Explicit-duration Hidden Markov Models for quantum state estimation
An explicit-duration Hidden Markov Model with a nonparametric kernel estimator of the state duration distribution is specified. The motivation comes from the physical problem of extracting the maximum information from an open quantum system subject to an external perturbation, which induces a change...
Saved in:
| Published in: | Computational statistics & data analysis Vol. 158; p. 107183 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.06.2021
|
| Subjects: | |
| ISSN: | 0167-9473, 1872-7352 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | An explicit-duration Hidden Markov Model with a nonparametric kernel estimator of the state duration distribution is specified. The motivation comes from the physical problem of extracting the maximum information from an open quantum system subject to an external perturbation, which induces a change in the dynamics of the system. A nonparametric kernel estimator for discrete data is introduced, which is consistent and improves the estimates accuracy in presence of sparse data. To reconstruct the hidden dynamics, a Viterbi algorithm is used, which is robust against the underflow problem. Finite sample properties are investigated through an extensive Monte Carlo study showing that our formulation outperforms the original one both in small and in large samples. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0167-9473 1872-7352 |
| DOI: | 10.1016/j.csda.2021.107183 |