ASCA-PSO: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment
•Sine cosine algorithm is enhanced by hybridizing particle swarm optimization.•The hybridization is based on low level co-evolutionary hybrid scheme.•The proposed scheme produced better performance on mathematical benchmark functions.•Finding longest consecutive substring problem was used as testing...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 99; S. 56 - 70 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Elsevier Ltd
01.06.2018
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Sine cosine algorithm is enhanced by hybridizing particle swarm optimization.•The hybridization is based on low level co-evolutionary hybrid scheme.•The proposed scheme produced better performance on mathematical benchmark functions.•Finding longest consecutive substring problem was used as testing case study.
The sine cosine algorithm (SCA), a recently proposed population-based optimization algorithm, is based on the use of sine and cosine trigonometric functions as operators to update the movements of the search agents. To optimize performance, different parameters on the SCA must be appropriately tuned. Setting such parameters is challenging because they permit the algorithm to escape from local optima and avoid premature convergence. The main drawback of the SCA is that the parameter setting only affects the exploitation of the prominent regions. However, the SCA has good exploration capabilities. This article presents an enhanced version of the SCA by merging it with particle swarm optimization (PSO). PSO exploits the search space better than the operators of the standard SCA. The proposed algorithm, called ASCA-PSO, has been tested over several unimodal and multimodal benchmark functions, which show its superiority over the SCA and other recent and standard meta-heuristic algorithms. Moreover, to verify the capabilities of the SCA, the SCA has been used to solve the real-world problem of a pairwise local alignment algorithm that tends to find the longest consecutive substrings between two biological sequences. Experimental results provide evidence of the good performance of the ASCA-PSO solutions in terms of accuracy and computational time. |
|---|---|
| AbstractList | The sine cosine algorithm (SCA), a recently proposed population-based optimization algorithm, is based on the use of sine and cosine trigonometric functions as operators to update the movements of the search agents. To optimize performance, different parameters on the SCA must be appropriately tuned. Setting such parameters is challenging because they permit the algorithm to escape from local optima and avoid premature convergence. The main drawback of the SCA is that the parameter setting only affects the exploitation of the prominent regions. However, the SCA has good exploration capabilities. This article presents an enhanced version of the SCA by merging it with particle swarm optimization (PSO). PSO exploits the search space better than the operators of the standard SCA. The proposed algorithm, called ASCA-PSO, has been tested over several unimodal and multimodal benchmark functions, which show its superiority over the SCA and other recent and standard meta-heuristic algorithms. Moreover, to verify the capabilities of the SCA, the SCA has been used to solve the real-world problem of a pairwise local alignment algorithm that tends to find the longest consecutive substrings between two biological sequences. Experimental results provide evidence of the good performance of the ASCA-PSO solutions in terms of accuracy and computational time. •Sine cosine algorithm is enhanced by hybridizing particle swarm optimization.•The hybridization is based on low level co-evolutionary hybrid scheme.•The proposed scheme produced better performance on mathematical benchmark functions.•Finding longest consecutive substring problem was used as testing case study. The sine cosine algorithm (SCA), a recently proposed population-based optimization algorithm, is based on the use of sine and cosine trigonometric functions as operators to update the movements of the search agents. To optimize performance, different parameters on the SCA must be appropriately tuned. Setting such parameters is challenging because they permit the algorithm to escape from local optima and avoid premature convergence. The main drawback of the SCA is that the parameter setting only affects the exploitation of the prominent regions. However, the SCA has good exploration capabilities. This article presents an enhanced version of the SCA by merging it with particle swarm optimization (PSO). PSO exploits the search space better than the operators of the standard SCA. The proposed algorithm, called ASCA-PSO, has been tested over several unimodal and multimodal benchmark functions, which show its superiority over the SCA and other recent and standard meta-heuristic algorithms. Moreover, to verify the capabilities of the SCA, the SCA has been used to solve the real-world problem of a pairwise local alignment algorithm that tends to find the longest consecutive substrings between two biological sequences. Experimental results provide evidence of the good performance of the ASCA-PSO solutions in terms of accuracy and computational time. |
