical Optimisation
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: bib0046
  article-title: GSA: A gravitational search algorithm
  publication-title: Information sciences
– volume: Vol. 4
  start-page: 329
  year: 2004
  end-page: 335
  ident: bib0022
  article-title: A Comparison of DNA fragment assembly algorithms
  publication-title: METMBS
– volume: 147
  start-page: 195
  year: 1981
  end-page: 197
  ident: bib0036
  article-title: Identification of common molecular subsequences
  publication-title: Journal of Molecular Biology
– volume: 1
  start-page: 139
  year: 2008
  ident: bib0032
  article-title: A new approach for data clustering based on PSO with local search
  publication-title: Computer and Information Science
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 15
  ident: bib0042
  article-title: A bat algorithm with mutation for UCAV path planning
  publication-title: The Scientific World Journal
– volume: 177
  start-page: 147
  year: 2016
  end-page: 157
  ident: bib0040
  article-title: Opposition-based krill herd algorithm with Cauchy mutation and position clamping
  publication-title: Neurocomputing
– volume: 78
  start-page: 105
  year: 2015
  end-page: 113
  ident: bib0020
  article-title: A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm
  publication-title: Renewable Energy
– year: 2006
  ident: bib0044
  article-title: Essential bioinformatics
– volume: 7
  start-page: 4463
  year: 2017
  ident: bib0001
  article-title: Automatic detection of galaxy type from datasets of galaxies image based on image retrieval approach
  publication-title: Science Reports
– volume: 274
  start-page: 292
  year: 2016
  end-page: 305
  ident: bib0010
  article-title: A hybrid PSO-GA algorithm for constrained optimization problems
  publication-title: Applied Mathematics and Computation
– volume: 36
  start-page: 122
  year: 2004
  end-page: 158
  ident: bib0006
  article-title: Bioinformatics—an introduction for computer scientists
  publication-title: ACM Computing Surveys (CSUR)
– reference: Higgins, J. J. (2003). Introduction to modern nonparametric statistics.‏
– volume: 5
  start-page: 106
  year: 1996
  end-page: 113
  ident: bib0008
  article-title: Improving protein secondary structure prediction with aligned homologous sequences
  publication-title: Protein Science
– volume: 237
  start-page: 82
  year: 2013
  end-page: 117
  ident: bib0003
  article-title: A survey on optimization metaheuristics
  publication-title: Information Sciences
– volume: 183
  start-page: 375
  year: 1990
  end-page: 387
  ident: bib0009
  article-title: Progressive alignment and phylogenetic tree construction of protein sequences
  publication-title: Methods in Enzymology
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib0037
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– volume: 32
  start-page: 72
  year: 2015
  end-page: 79
  ident: bib0017
  article-title: Ions motion algorithm for solving optimization problems
  publication-title: Applied Soft Computing
– volume: 267
  start-page: 66
  year: 1992
  end-page: 73
  ident: bib0015
  article-title: Genetic algorithms
  publication-title: Scientific American
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: bib0025
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
– volume: 32
  start-page: 983
  year: 2017
  end-page: 992
  ident: bib0021
  article-title: Single sensor based MPPT of partially shaded PV system for battery charging by using Cauchy and Gaussian sine cosine optimization
  publication-title: IEEE Transactions on Energy Conversion
– volume: 62
  start-page: 768
  year: 2015
  end-page: 776
  ident: bib0004
  article-title: PSO-based self-commissioning of electrical motor drives
  publication-title: IEEE Transactions on Industrial Electronics
– year: 2009
  ident: bib0007
  article-title: Introduction to algorithms
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: bib0033
  article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Computer-Aided Design
– volume: 45
  start-page: D158
  year: 2017
  end-page: D169
  ident: bib0049
  publication-title: Nucleic Acids Res.
– volume: 98
  start-page: 145
  year: 2016
  end-page: 157
  ident: bib0012
  article-title: A new hybrid algorithm with genetic-teaching learning optimization (G-TLBO) technique for optimizing of power flow in wind-thermal power systems
  publication-title: Electrical Engineering
– volume: 13
  start-page: 2592
  year: 2013
  end-page: 2612
  ident: bib0034
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Applied Soft Computing
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: bib0026
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Computing and Applications
– volume: 214
  start-page: 108
  year: 2009
  end-page: 132
  ident: bib0018
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Applied Mathematics and Computation
– volume: Vol. 74
  year: 2009
  ident: bib0038
  publication-title: Metaheuristics: from design to implementation
– year: 2017
  ident: bib0030
  article-title: Hybrid swarm optimization for document image binarization based on Otsu function
  publication-title: CASA2017
– start-page: 381
  year: 2016, December
  end-page: 389
  ident: bib0045
  article-title: A Novel PSO-DE Co-evolutionary Algorithm Based on Decomposition Framework
  publication-title: International conference on smart computing and communication
– start-page: 381
  year: 2016
  ident: 10.1016/j.eswa.2018.01.019_bib0045
  article-title: A Novel PSO-DE Co-evolutionary Algorithm Based on Decomposition Framework
– volume: 162
  start-page: 705
  issue: 3
  year: 1982
  ident: 10.1016/j.eswa.2018.01.019_bib0011
  article-title: An improved algorithm for matching biological sequences
  publication-title: Journal of Molecular Biology
  doi: 10.1016/0022-2836(82)90398-9
– ident: 10.1016/j.eswa.2018.01.019_bib0002
– volume: 237
  start-page: 82
  year: 2013
  ident: 10.1016/j.eswa.2018.01.019_bib0003
  article-title: A survey on optimization metaheuristics
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2013.02.041
– volume: 45
  start-page: D158
  year: 2017
  ident: 10.1016/j.eswa.2018.01.019_bib0049
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1099
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.eswa.2018.01.019_bib0023
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 7
  start-page: 4463
  year: 2017
  ident: 10.1016/j.eswa.2018.01.019_bib0001
  article-title: Automatic detection of galaxy type from datasets of galaxies image based on image retrieval approach
  publication-title: Science Reports
  doi: 10.1038/s41598-017-04605-9
– year: 2017
  ident: 10.1016/j.eswa.2018.01.019_bib0030
  article-title: Hybrid swarm optimization for document image binarization based on Otsu function
– start-page: 226
  year: 2016
  ident: 10.1016/j.eswa.2018.01.019_bib0035
  article-title: Hybrid PSO-ACO algorithm to solve economic load dispatch problem with transmission loss for small scale power system
– volume: 1
  start-page: 139
  issue: 4
  year: 2008
  ident: 10.1016/j.eswa.2018.01.019_bib0032
  article-title: A new approach for data clustering based on PSO with local search
  publication-title: Computer and Information Science
  doi: 10.5539/cis.v1n4p139
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.eswa.2018.01.019_bib0046
  article-title: GSA: A gravitational search algorithm
  publication-title: Information sciences
  doi: 10.1016/j.ins.2009.03.004
– volume: 2008
  issue: 6
  year: 2008
  ident: 10.1016/j.eswa.2018.01.019_bib0029
  article-title: Comparison of the PAM and BLOSUM amino acid substitution matrices
  publication-title: Cold Spring Harbor Protocols
  doi: 10.1101/pdb.ip59
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.eswa.2018.01.019_bib0037
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 177
  start-page: 147
  year: 2016
  ident: 10.1016/j.eswa.2018.01.019_bib0040
  article-title: Opposition-based krill herd algorithm with Cauchy mutation and position clamping
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.018
– volume: 13
  start-page: 2592
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2018.01.019_bib0034
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.11.026
– volume: 25
  start-page: 322
  issue: 2
  year: 1978
  ident: 10.1016/j.eswa.2018.01.019_bib0047
  article-title: The complexity of some problems on subsequences and supersequences
  publication-title: Journal of the ACM (JACM)
  doi: 10.1145/322063.322075
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.eswa.2018.01.019_bib0027
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 27
  start-page: 495
  year: 2016
  ident: 10.1016/j.eswa.2018.01.019_bib0026
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1870-7
– year: 1995
  ident: 10.1016/j.eswa.2018.01.019_bib0019
  article-title: Particle swarm optimization
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 10.1016/j.eswa.2018.01.019_bib0015
  article-title: Genetic algorithms
  publication-title: Scientific American
  doi: 10.1038/scientificamerican0792-66
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2018.01.019_bib0033
  article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Computer-Aided Design
  doi: 10.1016/j.cad.2010.12.015
– ident: 10.1016/j.eswa.2018.01.019_bib0014
– volume: Vol. 4
  start-page: 329
  year: 2004
  ident: 10.1016/j.eswa.2018.01.019_bib0022
  article-title: A Comparison of DNA fragment assembly algorithms
– volume: 274
  start-page: 17
  year: 2014
  ident: 10.1016/j.eswa.2018.01.019_bib0041
  article-title: Chaotic krill herd algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.02.123
– volume: 78
  start-page: 105
  year: 2015
  ident: 10.1016/j.eswa.2018.01.019_bib0020
  article-title: A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2014.12.072
– volume: 2012
  start-page: 1
  year: 2012
  ident: 10.1016/j.eswa.2018.01.019_bib0042
  article-title: A bat algorithm with mutation for UCAV path planning
  publication-title: The Scientific World Journal
– volume: Vol. 74
  year: 2009
  ident: 10.1016/j.eswa.2018.01.019_bib0038
– year: 2017
  ident: 10.1016/j.eswa.2018.01.019_bib0028
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 62
  start-page: 768
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2018.01.019_bib0004
  article-title: PSO-based self-commissioning of electrical motor drives
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2014.2349478
– volume: 43
  start-page: 40
  year: 2017
  ident: 10.1016/j.eswa.2018.01.019_bib0039
  article-title: Position control of a pneumatic surgical robot using PSO based 2-DOF H∞ loop shaping structured controller
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2017.03.001
– volume: 214
  start-page: 108
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2018.01.019_bib0018
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2009.03.090
– volume: 147
  start-page: 195
  issue: 1
  year: 1981
  ident: 10.1016/j.eswa.2018.01.019_bib0036
  article-title: Identification of common molecular subsequences
  publication-title: Journal of Molecular Biology
  doi: 10.1016/0022-2836(81)90087-5
– year: 2009
  ident: 10.1016/j.eswa.2018.01.019_bib0007
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.eswa.2018.01.019_bib0024
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.07.006
– volume: 98
  start-page: 145
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2018.01.019_bib0012
  article-title: A new hybrid algorithm with genetic-teaching learning optimization (G-TLBO) technique for optimizing of power flow in wind-thermal power systems
  publication-title: Electrical Engineering
  doi: 10.1007/s00202-015-0357-y
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.eswa.2018.01.019_bib0043
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– volume: 85
  start-page: 2535
  issue: 9-12
  year: 2016
  ident: 10.1016/j.eswa.2018.01.019_bib0031
  article-title: Chaotic particle swarm optimization algorithm for flexible process planning
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-015-7991-4
– start-page: 148
  year: 2017
  ident: 10.1016/j.eswa.2018.01.019_bib0005
  article-title: Hybrid comprehensive learning particle swarm optimizer with adaptive starting local search
– year: 2006
  ident: 10.1016/j.eswa.2018.01.019_bib0044
– volume: 4
  start-page: 150
  issue: 2
  year: 2013
  ident: 10.1016/j.eswa.2018.01.019_bib0016
  article-title: A literature survey of benchmark functions for global optimisation problems
  publication-title: International Journal of Mathematical Modelling and Numerical Optimisation
  doi: 10.1504/IJMMNO.2013.055204
– volume: 36
  start-page: 122
  issue: 2
  year: 2004
  ident: 10.1016/j.eswa.2018.01.019_bib0006
  article-title: Bioinformatics—an introduction for computer scientists
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/1031120.1031122
– volume: 5
  start-page: 106
  issue: 1
  year: 1996
  ident: 10.1016/j.eswa.2018.01.019_bib0008
  article-title: Improving protein secondary structure prediction with aligned homologous sequences
  publication-title: Protein Science
  doi: 10.1002/pro.5560050113
– volume: 274
  start-page: 292
  year: 2016
  ident: 10.1016/j.eswa.2018.01.019_bib0010
  article-title: A hybrid PSO-GA algorithm for constrained optimization problems
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2015.11.001
– year: 1997
  ident: 10.1016/j.eswa.2018.01.019_bib0048
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.eswa.2018.01.019_bib0025
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.12.022
– volume: 89
  start-page: 10915
  issue: 22
  year: 1992
  ident: 10.1016/j.eswa.2018.01.019_bib0013
  article-title: Amino acid substitution matrices from protein blocks
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.89.22.10915
– volume: 32
  start-page: 983
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2018.01.019_bib0021
  article-title: Single sensor based MPPT of partially shaded PV system for battery charging by using Cauchy and Gaussian sine cosine optimization
  publication-title: IEEE Transactions on Energy Conversion
  doi: 10.1109/TEC.2017.2669518
– volume: 32
  start-page: 72
  year: 2015
  ident: 10.1016/j.eswa.2018.01.019_bib0017
  article-title: Ions motion algorithm for solving optimization problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.03.035
– volume: 183
  start-page: 375
  year: 1990
  ident: 10.1016/j.eswa.2018.01.019_bib0009
  article-title: Progressive alignment and phylogenetic tree construction of protein sequences
  publication-title: Methods in Enzymology
  doi: 10.1016/0076-6879(90)83025-5
SSID ssj0017007
Score 2.5797446
Snippet •Sine cosine algorithm is enhanced by hybridizing particle swarm optimization.•The hybridization is based on low level co-evolutionary hybrid scheme.•The...
The sine cosine algorithm (SCA), a recently proposed population-based optimization algorithm, is based on the use of sine and cosine trigonometric functions as...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 56
SubjectTerms Adaptive algorithms
Algorithms
Alignment
Biological effects
Computing time
Heuristic
Heuristic methods
Longest consecutive substrings
Meta-heuristics algorithms
Operators
Pairwise local alignment
Parameters
Particle swarm optimization
Particle swarm optimization (PSO)
Route optimization
Sine cosine algorithm (SCA)
Smith-Waterman alignment algorithm
Trigonometric functions
Title ASCA-PSO: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment
URI https://dx.doi.org/10.1016/j.eswa.2018.01.019
https://www.proquest.com/docview/2041745848
Volume 99
WOSCitedRecordID wos000426330600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3ohCQXtAXCxXdmzHu9yiKhWg0FZqinKz1ut14iixjRPSih_G72P2ZbdFRHBAipxoHW8iz-fZ2ZlvZhB6RzkZBJyD9iM8dEOWwyMVUuHSPPXTgUdzL1NdS8bx6SmZTul5r_fT5sJsl3FZkutrWv9XUcMYCFumzv6DuNtJYQA-g9DhCGKH418JfnhxPHTPL86Uyy9jteIGSXa7wyv1VsHQyqRfOmw5q5piM191hSMMH702czvrK9asFB2xZkVzVayFo1ZAx9KwYZJiVrYUmkXL7hPNxpSKtkl0N8LlHSjXyoD9Us3ZyqRaKZUI42WhtaIMTi2dkW6QZJzCxVaHqgoxqzqP7nKl6AnDuZ3KeDR80jGvtJutTbX5estdGbuhrzv6HAmtrEkcuINYd1i02ly3WzLqWNcs_22V0A6LxZGAGyjZfURVbjWq-1ZJ7tOz5ORyPE4mo-nkff3Nld3KZFTftG65h_b7cURBm-4PP42mn9v4VezpRH37r026lmYW3v3ZP5lEd4wDZfFMHqOHZquChxoGT1BPlE_RI9sGBJtV4Rn6YRH3AVu8YQk0rPGGb-INt3jDHd6wxAa2eMMKbxjwhi3esMIbtnjDLd6eo8uT0eT4o2taerg86JONm7Io9LOBLyl4nIPVxCLGQt5nPPdYmKf9lOZRwOMo46kf8oh5WRaksOVIwTSmRAQv0F5ZleIlwjkhoGTCKPMiBhZWSrMINMvAY4HH8zgXB8i3dzXhpt69bLuyTCyxcZFISSRSEonnw4seIKe9ptbVXnZ-O7LCSoy9qu3QBIC287pDK9nEKI41nJc4ge0AebX79Gv0oHtoDtHepvku3qD7fLsp1s1bA8RfZLzFbA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ASCA-PSO%3A+Adaptive+sine+cosine+optimization+algorithm+integrated+with+particle+swarm+for+pairwise+local+sequence+alignment&rft.jtitle=Expert+systems+with+applications&rft.au=Issa%2C+Mohamed&rft.au=Hassanien%2C+Aboul+Ella&rft.au=Oliva%2C+Diego&rft.au=Helmi%2C+Ahmed&rft.date=2018-06-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=99&rft.spage=56&rft_id=info:doi/10.1016%2Fj.eswa.2018.01.019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon