Distributional Soft Actor-Critic: Off-Policy Reinforcement Learning for Addressing Value Estimation Errors
In reinforcement learning (RL), function approximation errors are known to easily lead to the <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-value overestimations, thus greatly reducing policy performance. This article presents a distribu...
Uložené v:
| Vydané v: | IEEE transaction on neural networks and learning systems Ročník 33; číslo 11; s. 6584 - 6598 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In reinforcement learning (RL), function approximation errors are known to easily lead to the <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-value overestimations, thus greatly reducing policy performance. This article presents a distributional soft actor-critic (DSAC) algorithm, which is an off-policy RL method for continuous control setting, to improve the policy performance by mitigating <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-value overestimations. We first discover in theory that learning a distribution function of state-action returns can effectively mitigate <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-value overestimations because it is capable of adaptively adjusting the update step size of the <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-value function. Then, a distributional soft policy iteration (DSPI) framework is developed by embedding the return distribution function into maximum entropy RL. Finally, we present a deep off-policy actor-critic variant of DSPI, called DSAC, which directly learns a continuous return distribution by keeping the variance of the state-action returns within a reasonable range to address exploding and vanishing gradient problems. We evaluate DSAC on the suite of MuJoCo continuous control tasks, achieving the state-of-the-art performance. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2162-237X 2162-2388 2162-2388 |
| DOI: | 10.1109/TNNLS.2021.3082568 |