| Author | Issa, Mohamed Alzohairy, Ahmed Ziedan, Ibrahim Oliva, Diego Helmi, Ahmed Hassanien, Aboul Ella |
| Author_xml | – sequence: 1 givenname: Mohamed surname: Issa fullname: Issa, Mohamed organization: Computer Engineering and Systems Department, Faculty of Engineering, Zagazig University, Egypt – sequence: 2 givenname: Aboul Ella orcidid: 0000-0002-9989-6681 surname: Hassanien fullname: Hassanien, Aboul Ella email: aboitcairo@fci-cu.edu.eg organization: Faculty of Computers and Information, Cairo University, Egypt – sequence: 3 givenname: Diego surname: Oliva fullname: Oliva, Diego email: doliva@ucm.es organization: Departamento de Ciencias Computacionales, Universidad de Guadalajara, Mexico – sequence: 4 givenname: Ahmed surname: Helmi fullname: Helmi, Ahmed organization: Computer Engineering and Systems Department, Faculty of Engineering, Zagazig University, Egypt – sequence: 5 givenname: Ibrahim surname: Ziedan fullname: Ziedan, Ibrahim organization: Computer Engineering and Systems Department, Faculty of Engineering, Zagazig University, Egypt – sequence: 6 givenname: Ahmed surname: Alzohairy fullname: Alzohairy, Ahmed organization: Genetic Department, Faculty of Agriculture, Zagazig University, Egypt |
| BookMark | eNp9kE1rHDEMhk1IIJukf6AnQ8-zted7Si_L0i8IpJD2bDQazVbLjL21nSzNr68nm1MOAYHgRY9sPVfi3DpLQrzXaq2Vrj_u1xSOsM6VbtdKp-rOxEq3TZHVTVeci5XqqiYrdVNeiqsQ9krpRqlmJZ4299tN9vP-7pPcDHCI_EgysCWJ7rm5FM38BJGdlTDtnOf4Z5ZsI-08RBrkMQXyAD4yTok9gp_l6HyK2B85kJwcwiQD_X0gi5SW8M7OZOONuBhhCvTupV-L31-__Np-z27vvv3Ybm4zLPI2Zj1UpR5qTT0Cos4LqABKzAFHBeXY5303VgU21YC9LrECNQxFX9V1r-q6a6m4Fh9Oew_epT-EaPbuwdv0pMnVoqRqyzZNtacp9C4ET6NBjs9nRw88Ga3MYtrszWLaLKaN0qm6hOav0IPnGfy_t6HPJ4jS6Y9M3gTkRdDAnjCawfFb-H9uMJ0i |
| CitedBy_id | crossref_primary_10_1016_j_enconman_2019_05_057 crossref_primary_10_1016_j_eswa_2019_113113 crossref_primary_10_1016_j_engappai_2021_104506 crossref_primary_10_1016_j_eswa_2020_113486 crossref_primary_10_1515_ijeeps_2020_0256 crossref_primary_10_1093_jcde_qwac119 crossref_primary_10_1109_ACCESS_2019_2960890 crossref_primary_10_1049_cit2_12070 crossref_primary_10_1093_jcde_qwac075 crossref_primary_10_1007_s42235_025_00703_x crossref_primary_10_1016_j_isci_2025_111867 crossref_primary_10_1093_jcde_qwac111 crossref_primary_10_3389_fenrg_2022_875332 crossref_primary_10_1155_2020_6084917 crossref_primary_10_1007_s00500_020_05227_6 crossref_primary_10_1111_exsy_12854 crossref_primary_10_1016_j_isci_2023_107896 crossref_primary_10_1007_s10462_020_09909_3 crossref_primary_10_1016_j_bspc_2024_107392 crossref_primary_10_1016_j_jocs_2020_101219 crossref_primary_10_1007_s00366_020_00962_8 crossref_primary_10_1016_j_compbiomed_2024_108437 crossref_primary_10_3389_fninf_2022_1041799 crossref_primary_10_1016_j_eswa_2022_118372 crossref_primary_10_1109_ACCESS_2020_2966582 crossref_primary_10_1016_j_rineng_2024_103703 crossref_primary_10_1007_s12530_025_09683_z crossref_primary_10_1016_j_asoc_2022_109682 crossref_primary_10_1016_j_compbiomed_2021_104582 crossref_primary_10_1109_ACCESS_2020_2981968 crossref_primary_10_1007_s00521_024_09534_z crossref_primary_10_1016_j_eswa_2021_116417 crossref_primary_10_1016_j_asoc_2020_106293 crossref_primary_10_1016_j_bbe_2022_07_009 crossref_primary_10_3390_sym14020331 crossref_primary_10_1007_s12065_019_00266_x crossref_primary_10_1109_ACCESS_2020_2983451 crossref_primary_10_1016_j_swevo_2019_04_011 crossref_primary_10_1007_s00366_020_01083_y crossref_primary_10_1016_j_eswa_2018_11_032 crossref_primary_10_1007_s10462_021_10026_y crossref_primary_10_1016_j_asoc_2025_113492 crossref_primary_10_1016_j_eswa_2019_112883 crossref_primary_10_1155_2019_8164083 crossref_primary_10_1016_j_bspc_2023_104647 crossref_primary_10_1016_j_displa_2024_102799 crossref_primary_10_1016_j_neucom_2024_128289 crossref_primary_10_1007_s10586_024_04770_3 crossref_primary_10_1007_s10462_021_10052_w crossref_primary_10_1016_j_asoc_2020_106683 crossref_primary_10_1371_journal_pone_0279572 crossref_primary_10_3390_pr9112044 crossref_primary_10_1016_j_compbiomed_2024_108297 crossref_primary_10_1007_s13369_020_05046_9 crossref_primary_10_1016_j_enconman_2020_112615 crossref_primary_10_1016_j_matcom_2021_08_016 crossref_primary_10_1038_s41598_025_95545_2 crossref_primary_10_1109_ACCESS_2021_3111033 crossref_primary_10_1016_j_eswa_2020_113395 crossref_primary_10_3390_en13010215 crossref_primary_10_1016_j_compbiomed_2021_105137 crossref_primary_10_1016_j_bspc_2023_104638 crossref_primary_10_1016_j_eswa_2022_116856 crossref_primary_10_3390_e21040404 crossref_primary_10_1080_01605682_2024_2385467 crossref_primary_10_1016_j_eswa_2021_114778 crossref_primary_10_1049_iet_wss_2019_0163 crossref_primary_10_1007_s00500_023_09470_5 crossref_primary_10_1007_s13369_022_07136_2 crossref_primary_10_1016_j_matcom_2022_02_030 crossref_primary_10_1007_s00500_020_05099_w crossref_primary_10_1371_journal_pone_0255269 crossref_primary_10_1016_j_apenergy_2019_114131 crossref_primary_10_1016_j_jocs_2023_102105 crossref_primary_10_1155_2021_7621692 crossref_primary_10_1186_s13638_022_02117_3 crossref_primary_10_1016_j_asoc_2021_107197 crossref_primary_10_1080_08839514_2020_1848276 crossref_primary_10_1007_s10586_025_05287_z crossref_primary_10_1016_j_compbiomed_2021_105181 crossref_primary_10_1016_j_knosys_2020_106461 crossref_primary_10_1093_jcde_qwad073 crossref_primary_10_1080_02626667_2020_1828889 crossref_primary_10_1016_j_eswa_2020_113974 crossref_primary_10_1007_s12065_019_00251_4 crossref_primary_10_1155_2021_3576357 crossref_primary_10_32604_cmes_2023_024247 crossref_primary_10_1016_j_compbiomed_2022_105618 crossref_primary_10_1007_s10489_019_01570_w crossref_primary_10_1016_j_compbiomed_2024_108599 crossref_primary_10_1038_s41598_024_63739_9 crossref_primary_10_1016_j_jocs_2021_101477 crossref_primary_10_1016_j_compbiomed_2024_108638 crossref_primary_10_3390_computation12020032 crossref_primary_10_1007_s10462_022_10277_3 crossref_primary_10_1016_j_asoc_2019_105725 crossref_primary_10_1007_s00607_019_00782_9 crossref_primary_10_1016_j_knosys_2022_109326 crossref_primary_10_1007_s11831_021_09694_4 crossref_primary_10_1016_j_chaos_2023_113672 crossref_primary_10_1038_s41598_024_61359_x crossref_primary_10_1016_j_eswa_2021_116063 crossref_primary_10_1016_j_renene_2019_08_070 crossref_primary_10_1016_j_compbiomed_2023_106975 crossref_primary_10_1016_j_eswa_2022_119017 crossref_primary_10_1007_s10489_023_04473_z crossref_primary_10_1093_jcde_qwac014 crossref_primary_10_1007_s00521_019_04177_x crossref_primary_10_1155_2022_6215574 crossref_primary_10_1007_s13198_023_02008_w crossref_primary_10_1109_ACCESS_2021_3072336 crossref_primary_10_1007_s11042_022_13819_7 crossref_primary_10_1016_j_enconman_2019_112461 crossref_primary_10_1038_s41598_024_65292_x crossref_primary_10_32604_cmc_2022_021719 crossref_primary_10_1007_s42235_024_00590_8 crossref_primary_10_1016_j_fuel_2022_126162 crossref_primary_10_1038_s41598_025_03270_7 crossref_primary_10_3390_math10071166 crossref_primary_10_1111_exsy_13002 crossref_primary_10_1016_j_compbiomed_2022_105356 crossref_primary_10_1016_j_compbiomed_2022_105510 crossref_primary_10_1080_15325008_2023_2185835 crossref_primary_10_1155_2018_4231647 crossref_primary_10_3390_electronics9111786 crossref_primary_10_1007_s11831_024_10218_z crossref_primary_10_1155_2021_5526127 crossref_primary_10_1007_s10586_024_04602_4 crossref_primary_10_1007_s10586_024_04644_8 crossref_primary_10_1049_cit2_12387 crossref_primary_10_1007_s42235_023_00476_1 |
| Cites_doi | 10.1016/0022-2836(82)90398-9 10.1016/j.ins.2013.02.041 10.1093/nar/gkw1099 10.1016/j.advengsoft.2013.12.007 10.1038/s41598-017-04605-9 10.5539/cis.v1n4p139 10.1016/j.ins.2009.03.004 10.1101/pdb.ip59 10.1023/A:1008202821328 10.1016/j.neucom.2015.11.018 10.1016/j.asoc.2012.11.026 10.1145/322063.322075 10.1016/j.advengsoft.2016.01.008 10.1007/s00521-015-1870-7 10.1038/scientificamerican0792-66 10.1016/j.cad.2010.12.015 10.1016/j.ins.2014.02.123 10.1016/j.renene.2014.12.072 10.1016/j.advengsoft.2017.07.002 10.1109/TIE.2014.2349478 10.1016/j.mechatronics.2017.03.001 10.1016/j.amc.2009.03.090 10.1016/0022-2836(81)90087-5 10.1016/j.knosys.2015.07.006 10.1007/s00202-015-0357-y 10.1109/4235.585893 10.1007/s00170-015-7991-4 10.1504/IJMMNO.2013.055204 10.1145/1031120.1031122 10.1002/pro.5560050113 10.1016/j.amc.2015.11.001 10.1016/j.knosys.2015.12.022 10.1073/pnas.89.22.10915 10.1109/TEC.2017.2669518 10.1016/j.asoc.2015.03.035 10.1016/0076-6879(90)83025-5 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Jun 1, 2018 |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Jun 1, 2018 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2018.01.019 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| EndPage | 70 |
| ExternalDocumentID | 10_1016_j_eswa_2018_01_019 S0957417418300253 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c328t-ba541d61ebcacc123a5aa4c2acf0a4fb2b9f53c75dcb14c5a0dd3b566b06698e3 |
| ISICitedReferencesCount | 137 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426330600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sun Nov 09 06:41:18 EST 2025 Sat Nov 29 04:44:49 EST 2025 Tue Nov 18 21:18:31 EST 2025 Fri Feb 23 02:24:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sine cosine algorithm (SCA) Particle swarm optimization (PSO) Smith-Waterman alignment algorithm Longest consecutive substrings Meta-heuristics algorithms Pairwise local alignment |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-ba541d61ebcacc123a5aa4c2acf0a4fb2b9f53c75dcb14c5a0dd3b566b06698e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9989-6681 |
| PQID | 2041745848 |
| PQPubID | 2045477 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2041745848 crossref_citationtrail_10_1016_j_eswa_2018_01_019 crossref_primary_10_1016_j_eswa_2018_01_019 elsevier_sciencedirect_doi_10_1016_j_eswa_2018_01_019 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-01 2018-06-00 20180601 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Wang, Guo, Duan, Liu, Wang (bib0042) 2012; 2012 Kumar, Hussain, Singh, Panigrahi (bib0021) 2017; 32 Holland (bib0015) 1992; 267 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (bib0028) 2017 Cormen (bib0007) 2009 Berger, B., & Rozener, M. (1998). Introduction to computational molecular biology. MIT Computer Science & Artificial Intelligence, 1998. Jamil, Yang (bib0016) 2013; 4 Wang, Deb, Gandomi, Alavi (bib0040) 2016; 177 Wolpert, Macready (bib0043) 1997; 1 Higgins, J. J. (2003). Introduction to modern nonparametric statistics. Cao, Li, Chaovalitwongse (bib0005) 2017, July Mirjalili, Mirjalili, Lewis (bib0023) 2014; 69 Henikoff, Henikoff (bib0013) 1992; 89 Boussaïd, Lepagnot, Siarry (bib0003) 2013; 237 Javidy, Hatamlou, Mirjalili (bib0017) 2015; 32 Mirjalili, Lewis (bib0027) 2016; 95 Tuvayanond, Parnichkun (bib0039) 2017; 43 Gusfield (bib0048) 1997 Karaboga, Akay (bib0018) 2009; 214 Premalatha, Natarajan (bib0032) 2008; 1 Sadollah, Bahreininejad, Eskandar, Hamdi (bib0034) 2013; 13 Santra, Mukherjee, Sarker, Chatterjee (bib0035) 2016, October Mount (bib0029) 2008; 2008 Di Francesco, Garnier, Munson (bib0008) 1996; 5 Gotoh (bib0011) 1982; 162 Mirjalili (bib0025) 2016; 96 Abd ElAziz, Xiong, Selim (bib0001) 2017; 7 Rashedi, Nezamabadi-Pour, Saryazdi (bib0046) 2009; 179 Garg (bib0010) 2016; 274 Feng, Doolittle (bib0009) 1990; 183 Storn, Price (bib0037) 1997; 11 Cohen (bib0006) 2004; 36 Güçyetmez, Çam (bib0012) 2016; 98 Calvini, Carpita, Formentini, Marchesoni (bib0004) 2015; 62 Yang, Wang, Lin, Chen (bib0045) 2016, December Talbi (bib0038) 2009; Vol. 74 Wang, Guo, Gandomi, Hao, Wang (bib0041) 2014; 274 Mirjalili, Hatamlou (bib0026) 2016; 27 Mirjalili (bib0024) 2015; 89 Li, Khuri (bib0022) 2004; Vol. 4 Rao, Savsani, Vakharia (bib0033) 2011; 43 Smith, Waterman (bib0036) 1981; 147 Mudhsh, Xiong, El Aziz, Hassanien, Duan (bib0030) 2017 UniProt: the universal protein knowledge base (bib0049) 2017; 45 Xiong (bib0044) 2006 Maier (bib0047) 1978; 25 Khanna, Das, Bisht, Singh (bib0020) 2015; 78 Kennedy (bib0019) 1995 Petrović, Mitić, Vuković, Miljković (bib0031) 2016; 85 Wang (10.1016/j.eswa.2018.01.019_bib0042) 2012; 2012 Mirjalili (10.1016/j.eswa.2018.01.019_bib0028) 2017 Mount (10.1016/j.eswa.2018.01.019_bib0029) 2008; 2008 Güçyetmez (10.1016/j.eswa.2018.01.019_bib0012) 2016; 98 Storn (10.1016/j.eswa.2018.01.019_bib0037) 1997; 11 Li (10.1016/j.eswa.2018.01.019_bib0022) 2004; Vol. 4 Mirjalili (10.1016/j.eswa.2018.01.019_bib0027) 2016; 95 Petrović (10.1016/j.eswa.2018.01.019_bib0031) 2016; 85 Wolpert (10.1016/j.eswa.2018.01.019_bib0043) 1997; 1 Calvini (10.1016/j.eswa.2018.01.019_bib0004) 2015; 62 Yang (10.1016/j.eswa.2018.01.019_bib0045) 2016 Cormen (10.1016/j.eswa.2018.01.019_bib0007) 2009 UniProt: the universal protein knowledge base (10.1016/j.eswa.2018.01.019_bib0049) 2017; 45 Henikoff (10.1016/j.eswa.2018.01.019_bib0013) 1992; 89 Holland (10.1016/j.eswa.2018.01.019_bib0015) 1992; 267 Wang (10.1016/j.eswa.2018.01.019_bib0040) 2016; 177 Rao (10.1016/j.eswa.2018.01.019_bib0033) 2011; 43 Mirjalili (10.1016/j.eswa.2018.01.019_bib0025) 2016; 96 10.1016/j.eswa.2018.01.019_bib0002 Di Francesco (10.1016/j.eswa.2018.01.019_bib0008) 1996; 5 Feng (10.1016/j.eswa.2018.01.019_bib0009) 1990; 183 Abd ElAziz (10.1016/j.eswa.2018.01.019_bib0001) 2017; 7 Gotoh (10.1016/j.eswa.2018.01.019_bib0011) 1982; 162 Jamil (10.1016/j.eswa.2018.01.019_bib0016) 2013; 4 Santra (10.1016/j.eswa.2018.01.019_bib0035) 2016 Khanna (10.1016/j.eswa.2018.01.019_bib0020) 2015; 78 Mirjalili (10.1016/j.eswa.2018.01.019_bib0026) 2016; 27 Maier (10.1016/j.eswa.2018.01.019_bib0047) 1978; 25 Karaboga (10.1016/j.eswa.2018.01.019_bib0018) 2009; 214 Talbi (10.1016/j.eswa.2018.01.019_bib0038) 2009; Vol. 74 Sadollah (10.1016/j.eswa.2018.01.019_bib0034) 2013; 13 Cao (10.1016/j.eswa.2018.01.019_bib0005) 2017 10.1016/j.eswa.2018.01.019_bib0014 Mirjalili (10.1016/j.eswa.2018.01.019_bib0024) 2015; 89 Mudhsh (10.1016/j.eswa.2018.01.019_bib0030) 2017 Garg (10.1016/j.eswa.2018.01.019_bib0010) 2016; 274 Gusfield (10.1016/j.eswa.2018.01.019_bib0048) 1997 Smith (10.1016/j.eswa.2018.01.019_bib0036) 1981; 147 Kennedy (10.1016/j.eswa.2018.01.019_bib0019) 1995 Rashedi (10.1016/j.eswa.2018.01.019_bib0046) 2009; 179 Premalatha (10.1016/j.eswa.2018.01.019_bib0032) 2008; 1 Xiong (10.1016/j.eswa.2018.01.019_bib0044) 2006 Wang (10.1016/j.eswa.2018.01.019_bib0041) 2014; 274 Mirjalili (10.1016/j.eswa.2018.01.019_bib0023) 2014; 69 Tuvayanond (10.1016/j.eswa.2018.01.019_bib0039) 2017; 43 Kumar (10.1016/j.eswa.2018.01.019_bib0021) 2017; 32 Cohen (10.1016/j.eswa.2018.01.019_bib0006) 2004; 36 Boussaïd (10.1016/j.eswa.2018.01.019_bib0003) 2013; 237 Javidy (10.1016/j.eswa.2018.01.019_bib0017) 2015; 32 |
| References_xml | – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: bib0027 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: bib0023 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software – volume: 274 start-page: 17 year: 2014 end-page: 34 ident: bib0041 article-title: Chaotic krill herd algorithm publication-title: Information Sciences – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: bib0024 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowledge-Based Systems – volume: 85 start-page: 2535 year: 2016 end-page: 2555 ident: bib0031 article-title: Chaotic particle swarm optimization algorithm for flexible process planning publication-title: The International Journal of Advanced Manufacturing Technology – year: 1997 ident: bib0048 article-title: Algorithms on strings, trees and sequences: Computer science and computational biology – reference: Berger, B., & Rozener, M. (1998). Introduction to computational molecular biology. MIT Computer Science & Artificial Intelligence, 1998. – start-page: 148 year: 2017, July end-page: 157 ident: bib0005 article-title: Hybrid comprehensive learning particle swarm optimizer with adaptive starting local search publication-title: International conference in swarm intelligence – volume: 2008 year: 2008 ident: bib0029 article-title: Comparison of the PAM and BLOSUM amino acid substitution matrices publication-title: Cold Spring Harbor Protocols – year: 1995 ident: bib0019 article-title: Particle swarm optimization publication-title: Neural networks 1995. Proceedings – volume: 43 start-page: 40 year: 2017 end-page: 55 ident: bib0039 article-title: Position control of a pneumatic surgical robot using PSO based 2-DOF H∞ loop shaping structured controller publication-title: Mechatronics – volume: 89 start-page: 10915 year: 1992 end-page: 10919 ident: bib0013 article-title: Amino acid substitution matrices from protein blocks publication-title: Proceedings of the National Academy of Sciences – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: bib0043 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – start-page: 226 year: 2016, October end-page: 230 ident: bib0035 article-title: Hybrid PSO-ACO algorithm to solve economic load dispatch problem with transmission loss for small scale power system publication-title: International conference on intelligent control power and instrumentation (ICICPI) – volume: 25 start-page: 322 year: 1978 end-page: 336 ident: bib0047 article-title: The complexity of some problems on subsequences and supersequences publication-title: Journal of the ACM (JACM) – volume: 162 start-page: 705 year: 1982 end-page: 708 ident: bib0011 article-title: An improved algorithm for matching biological sequences publication-title: Journal of Molecular Biology – year: 2017 ident: bib0028 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software – volume: 4 start-page: 150 year: 2013 end-page: 194 ident: bib0016 article-title: A literature survey of benchmark functions for global optimisation problems publication-title: International Journal of Mathematical Modelling and Numerical Optimisation – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: bib0046 article-title: GSA: A gravitational search algorithm publication-title: Information sciences – volume: Vol. 4 start-page: 329 year: 2004 end-page: 335 ident: bib0022 article-title: A Comparison of DNA fragment assembly algorithms publication-title: METMBS – volume: 147 start-page: 195 year: 1981 end-page: 197 ident: bib0036 article-title: Identification of common molecular subsequences publication-title: Journal of Molecular Biology – volume: 1 start-page: 139 year: 2008 ident: bib0032 article-title: A new approach for data clustering based on PSO with local search publication-title: Computer and Information Science – volume: 2012 start-page: 1 year: 2012 end-page: 15 ident: bib0042 article-title: A bat algorithm with mutation for UCAV path planning publication-title: The Scientific World Journal – volume: 177 start-page: 147 year: 2016 end-page: 157 ident: bib0040 article-title: Opposition-based krill herd algorithm with Cauchy mutation and position clamping publication-title: Neurocomputing – volume: 78 start-page: 105 year: 2015 end-page: 113 ident: bib0020 article-title: A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm publication-title: Renewable Energy – year: 2006 ident: bib0044 article-title: Essential bioinformatics – volume: 7 start-page: 4463 year: 2017 ident: bib0001 article-title: Automatic detection of galaxy type from datasets of galaxies image based on image retrieval approach publication-title: Science Reports – volume: 274 start-page: 292 year: 2016 end-page: 305 ident: bib0010 article-title: A hybrid PSO-GA algorithm for constrained optimization problems publication-title: Applied Mathematics and Computation – volume: 36 start-page: 122 year: 2004 end-page: 158 ident: bib0006 article-title: Bioinformatics—an introduction for computer scientists publication-title: ACM Computing Surveys (CSUR) – reference: Higgins, J. J. (2003). Introduction to modern nonparametric statistics. – volume: 5 start-page: 106 year: 1996 end-page: 113 ident: bib0008 article-title: Improving protein secondary structure prediction with aligned homologous sequences publication-title: Protein Science – volume: 237 start-page: 82 year: 2013 end-page: 117 ident: bib0003 article-title: A survey on optimization metaheuristics publication-title: Information Sciences – volume: 183 start-page: 375 year: 1990 end-page: 387 ident: bib0009 article-title: Progressive alignment and phylogenetic tree construction of protein sequences publication-title: Methods in Enzymology – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib0037 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization – volume: 32 start-page: 72 year: 2015 end-page: 79 ident: bib0017 article-title: Ions motion algorithm for solving optimization problems publication-title: Applied Soft Computing – volume: 267 start-page: 66 year: 1992 end-page: 73 ident: bib0015 article-title: Genetic algorithms publication-title: Scientific American – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: bib0025 article-title: SCA: A sine cosine algorithm for solving optimization problems publication-title: Knowledge-Based Systems – volume: 32 start-page: 983 year: 2017 end-page: 992 ident: bib0021 article-title: Single sensor based MPPT of partially shaded PV system for battery charging by using Cauchy and Gaussian sine cosine optimization publication-title: IEEE Transactions on Energy Conversion – volume: 62 start-page: 768 year: 2015 end-page: 776 ident: bib0004 article-title: PSO-based self-commissioning of electrical motor drives publication-title: IEEE Transactions on Industrial Electronics – year: 2009 ident: bib0007 article-title: Introduction to algorithms – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: bib0033 article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Computer-Aided Design – volume: 45 start-page: D158 year: 2017 end-page: D169 ident: bib0049 publication-title: Nucleic Acids Res. – volume: 98 start-page: 145 year: 2016 end-page: 157 ident: bib0012 article-title: A new hybrid algorithm with genetic-teaching learning optimization (G-TLBO) technique for optimizing of power flow in wind-thermal power systems publication-title: Electrical Engineering – volume: 13 start-page: 2592 year: 2013 end-page: 2612 ident: bib0034 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Applied Soft Computing – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: bib0026 article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Computing and Applications – volume: 214 start-page: 108 year: 2009 end-page: 132 ident: bib0018 article-title: A comparative study of artificial bee colony algorithm publication-title: Applied Mathematics and Computation – volume: Vol. 74 year: 2009 ident: bib0038 publication-title: Metaheuristics: from design to implementation – year: 2017 ident: bib0030 article-title: Hybrid swarm optimization for document image binarization based on Otsu function publication-title: CASA2017 – start-page: 381 year: 2016, December end-page: 389 ident: bib0045 article-title: A Novel PSO-DE Co-evolutionary Algorithm Based on Decomposition Framework publication-title: International conference on smart computing and communication – start-page: 381 year: 2016 ident: 10.1016/j.eswa.2018.01.019_bib0045 article-title: A Novel PSO-DE Co-evolutionary Algorithm Based on Decomposition Framework – volume: 162 start-page: 705 issue: 3 year: 1982 ident: 10.1016/j.eswa.2018.01.019_bib0011 article-title: An improved algorithm for matching biological sequences publication-title: Journal of Molecular Biology doi: 10.1016/0022-2836(82)90398-9 – ident: 10.1016/j.eswa.2018.01.019_bib0002 – volume: 237 start-page: 82 year: 2013 ident: 10.1016/j.eswa.2018.01.019_bib0003 article-title: A survey on optimization metaheuristics publication-title: Information Sciences doi: 10.1016/j.ins.2013.02.041 – volume: 45 start-page: D158 year: 2017 ident: 10.1016/j.eswa.2018.01.019_bib0049 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1099 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.eswa.2018.01.019_bib0023 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 7 start-page: 4463 year: 2017 ident: 10.1016/j.eswa.2018.01.019_bib0001 article-title: Automatic detection of galaxy type from datasets of galaxies image based on image retrieval approach publication-title: Science Reports doi: 10.1038/s41598-017-04605-9 – year: 2017 ident: 10.1016/j.eswa.2018.01.019_bib0030 article-title: Hybrid swarm optimization for document image binarization based on Otsu function – start-page: 226 year: 2016 ident: 10.1016/j.eswa.2018.01.019_bib0035 article-title: Hybrid PSO-ACO algorithm to solve economic load dispatch problem with transmission loss for small scale power system – volume: 1 start-page: 139 issue: 4 year: 2008 ident: 10.1016/j.eswa.2018.01.019_bib0032 article-title: A new approach for data clustering based on PSO with local search publication-title: Computer and Information Science doi: 10.5539/cis.v1n4p139 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.eswa.2018.01.019_bib0046 article-title: GSA: A gravitational search algorithm publication-title: Information sciences doi: 10.1016/j.ins.2009.03.004 – volume: 2008 issue: 6 year: 2008 ident: 10.1016/j.eswa.2018.01.019_bib0029 article-title: Comparison of the PAM and BLOSUM amino acid substitution matrices publication-title: Cold Spring Harbor Protocols doi: 10.1101/pdb.ip59 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.eswa.2018.01.019_bib0037 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: 177 start-page: 147 year: 2016 ident: 10.1016/j.eswa.2018.01.019_bib0040 article-title: Opposition-based krill herd algorithm with Cauchy mutation and position clamping publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.018 – volume: 13 start-page: 2592 issue: 5 year: 2013 ident: 10.1016/j.eswa.2018.01.019_bib0034 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.11.026 – volume: 25 start-page: 322 issue: 2 year: 1978 ident: 10.1016/j.eswa.2018.01.019_bib0047 article-title: The complexity of some problems on subsequences and supersequences publication-title: Journal of the ACM (JACM) doi: 10.1145/322063.322075 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.eswa.2018.01.019_bib0027 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 27 start-page: 495 year: 2016 ident: 10.1016/j.eswa.2018.01.019_bib0026 article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1870-7 – year: 1995 ident: 10.1016/j.eswa.2018.01.019_bib0019 article-title: Particle swarm optimization – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 10.1016/j.eswa.2018.01.019_bib0015 article-title: Genetic algorithms publication-title: Scientific American doi: 10.1038/scientificamerican0792-66 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 10.1016/j.eswa.2018.01.019_bib0033 article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Computer-Aided Design doi: 10.1016/j.cad.2010.12.015 – ident: 10.1016/j.eswa.2018.01.019_bib0014 – volume: Vol. 4 start-page: 329 year: 2004 ident: 10.1016/j.eswa.2018.01.019_bib0022 article-title: A Comparison of DNA fragment assembly algorithms – volume: 274 start-page: 17 year: 2014 ident: 10.1016/j.eswa.2018.01.019_bib0041 article-title: Chaotic krill herd algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2014.02.123 – volume: 78 start-page: 105 year: 2015 ident: 10.1016/j.eswa.2018.01.019_bib0020 article-title: A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm publication-title: Renewable Energy doi: 10.1016/j.renene.2014.12.072 – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.eswa.2018.01.019_bib0042 article-title: A bat algorithm with mutation for UCAV path planning publication-title: The Scientific World Journal – volume: Vol. 74 year: 2009 ident: 10.1016/j.eswa.2018.01.019_bib0038 – year: 2017 ident: 10.1016/j.eswa.2018.01.019_bib0028 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.07.002 – volume: 62 start-page: 768 issue: 2 year: 2015 ident: 10.1016/j.eswa.2018.01.019_bib0004 article-title: PSO-based self-commissioning of electrical motor drives publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2014.2349478 – volume: 43 start-page: 40 year: 2017 ident: 10.1016/j.eswa.2018.01.019_bib0039 article-title: Position control of a pneumatic surgical robot using PSO based 2-DOF H∞ loop shaping structured controller publication-title: Mechatronics doi: 10.1016/j.mechatronics.2017.03.001 – volume: 214 start-page: 108 issue: 1 year: 2009 ident: 10.1016/j.eswa.2018.01.019_bib0018 article-title: A comparative study of artificial bee colony algorithm publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2009.03.090 – volume: 147 start-page: 195 issue: 1 year: 1981 ident: 10.1016/j.eswa.2018.01.019_bib0036 article-title: Identification of common molecular subsequences publication-title: Journal of Molecular Biology doi: 10.1016/0022-2836(81)90087-5 – year: 2009 ident: 10.1016/j.eswa.2018.01.019_bib0007 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.eswa.2018.01.019_bib0024 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.07.006 – volume: 98 start-page: 145 issue: 2 year: 2016 ident: 10.1016/j.eswa.2018.01.019_bib0012 article-title: A new hybrid algorithm with genetic-teaching learning optimization (G-TLBO) technique for optimizing of power flow in wind-thermal power systems publication-title: Electrical Engineering doi: 10.1007/s00202-015-0357-y – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.eswa.2018.01.019_bib0043 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585893 – volume: 85 start-page: 2535 issue: 9-12 year: 2016 ident: 10.1016/j.eswa.2018.01.019_bib0031 article-title: Chaotic particle swarm optimization algorithm for flexible process planning publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-015-7991-4 – start-page: 148 year: 2017 ident: 10.1016/j.eswa.2018.01.019_bib0005 article-title: Hybrid comprehensive learning particle swarm optimizer with adaptive starting local search – year: 2006 ident: 10.1016/j.eswa.2018.01.019_bib0044 – volume: 4 start-page: 150 issue: 2 year: 2013 ident: 10.1016/j.eswa.2018.01.019_bib0016 article-title: A literature survey of benchmark functions for global optimisation problems publication-title: International Journal of Mathematical Modelling and Numerical Optimisation doi: 10.1504/IJMMNO.2013.055204 – volume: 36 start-page: 122 issue: 2 year: 2004 ident: 10.1016/j.eswa.2018.01.019_bib0006 article-title: Bioinformatics—an introduction for computer scientists publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/1031120.1031122 – volume: 5 start-page: 106 issue: 1 year: 1996 ident: 10.1016/j.eswa.2018.01.019_bib0008 article-title: Improving protein secondary structure prediction with aligned homologous sequences publication-title: Protein Science doi: 10.1002/pro.5560050113 – volume: 274 start-page: 292 year: 2016 ident: 10.1016/j.eswa.2018.01.019_bib0010 article-title: A hybrid PSO-GA algorithm for constrained optimization problems publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2015.11.001 – year: 1997 ident: 10.1016/j.eswa.2018.01.019_bib0048 – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.eswa.2018.01.019_bib0025 article-title: SCA: A sine cosine algorithm for solving optimization problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.12.022 – volume: 89 start-page: 10915 issue: 22 year: 1992 ident: 10.1016/j.eswa.2018.01.019_bib0013 article-title: Amino acid substitution matrices from protein blocks publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.89.22.10915 – volume: 32 start-page: 983 issue: 3 year: 2017 ident: 10.1016/j.eswa.2018.01.019_bib0021 article-title: Single sensor based MPPT of partially shaded PV system for battery charging by using Cauchy and Gaussian sine cosine optimization publication-title: IEEE Transactions on Energy Conversion doi: 10.1109/TEC.2017.2669518 – volume: 32 start-page: 72 year: 2015 ident: 10.1016/j.eswa.2018.01.019_bib0017 article-title: Ions motion algorithm for solving optimization problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.03.035 – volume: 183 start-page: 375 year: 1990 ident: 10.1016/j.eswa.2018.01.019_bib0009 article-title: Progressive alignment and phylogenetic tree construction of protein sequences publication-title: Methods in Enzymology doi: 10.1016/0076-6879(90)83025-5 |
| SSID | ssj0017007 |
| Score | 2.5797446 |
| Snippet | •Sine cosine algorithm is enhanced by hybridizing particle swarm optimization.•The hybridization is based on low level co-evolutionary hybrid scheme.•The... The sine cosine algorithm (SCA), a recently proposed population-based optimization algorithm, is based on the use of sine and cosine trigonometric functions as... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 56 |
| SubjectTerms | Adaptive algorithms Algorithms Alignment Biological effects Computing time Heuristic Heuristic methods Longest consecutive substrings Meta-heuristics algorithms Operators Pairwise local alignment Parameters Particle swarm optimization Particle swarm optimization (PSO) Route optimization Sine cosine algorithm (SCA) Smith-Waterman alignment algorithm Trigonometric functions |
| Title | ASCA-PSO: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment |
| URI | https://dx.doi.org/10.1016/j.eswa.2018.01.019 https://www.proquest.com/docview/2041745848 |
| Volume | 99 |
| WOSCitedRecordID | wos000426330600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3ohCQXtAXCxXdmzHu9yiKhWg0FZqinKz1ut14iixjRPSih_G72P2ZbdFRHBAipxoHW8iz-fZ2ZlvZhB6RzkZBJyD9iM8dEOWwyMVUuHSPPXTgUdzL1NdS8bx6SmZTul5r_fT5sJsl3FZkutrWv9XUcMYCFumzv6DuNtJYQA-g9DhCGKH418JfnhxPHTPL86Uyy9jteIGSXa7wyv1VsHQyqRfOmw5q5piM191hSMMH702czvrK9asFB2xZkVzVayFo1ZAx9KwYZJiVrYUmkXL7hPNxpSKtkl0N8LlHSjXyoD9Us3ZyqRaKZUI42WhtaIMTi2dkW6QZJzCxVaHqgoxqzqP7nKl6AnDuZ3KeDR80jGvtJutTbX5estdGbuhrzv6HAmtrEkcuINYd1i02ly3WzLqWNcs_22V0A6LxZGAGyjZfURVbjWq-1ZJ7tOz5ORyPE4mo-nkff3Nld3KZFTftG65h_b7cURBm-4PP42mn9v4VezpRH37r026lmYW3v3ZP5lEd4wDZfFMHqOHZquChxoGT1BPlE_RI9sGBJtV4Rn6YRH3AVu8YQk0rPGGb-INt3jDHd6wxAa2eMMKbxjwhi3esMIbtnjDLd6eo8uT0eT4o2taerg86JONm7Io9LOBLyl4nIPVxCLGQt5nPPdYmKf9lOZRwOMo46kf8oh5WRaksOVIwTSmRAQv0F5ZleIlwjkhoGTCKPMiBhZWSrMINMvAY4HH8zgXB8i3dzXhpt69bLuyTCyxcZFISSRSEonnw4seIKe9ptbVXnZ-O7LCSoy9qu3QBIC287pDK9nEKI41nJc4ge0AebX79Gv0oHtoDtHepvku3qD7fLsp1s1bA8RfZLzFbA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ASCA-PSO%3A+Adaptive+sine+cosine+optimization+algorithm+integrated+with+particle+swarm+for+pairwise+local+sequence+alignment&rft.jtitle=Expert+systems+with+applications&rft.au=Issa%2C+Mohamed&rft.au=Hassanien%2C+Aboul+Ella&rft.au=Oliva%2C+Diego&rft.au=Helmi%2C+Ahmed&rft.date=2018-06-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=99&rft.spage=56&rft_id=info:doi/10.1016%2Fj.eswa.2018.01.019&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |