Data-Driven Formation Control for Unknown MIMO Nonlinear Discrete-Time Multi-Agent Systems With Sensor Fault

A data-driven distributed formation control algorithm is proposed for an unknown heterogeneous non-affine nonlinear discrete-time MIMO multi-agent system (MAS) with sensor fault. For the considered unknown MAS, the dynamic linearization technique in model-free adaptive control (MFAC) theory is used...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 33; číslo 12; s. 7728 - 7742
Hlavní autoři: Xiong, Shuangshuang, Hou, Zhongsheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A data-driven distributed formation control algorithm is proposed for an unknown heterogeneous non-affine nonlinear discrete-time MIMO multi-agent system (MAS) with sensor fault. For the considered unknown MAS, the dynamic linearization technique in model-free adaptive control (MFAC) theory is used to transform the unknown MAS into an equivalent virtual dynamic linearization data model. Then using the virtual data model, the structure of the distributed model-free adaptive controller is constructed. For the incorrect signal measurements due to the sensor fault, the radial basis function neural network (RBFNN) is first trained for the MAS under the fault-free case, then using the outputs of the well-trained RBFNN and the actual outputs of MAS under sensor fault case, the estimation laws of the unknown fault and system parameters in the virtual data model are designed with only the measured input-output (I/O) data information. Finally, the boundedness of the formation error is analyzed by the contraction mapping method and mathematical induction method. The effectiveness of the proposed algorithm is illustrated by simulation examples.
AbstractList A data-driven distributed formation control algorithm is proposed for an unknown heterogeneous non-affine nonlinear discrete-time MIMO multi-agent system (MAS) with sensor fault. For the considered unknown MAS, the dynamic linearization technique in model-free adaptive control (MFAC) theory is used to transform the unknown MAS into an equivalent virtual dynamic linearization data model. Then using the virtual data model, the structure of the distributed model-free adaptive controller is constructed. For the incorrect signal measurements due to the sensor fault, the radial basis function neural network (RBFNN) is first trained for the MAS under the fault-free case, then using the outputs of the well-trained RBFNN and the actual outputs of MAS under sensor fault case, the estimation laws of the unknown fault and system parameters in the virtual data model are designed with only the measured input–output (I/O) data information. Finally, the boundedness of the formation error is analyzed by the contraction mapping method and mathematical induction method. The effectiveness of the proposed algorithm is illustrated by simulation examples.
A data-driven distributed formation control algorithm is proposed for an unknown heterogeneous non-affine nonlinear discrete-time MIMO multi-agent system (MAS) with sensor fault. For the considered unknown MAS, the dynamic linearization technique in model-free adaptive control (MFAC) theory is used to transform the unknown MAS into an equivalent virtual dynamic linearization data model. Then using the virtual data model, the structure of the distributed model-free adaptive controller is constructed. For the incorrect signal measurements due to the sensor fault, the radial basis function neural network (RBFNN) is first trained for the MAS under the fault-free case, then using the outputs of the well-trained RBFNN and the actual outputs of MAS under sensor fault case, the estimation laws of the unknown fault and system parameters in the virtual data model are designed with only the measured input-output (I/O) data information. Finally, the boundedness of the formation error is analyzed by the contraction mapping method and mathematical induction method. The effectiveness of the proposed algorithm is illustrated by simulation examples.A data-driven distributed formation control algorithm is proposed for an unknown heterogeneous non-affine nonlinear discrete-time MIMO multi-agent system (MAS) with sensor fault. For the considered unknown MAS, the dynamic linearization technique in model-free adaptive control (MFAC) theory is used to transform the unknown MAS into an equivalent virtual dynamic linearization data model. Then using the virtual data model, the structure of the distributed model-free adaptive controller is constructed. For the incorrect signal measurements due to the sensor fault, the radial basis function neural network (RBFNN) is first trained for the MAS under the fault-free case, then using the outputs of the well-trained RBFNN and the actual outputs of MAS under sensor fault case, the estimation laws of the unknown fault and system parameters in the virtual data model are designed with only the measured input-output (I/O) data information. Finally, the boundedness of the formation error is analyzed by the contraction mapping method and mathematical induction method. The effectiveness of the proposed algorithm is illustrated by simulation examples.
Author Xiong, Shuangshuang
Hou, Zhongsheng
Author_xml – sequence: 1
  givenname: Shuangshuang
  orcidid: 0000-0002-9253-0775
  surname: Xiong
  fullname: Xiong, Shuangshuang
  email: shuangshx@bistu.edu.cn
  organization: School of Automation, Beijing Information Science & Technology University, Beijing, China
– sequence: 2
  givenname: Zhongsheng
  orcidid: 0000-0001-5278-3420
  surname: Hou
  fullname: Hou, Zhongsheng
  email: zshou@qdu.edu.cn
  organization: School of Automation, Qingdao University, Qingdao, China
BookMark eNp9kU9vEzEQxS1URP_QLwAXS1y4bLDH9q73WCWkVErSQ1LBzZo4XnDZtVvbAfXbs22qHnpgLjOH35t5mndKjkIMjpAPnE04Z-2XzWq1WE-AAZ8Iphup-RtyAryGCoTWRy9z8-OYnOd8y8aqmapl-44cC8kbpgWckH6GBatZ8n9coPOYBiw-BjqNoaTY0y4mehN-h_g30OXV8pquYuh9cJjozGebXHHVxg-OLvd98dXFTxcKXT_k4oZMv_vyi65dyOOSOY7Ae_K2wz678-d-Rm7mXzfTb9Xi-vJqerGorABdKrSsRiWwRWVZK9hObHdyy2trudhJxTXyTnQdqi3aWneIaHfaKgTYaguciTPy-bD3LsX7vcvFDKNZ1_cYXNxnA0oq1QIHOaKfXqG3cZ_C6M5AI6FhkksYKThQNsWck-vMXfIDpgfDmXmMwzzFYR7jMM9xjCL9SmR9eXpvSej7_0s_HqTeOfdyq5W1AlDiH0INmLw
CODEN ITNNAL
CitedBy_id crossref_primary_10_1177_09596518241309123
crossref_primary_10_1088_1674_1056_ac8347
crossref_primary_10_3390_sym15061235
crossref_primary_10_1016_j_automatica_2025_112114
crossref_primary_10_1109_TCYB_2025_3593854
crossref_primary_10_1109_TASE_2025_3543537
crossref_primary_10_1109_TCNS_2024_3373132
crossref_primary_10_1109_TMECH_2024_3430295
crossref_primary_10_1016_j_isatra_2025_08_036
crossref_primary_10_1109_TNSE_2023_3289794
crossref_primary_10_1109_TASE_2024_3461806
crossref_primary_10_1109_TCYB_2025_3588159
crossref_primary_10_1109_TCSI_2022_3189221
crossref_primary_10_1002_rnc_7306
crossref_primary_10_1002_acs_4067
crossref_primary_10_1109_JIOT_2025_3573332
crossref_primary_10_1109_TFUZZ_2023_3308122
crossref_primary_10_1016_j_ejcon_2024_100954
crossref_primary_10_1016_j_isatra_2024_11_012
crossref_primary_10_1016_j_ast_2025_110471
crossref_primary_10_1002_rnc_6588
crossref_primary_10_1016_j_amc_2023_127910
crossref_primary_10_1109_TIE_2022_3174275
crossref_primary_10_1109_TSMC_2022_3211871
crossref_primary_10_1002_rnc_7276
crossref_primary_10_1109_ACCESS_2025_3559729
crossref_primary_10_1007_s11071_022_07434_2
crossref_primary_10_1080_00207179_2024_2443939
crossref_primary_10_1002_acs_3788
crossref_primary_10_1080_00207721_2024_2388810
crossref_primary_10_1007_s40747_025_01950_5
crossref_primary_10_1109_TCSI_2024_3351214
crossref_primary_10_1109_TII_2022_3157595
crossref_primary_10_1109_TASE_2023_3321038
crossref_primary_10_1016_j_engappai_2025_110485
crossref_primary_10_1109_TASE_2024_3469153
crossref_primary_10_1016_j_neucom_2022_09_154
crossref_primary_10_1109_JAS_2024_124929
crossref_primary_10_1038_s41598_024_73959_8
crossref_primary_10_1016_j_jwpe_2024_105539
crossref_primary_10_1016_j_ins_2023_119145
crossref_primary_10_3390_drones6020040
crossref_primary_10_1109_TCSI_2023_3242677
crossref_primary_10_1109_TASE_2022_3225288
crossref_primary_10_1002_rob_22343
crossref_primary_10_1109_TSIPN_2023_3244113
crossref_primary_10_1109_TNNLS_2022_3160532
crossref_primary_10_1109_TIM_2025_3563016
crossref_primary_10_1002_rnc_7647
crossref_primary_10_1080_00207721_2022_2068693
crossref_primary_10_1109_TASE_2025_3593561
crossref_primary_10_1109_TCYB_2023_3246096
crossref_primary_10_1002_oca_2899
crossref_primary_10_1016_j_fss_2025_109263
crossref_primary_10_1109_JSEN_2024_3404006
crossref_primary_10_1109_JSYST_2025_3540722
crossref_primary_10_1109_TCYB_2024_3519593
crossref_primary_10_1109_TSIPN_2023_3346994
crossref_primary_10_1109_TSMC_2023_3299754
crossref_primary_10_1109_JAS_2024_124956
crossref_primary_10_1109_TSMC_2023_3321080
Cites_doi 10.1016/j.ins.2012.07.014
10.3724/SP.J.1004.2009.00739
10.1049/iet-cta.2017.0214
10.1364/JOSAA.34.000193
10.1109/TSMC.2017.2672664
10.1109/TCYB.2017.2753383
10.1109/TIE.2016.2542134
10.1109/TCYB.2017.2726039
10.1109/TAC.2019.2894586
10.1016/j.compchemeng.2012.06.017
10.1016/j.automatica.2015.09.025
10.1109/TIE.2014.2367034
10.1109/TNN.2011.2176141
10.1016/j.isatra.2017.08.003
10.1109/TNN.2011.2175451
10.1016/j.neucom.2017.01.047
10.1109/TCST.2010.2093136
10.1201/b15752
10.1016/j.isatra.2017.07.021
10.1109/37.710876
10.1109/TIE.2016.2585559
10.1109/TIE.2016.2613509
10.1016/j.automatica.2013.01.030
10.1002/rnc.3961
10.1109/TNNLS.2017.2766283
10.1049/iet-cta.2017.0847
10.1049/iet-cta:20050004
10.1007/s00521-014-1705-y
10.1049/iet-gtd.2016.0069
10.1016/j.isatra.2016.04.014
10.1109/TIE.2016.2636126
10.1016/j.automatica.2014.08.022
10.1109/TNNLS.2016.2522098
10.1016/j.jfranklin.2015.05.031
10.1109/TNNLS.2017.2673020
10.1109/TSMC.2018.2811390
10.3182/20070709-3-RO-4910.00004
10.1109/TMECH.2009.2014057
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3087481
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 7742
ExternalDocumentID 10_1109_TNNLS_2021_3087481
9465225
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61433002; 61833001; 61803036
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c328t-ac06a53a9a5c0930d3bd4b16cc13d4518a1f3ffa5bac68faaacd8c5a22b8c2103
IEDL.DBID RIE
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732077800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Nov 09 10:37:26 EST 2025
Mon Jun 30 04:47:39 EDT 2025
Tue Nov 18 20:47:34 EST 2025
Sat Nov 29 01:40:13 EST 2025
Wed Aug 27 02:18:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-ac06a53a9a5c0930d3bd4b16cc13d4518a1f3ffa5bac68faaacd8c5a22b8c2103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5278-3420
0000-0002-9253-0775
PMID 34170832
PQID 2742704142
PQPubID 85436
PageCount 15
ParticipantIDs proquest_journals_2742704142
crossref_primary_10_1109_TNNLS_2021_3087481
proquest_miscellaneous_2545592124
ieee_primary_9465225
crossref_citationtrail_10_1109_TNNLS_2021_3087481
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref37
ref15
hou (ref28) 1997
ortega (ref44) 1970
ref36
ref14
ref31
ref30
ref33
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
hou (ref27) 1994
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref29
ref8
goodwin (ref43) 1984
ref7
astrom (ref11) 1995
ref9
ref4
ref3
ref6
ref5
ref40
hou (ref32) 2011; 22
uchiyama (ref13) 1978; 14
References_xml – ident: ref9
  doi: 10.1016/j.ins.2012.07.014
– ident: ref7
  doi: 10.3724/SP.J.1004.2009.00739
– ident: ref21
  doi: 10.1049/iet-cta.2017.0214
– ident: ref38
  doi: 10.1364/JOSAA.34.000193
– ident: ref26
  doi: 10.1109/TSMC.2017.2672664
– ident: ref2
  doi: 10.1109/TCYB.2017.2753383
– ident: ref39
  doi: 10.1109/TIE.2016.2542134
– year: 1995
  ident: ref11
  publication-title: PID Controllers Theory Design and Tuning
– ident: ref16
  doi: 10.1109/TCYB.2017.2726039
– year: 1970
  ident: ref44
  publication-title: Iterative Solution of Nonlinear Equations in Several Variables
– ident: ref31
  doi: 10.1109/TAC.2019.2894586
– ident: ref8
  doi: 10.1016/j.compchemeng.2012.06.017
– ident: ref1
  doi: 10.1016/j.automatica.2015.09.025
– ident: ref5
  doi: 10.1109/TIE.2014.2367034
– volume: 22
  start-page: 2173
  year: 2011
  ident: ref32
  article-title: Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2176141
– ident: ref4
  doi: 10.1016/j.isatra.2017.08.003
– ident: ref41
  doi: 10.1109/TNN.2011.2175451
– ident: ref18
  doi: 10.1016/j.neucom.2017.01.047
– ident: ref30
  doi: 10.1109/TCST.2010.2093136
– year: 1984
  ident: ref43
  publication-title: Adaptive Filtering Prediction and Control
– ident: ref29
  doi: 10.1201/b15752
– ident: ref20
  doi: 10.1016/j.isatra.2017.07.021
– ident: ref15
  doi: 10.1109/37.710876
– year: 1994
  ident: ref27
  article-title: The parameter identification, adaptive control and model free learning adaptive control for nonlinear systems
– ident: ref17
  doi: 10.1109/TIE.2016.2585559
– ident: ref35
  doi: 10.1109/TIE.2016.2613509
– ident: ref33
  doi: 10.1016/j.automatica.2013.01.030
– ident: ref24
  doi: 10.1002/rnc.3961
– ident: ref6
  doi: 10.1109/TNNLS.2017.2766283
– ident: ref25
  doi: 10.1049/iet-cta.2017.0847
– ident: ref12
  doi: 10.1049/iet-cta:20050004
– ident: ref42
  doi: 10.1007/s00521-014-1705-y
– ident: ref36
  doi: 10.1049/iet-gtd.2016.0069
– ident: ref22
  doi: 10.1016/j.isatra.2016.04.014
– ident: ref10
  doi: 10.1109/TIE.2016.2636126
– volume: 14
  start-page: 706
  year: 1978
  ident: ref13
  article-title: Formulation of high-speed motion pattern of a mechanical arm by trial
  publication-title: Control Eng
– start-page: 343
  year: 1997
  ident: ref28
  article-title: Model-free learning adaptive control of a class of SISO nonlinear systems
  publication-title: Proc Amer Control Conf
– ident: ref19
  doi: 10.1016/j.automatica.2014.08.022
– ident: ref37
  doi: 10.1109/TNNLS.2016.2522098
– ident: ref3
  doi: 10.1016/j.jfranklin.2015.05.031
– ident: ref23
  doi: 10.1109/TNNLS.2017.2673020
– ident: ref34
  doi: 10.1109/TSMC.2018.2811390
– ident: ref14
  doi: 10.3182/20070709-3-RO-4910.00004
– ident: ref40
  doi: 10.1109/TMECH.2009.2014057
SSID ssj0000605649
Score 2.626337
Snippet A data-driven distributed formation control algorithm is proposed for an unknown heterogeneous non-affine nonlinear discrete-time MIMO multi-agent system (MAS)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7728
SubjectTerms Actuators
Adaptation models
Adaptive control
Algorithms
Control algorithms
Control theory
Data models
Discrete time systems
Error analysis
Field-flow fractionation
Formation control
Linearization
Mathematical model
MIMO (control systems)
MIMO communication
model free adaptive control (MFAC)
multi-agent system (MAS)
Multiagent systems
Neural networks
Radial basis function
radial basis function neural network (RBFNN)
sensor fault
Sensors
Stability analysis
Title Data-Driven Formation Control for Unknown MIMO Nonlinear Discrete-Time Multi-Agent Systems With Sensor Fault
URI https://ieeexplore.ieee.org/document/9465225
https://www.proquest.com/docview/2742704142
https://www.proquest.com/docview/2545592124
Volume 33
WOSCitedRecordID wos000732077800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB9UfOiLttriVSsRfGujm8_NPorXo4W6Ciq9tyWbzeLBsSfnXv9-J9kPKC2Fvi1kEsJOZvKbJL8ZgPOAyk3pJK2VUFRWEk3K1466yjpde6Z16WKxiTTPzXye3W3Bl5EL472Pj8_8RfiMd_nVym3CUdllJjXCBbUN22mqO67WeJ6SIC7XEe1ypjnlIp0PHJkku3zI8x_3GA1ydhFS4EkTKsSgA08RgfDftqRYY-UPxxx3m9n-_83zLez1qJJcdcvgHWz55gD2h4oNpDfgQ1hObWvpdB1cHJkNvEVy3b1XJwhgyWMTjtkacvP95pbkXSINuybTBfoXBNg0cEZIpO3Sq0DLIn3Oc_Jz0T6Re4yKcZCZRYH38Dj7-nD9jfb1FqgT3LTUukRbJWxmlUsykVSirGTJtHNMVFIxY1kt6tqqEvVoamttSCygLOelcRg6ig-w06wafwSE14nCVi1c5iQvnTXeYy_hA_2tFGwCbPjlheuTkYeaGMsiBiVJVkSNFUFjRa-xCXwe-zx3qTj-KX0YFDNK9jqZwMmg2aK31pciXFeniWSST-BsbEY7C5cntvGrDcog1FQZbvTy499HPoY3PFAj4lOXE9hp1xv_CXbdr3bxsj7FJTs3p3HJvgJ8Fee6
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qFfSlVWvxaqsRfNO0-b7dx9Lr0eLdKvSK97Zks1k8KHty3evf30n2A0QRfFvIJISdzOQ3SX4zAJ8CKk8Kp2ilpaaqVGhSvnLUldaZynNjCheLTYyzLFku0-878GXgwnjv4-Mzfxo-411-uXbbcFR2liqDcEE_gadaKcFattZwosIQmZuIdwU3ggo5XvYsGZaeLbJsdoPxoOCnIQmeSkKNGHThY8Qg4rdNKVZZ-cM1x_1muv9_M30Jex2uJOftQngFO75-Dft9zQbSmfAB3E1sY-lkE5wcmfbMRXLRvlgnCGHJbR0O2moyv55_I1mbSsNuyGSFHgYhNg2sERKJu_Q8ELNIl_Wc_Fg1P8kNxsU4yNSiwBu4nV4uLq5oV3GBOimShlrHjNXSplY7lkpWyqJUBTfOcVkqzRPLK1lVVheoyaSy1obUAtoKUSQOg0d5CLv1uvZvgYiKaWw10qVOicLZxHvsJX0gwBWSj4D3vzx3XTryUBXjLo9hCUvzqLE8aCzvNDaCz0OfX20yjn9KHwTFDJKdTkZw3Gs27-z1Pg8X1mOmuBIj-Dg0o6WF6xNb-_UWZRBs6hS3enX095E_wPOrxXyWz66zr-_ghQhEifjw5Rh2m83Wn8Az99Cs7jfv48J9BDgk6hk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Formation+Control+for+Unknown+MIMO+Nonlinear+Discrete-Time+Multi-Agent+Systems+With+Sensor+Fault&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Xiong%2C+Shuangshuang&rft.au=Hou%2C+Zhongsheng&rft.date=2022-12-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=33&rft.issue=12&rft.spage=7728&rft_id=info:doi/10.1109%2FTNNLS.2021.3087481&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon