A hierarchical prediction model for lane-changes based on combination of fuzzy C-means and adaptive neural network

•A hierarchical prediction model is proposed to predict steering angles.•The model combines fuzzy c-means and adaptive neural network.•A clustering learning method is adopted to optimize parameters of sub neural network.•Experiments are conducted in the driving simulator under different scenarios.•P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 130; S. 265 - 275
Hauptverfasser: Tang, Jinjun, Yu, Shaowei, Liu, Fang, Chen, Xinqiang, Huang, Helai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Ltd 15.09.2019
Elsevier BV
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A hierarchical prediction model is proposed to predict steering angles.•The model combines fuzzy c-means and adaptive neural network.•A clustering learning method is adopted to optimize parameters of sub neural network.•Experiments are conducted in the driving simulator under different scenarios.•Prediction results show the model can achieve high performance. Lane changing behavior generally expresses uncertainty due to the impact of environmental factors, and unreasonable lane changes can cause serious collisions. High precision prediction of lane changing intent is helpful to enhance proactivity in driving safety protection. This study proposed a lane-changing prediction model based on Fuzzy C-means clustering algorithm and adaptive Neural Network (FCMNN), which introduced a new prediction process: (1) Unsupervised learning method: categorize original dataset into different clusters according to their distribution features; (2) Supervised learning method: optimize sub-Neural Network structures and weighting parameters for each cluster or pattern. Through comparing with several traditional methods under different simulation scenarios, the proposed model effectively improve the prediction performance and stability. The results obtained in this study will be helpful to deeply analyze the intent recognition of driving behavior, improve the safety of lane-changing behavior, and provide key technology in driving prediction of Advanced Driver Assistance System (ADAS).
AbstractList •A hierarchical prediction model is proposed to predict steering angles.•The model combines fuzzy c-means and adaptive neural network.•A clustering learning method is adopted to optimize parameters of sub neural network.•Experiments are conducted in the driving simulator under different scenarios.•Prediction results show the model can achieve high performance. Lane changing behavior generally expresses uncertainty due to the impact of environmental factors, and unreasonable lane changes can cause serious collisions. High precision prediction of lane changing intent is helpful to enhance proactivity in driving safety protection. This study proposed a lane-changing prediction model based on Fuzzy C-means clustering algorithm and adaptive Neural Network (FCMNN), which introduced a new prediction process: (1) Unsupervised learning method: categorize original dataset into different clusters according to their distribution features; (2) Supervised learning method: optimize sub-Neural Network structures and weighting parameters for each cluster or pattern. Through comparing with several traditional methods under different simulation scenarios, the proposed model effectively improve the prediction performance and stability. The results obtained in this study will be helpful to deeply analyze the intent recognition of driving behavior, improve the safety of lane-changing behavior, and provide key technology in driving prediction of Advanced Driver Assistance System (ADAS).
Lane changing behavior generally expresses uncertainty due to the impact of environmental factors, and unreasonable lane changes can cause serious collisions. High precision prediction of lane changing intent is helpful to enhance proactivity in driving safety protection. This study proposed a lane-changing prediction model based on Fuzzy C-means clustering algorithm and adaptive Neural Network (FCMNN), which introduced a new prediction process: (1) Unsupervised learning method: categorize original dataset into different clusters according to their distribution features; (2) Supervised learning method: optimize sub-Neural Network structures and weighting parameters for each cluster or pattern. Through comparing with several traditional methods under different simulation scenarios, the proposed model effectively improve the prediction performance and stability. The results obtained in this study will be helpful to deeply analyze the intent recognition of driving behavior, improve the safety of lane-changing behavior, and provide key technology in driving prediction of Advanced Driver Assistance System (ADAS).
Author Tang, Jinjun
Huang, Helai
Yu, Shaowei
Chen, Xinqiang
Liu, Fang
Author_xml – sequence: 1
  givenname: Jinjun
  surname: Tang
  fullname: Tang, Jinjun
  email: jinjuntang@cus.edu.cn
  organization: School of Traffic and Transportation Engineering, Smart Transport Key Laboratory of Hunan Province, Central South University, Changsha, 410075, China
– sequence: 2
  givenname: Shaowei
  surname: Yu
  fullname: Yu, Shaowei
  email: swyu2016@chd.edu.cn
  organization: The Joint Laboratory for Internet of Vehicles, Ministry of Education-China Mobile Communications Corporation, Chang'an University, Xi'an, 710064, China
– sequence: 3
  givenname: Fang
  surname: Liu
  fullname: Liu, Fang
  email: rcliufang@163.com
  organization: School of Transportation Engineering, Changsha University of Science and Technology, Changsha, 410205, China
– sequence: 4
  givenname: Xinqiang
  surname: Chen
  fullname: Chen, Xinqiang
  email: chenxinqiang@stu.shmtu.edu.cn
  organization: Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai, 2013066, China
– sequence: 5
  givenname: Helai
  surname: Huang
  fullname: Huang, Helai
  email: huanghelai@csu.edu.cn
  organization: School of Traffic and Transportation Engineering, Smart Transport Key Laboratory of Hunan Province, Central South University, Changsha, 410075, China
BookMark eNp9kD1PIzEQhi3ESQS4P0BliXr3_LVf0jUoAu4kJBqorbE9S5zb2MHegODX45CrKKimmPd5R_OckuMQAxJywVnNGW9_rWvMr1ALxoeaqZpJcUQWvO9k1XaDPCYLNjRdpXinTshpzmvGeMdYtyDpiq48Jkh25S1MdJvQeTv7GOgmOpzoGBOdIGBlVxCeMFMDGR0texs3xgf4zMaRjrv39ze6rDYIIVMIjoKD7exfkAbcpdIdcH6N6d85-THClPHn_3lGHm-uH5Z_qrv727_Lq7vKStHPFfSst9A1rWhdY6Qbe47StcZyZngrucKmcaIHNEyZ0XCjhGx6q5QaYMAB5Bm5PPRuU3zeYZ71Ou5SKCe1EHJopejYUFLikLIp5pxw1NvkN5DeNGd671av9d6t3rvVTOnitkD9F8j6-dPEnMBP36O_DyiW11-Kep2tx2CL9oR21i767_APJ-SYhw
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123696
crossref_primary_10_1080_23249935_2021_1956013
crossref_primary_10_1016_j_eswa_2025_127974
crossref_primary_10_3390_s22020429
crossref_primary_10_32604_cmc_2021_018732
crossref_primary_10_3390_s20071992
crossref_primary_10_1109_ACCESS_2019_2931920
crossref_primary_10_1016_j_compstruct_2019_111803
crossref_primary_10_3390_s22041644
crossref_primary_10_1371_journal_pone_0229211
crossref_primary_10_1080_21680566_2024_2441460
crossref_primary_10_1155_2021_6683878
crossref_primary_10_1016_j_aap_2020_105949
crossref_primary_10_1016_j_apm_2022_10_014
crossref_primary_10_1080_23249935_2024_2372020
crossref_primary_10_1155_2022_9220581
crossref_primary_10_1111_mice_13099
crossref_primary_10_3390_app13010351
crossref_primary_10_3390_app9204455
crossref_primary_10_1007_s11665_021_05807_z
crossref_primary_10_1109_TIV_2023_3266102
crossref_primary_10_1371_journal_pone_0251195
crossref_primary_10_3390_s23218761
crossref_primary_10_1049_iet_its_2019_0428
crossref_primary_10_1016_j_trc_2021_103363
crossref_primary_10_1049_iet_its_2019_0361
crossref_primary_10_1109_TNNLS_2021_3082984
crossref_primary_10_1080_21680566_2021_1950072
crossref_primary_10_1155_2022_3632333
crossref_primary_10_1016_j_conbuildmat_2021_124993
crossref_primary_10_1016_j_eswa_2021_114675
crossref_primary_10_1007_s40815_021_01189_5
crossref_primary_10_1016_j_autcon_2019_102997
crossref_primary_10_1109_JSEN_2020_3034911
crossref_primary_10_1016_j_aap_2021_106183
crossref_primary_10_1016_j_energy_2021_121231
crossref_primary_10_1016_j_physa_2020_125577
crossref_primary_10_1109_TITS_2022_3166669
crossref_primary_10_1016_j_eswa_2025_128682
crossref_primary_10_1109_TITS_2024_3374342
crossref_primary_10_1093_tse_tdac073
crossref_primary_10_1016_j_seta_2021_101061
crossref_primary_10_1109_TITS_2022_3233809
crossref_primary_10_1016_j_aei_2025_103404
crossref_primary_10_1109_ACCESS_2022_3217644
crossref_primary_10_3390_app132212366
crossref_primary_10_1007_s11356_021_15320_4
crossref_primary_10_1109_TITS_2023_3344647
crossref_primary_10_1109_ACCESS_2020_2964070
crossref_primary_10_1155_2022_9704632
crossref_primary_10_1016_j_physa_2019_122291
crossref_primary_10_1007_s42154_024_00305_z
crossref_primary_10_1016_j_asoc_2021_108153
crossref_primary_10_1016_j_eswa_2023_122158
crossref_primary_10_1016_j_aap_2022_106729
Cites_doi 10.1016/j.aap.2006.03.004
10.1016/j.physa.2018.04.073
10.1016/j.apergo.2015.03.017
10.3328/TL.2011.03.04.231-251
10.1007/s10489-018-1163-9
10.1007/s11067-013-9202-x
10.1080/00423119608968955
10.1016/j.jsr.2014.02.014
10.20965/jaciii.2008.p0172
10.1016/S0191-2615(00)00015-1
10.1016/j.aap.2006.03.008
10.1518/001872006777724417
10.1518/001872007X200157
10.1016/S0010-9452(08)70587-2
10.1016/S0968-090X(02)00026-8
10.1162/089976699300016890
10.4028/www.scientific.net/AMM.419.790
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Sep 15, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 15, 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2019.04.032
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 275
ExternalDocumentID 10_1016_j_eswa_2019_04_032
S0957417419302660
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-a808ca75626d5b3df81e3d6bc10b16314e55d28aeb04bfb1b42358c4449a9e9a3
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470341900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 09 05:40:05 EST 2025
Sat Nov 29 06:14:30 EST 2025
Tue Nov 18 22:29:01 EST 2025
Fri Feb 23 02:24:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Driving simulation
Lane changes
Neural network
Fuzzy C-means algorithm
Driving prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-a808ca75626d5b3df81e3d6bc10b16314e55d28aeb04bfb1b42358c4449a9e9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2239632709
PQPubID 2045477
PageCount 11
ParticipantIDs proquest_journals_2239632709
crossref_primary_10_1016_j_eswa_2019_04_032
crossref_citationtrail_10_1016_j_eswa_2019_04_032
elsevier_sciencedirect_doi_10_1016_j_eswa_2019_04_032
PublicationCentury 2000
PublicationDate 2019-09-15
PublicationDateYYYYMMDD 2019-09-15
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Kim (bib0010) 2002
Madhu, Masashi, Takamasa (bib0015) 2008; 12
Kuge, Yamamura, Shimoyama (bib0012) 2000
Qi, Wang, Chen, Bie (bib0023) 2014; 14
Sathyanarayana, Boyraz, Hansen (bib0026) 2008
Morris, Doshi, Trivedi (bib0016) 2011; 32
Pentland, Liu (bib0020) 1999; 11
Tomar, Verma, Tomar (bib0032) 2010
Henning, Georgeon, Krems (bib0007) 2007
Macadam, Johnson (bib0014) 1996; 25
Pickering (bib0021) 2001; 37
Peng, Guo, Fu, Yuan, Wang (bib0019) 2015; 50
Shi, Zhang (bib0028) 2013; 419
Sheu, Ritchie (bib0029) 2001; 35
Pande, Abdel-Aty (bib0018) 2006; 38
Schmidt, Beggiato, Hoffmann, Krems (bib0027) 2014; 49
Liu, Pentland (bib0013) 1997
Doshi, Trivedi (bib0005) 2008
Bham (bib0002) 2011; 3
Ding, Wang, Wang, Baumann (bib0004) 2013; 2013
Kumar, Perrollaz, Lefevre, Laugier (bib0011) 2013
Salvucci, Mandalia, Kuge, Yamamura (bib0025) 2007; 49
Baumann, Krems (bib0001) 2007
Ponziani (bib0022) 2012
Salvucci (bib0024) 2006; 48
Tang, Liang, Zhang, Huang, Liu (bib0031) 2018; 506
Hidas (bib0009) 2002; 10
Gao, Murphey, Zhu (bib0006) 2018; 48
Hessburg, Tomizuka (bib0008) 1995
Sivak, Schoettle, Reed, Flannagan (bib0030) 2006; 38
Cheng, Xiao, LeQuoc (bib0003) 1992
Olsen (bib0017) 2003
Wang, Mao, Kang, Wang (bib0033) 2014; 25
Macadam (10.1016/j.eswa.2019.04.032_bib0014) 1996; 25
Sathyanarayana (10.1016/j.eswa.2019.04.032_bib0026) 2008
Tomar (10.1016/j.eswa.2019.04.032_bib0032) 2010
Sheu (10.1016/j.eswa.2019.04.032_bib0029) 2001; 35
Madhu (10.1016/j.eswa.2019.04.032_bib0015) 2008; 12
Pande (10.1016/j.eswa.2019.04.032_bib0018) 2006; 38
Pentland (10.1016/j.eswa.2019.04.032_bib0020) 1999; 11
Salvucci (10.1016/j.eswa.2019.04.032_bib0025) 2007; 49
Baumann (10.1016/j.eswa.2019.04.032_bib0001) 2007
Doshi (10.1016/j.eswa.2019.04.032_bib0005) 2008
Tang (10.1016/j.eswa.2019.04.032_bib0031) 2018; 506
Kuge (10.1016/j.eswa.2019.04.032_bib0012) 2000
Wang (10.1016/j.eswa.2019.04.032_bib0033) 2014; 25
Henning (10.1016/j.eswa.2019.04.032_bib0007) 2007
Hidas (10.1016/j.eswa.2019.04.032_bib0009) 2002; 10
Kim (10.1016/j.eswa.2019.04.032_bib0010) 2002
Gao (10.1016/j.eswa.2019.04.032_bib0006) 2018; 48
Sivak (10.1016/j.eswa.2019.04.032_bib0030) 2006; 38
Ponziani (10.1016/j.eswa.2019.04.032_bib0022) 2012
Bham (10.1016/j.eswa.2019.04.032_bib0002) 2011; 3
Ding (10.1016/j.eswa.2019.04.032_bib0004) 2013; 2013
Shi (10.1016/j.eswa.2019.04.032_bib0028) 2013; 419
Qi (10.1016/j.eswa.2019.04.032_bib0023) 2014; 14
Salvucci (10.1016/j.eswa.2019.04.032_bib0024) 2006; 48
Liu (10.1016/j.eswa.2019.04.032_bib0013) 1997
Pickering (10.1016/j.eswa.2019.04.032_bib0021) 2001; 37
Kumar (10.1016/j.eswa.2019.04.032_bib0011) 2013
Schmidt (10.1016/j.eswa.2019.04.032_bib0027) 2014; 49
Olsen (10.1016/j.eswa.2019.04.032_bib0017) 2003
Morris (10.1016/j.eswa.2019.04.032_bib0016) 2011; 32
Cheng (10.1016/j.eswa.2019.04.032_bib0003) 1992
Peng (10.1016/j.eswa.2019.04.032_bib0019) 2015; 50
Hessburg (10.1016/j.eswa.2019.04.032_bib0008) 1995
References_xml – year: 1995
  ident: bib0008
  article-title: Fuzzy logic control for lane change maneuvers in lateral vehicle Guidance. California partners for advanced transit and highways (PATH)
– volume: 38
  start-page: 936
  year: 2006
  end-page: 948
  ident: bib0018
  article-title: Assessment of freeway traffic parameters leading to lane-change related collisions
  publication-title: Accident Analysis & Prevention
– year: 2013
  ident: bib0011
  article-title: Learning-based approach for online lane change intention prediction
  publication-title: Intelligent Vehicles Symposium
– volume: 48
  start-page: 362
  year: 2006
  end-page: 380
  ident: bib0024
  article-title: Modeling driver behavior in a cognitive architecture
  publication-title: Human Factors
– start-page: 231
  year: 2007
  end-page: 237
  ident: bib0007
  article-title: The quality of behavioral and environmental indicators used to infer the intention to change lanes
  publication-title: Proceedings of the International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design
– volume: 50
  start-page: 207
  year: 2015
  end-page: 217
  ident: bib0019
  article-title: Multi-parameter prediction of drivers lane-changing behaviour with neural network model
  publication-title: Applied Ergonomics
– volume: 25
  start-page: 385
  year: 2014
  end-page: 393
  ident: bib0033
  article-title: An all-in-one efficient lane-changing model for virtual traffic
  publication-title: Computer Animation & Virtual Worlds
– volume: 49
  start-page: 85
  year: 2014
  end-page: 90
  ident: bib0027
  article-title: A mathematical model for predicting lane changes using the steering wheel angle
  publication-title: Journal of Safety Research
– start-page: 49
  year: 2008
  end-page: 54
  ident: bib0005
  article-title: A comparative exploration of eye gaze and head motion cues for lane change intent prediction
  publication-title: In: Proceedings of IEEE Intelligent Vehicles Symposium,
– year: 2012
  ident: bib0022
  article-title: Turn signal usage rate results: a comprehensive field study of 12,000 observed turning vehicles
– volume: 506
  start-page: 566
  year: 2018
  end-page: 577
  ident: bib0031
  article-title: Inferring driving trajectories based on probabilistic model from large scale taxi GPS data
  publication-title: Physica A
– start-page: 2057
  year: 1992
  end-page: 2062
  ident: bib0003
  article-title: Neuromorphic controller for AGV steering
  publication-title: Proceedings of the IEEE International Conference on Robotics and Automation
– volume: 25
  start-page: 3
  year: 1996
  end-page: 30
  ident: bib0014
  article-title: Application of elementary neural networks and preview sensors for representing driver steering control behavior
  publication-title: Vehicle System Dynamics
– volume: 49
  start-page: 532
  year: 2007
  end-page: 542
  ident: bib0025
  article-title: Lane-change detection using a computational driver model
  publication-title: Human Factors
– year: 2003
  ident: bib0017
  article-title: Modeling slow lead vehicle lane changing. Dissertation
– start-page: 236
  year: 1997
  end-page: 241
  ident: bib0013
  article-title: Towards real-time recognition of driver intention
  publication-title: IEEE Intelligent Transportation Systems Conference
– volume: 11
  start-page: 229
  year: 1999
  end-page: 242
  ident: bib0020
  article-title: Modeling and prediction of human behavior
  publication-title: Neural Computation
– volume: 14
  start-page: 67
  year: 2014
  end-page: 89
  ident: bib0023
  article-title: Location-dependent lane-changing behavior for arterial road traffic
  publication-title: Networks and Spatial Economics
– volume: 10
  start-page: 351
  year: 2002
  end-page: 371
  ident: bib0009
  article-title: Modelling lane changing and merging in microscopic traffic simulation
  publication-title: Transportation Research Part C
– volume: 32
  start-page: 895
  year: 2011
  end-page: 901
  ident: bib0016
  article-title: Lane change intent prediction for driver assistance: On-road design and evaluation
  publication-title: IEEE Intelligent Vehicles Symposium
– volume: 38
  start-page: 969
  year: 2006
  ident: bib0030
  article-title: Influence of visibility out of the vehicle cabin on lane-change crashes
  publication-title: Accident; analysis and prevention
– volume: 12
  start-page: 172
  year: 2008
  end-page: 181
  ident: bib0015
  article-title: Fuzzy Logic Based Lane Change Model for Microscopic Traffic Flow Simulation
  publication-title: Journal of Advanced Computational Intelligence and Intelligent Informatics
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 8
  ident: bib0004
  article-title: A neural network model for driver's lane-changing trajectory prediction in urban traffic flow
  publication-title: Mathematical Problems in Engineering
– volume: 48
  start-page: 3523
  year: 2018
  end-page: 3537
  ident: bib0006
  article-title: Multivariate time series prediction of lane changing behavior using deep neural network
  publication-title: Applied Intelligence
– volume: 35
  start-page: 695
  year: 2001
  end-page: 716
  ident: bib0029
  article-title: Stochastic modeling and real-time prediction of vehicular lane-changing behavior
  publication-title: Transportation Research Part B Methodological
– volume: 419
  start-page: 790
  year: 2013
  end-page: 794
  ident: bib0028
  article-title: Decision analysis of lane change based on fuzzy logic
  publication-title: Applied Mechanics & Materials
– start-page: 253
  year: 2007
  end-page: 265
  ident: bib0001
  article-title: Situation awareness and driving: A cognitive model
  publication-title: Modelling driver behaviour in automotive environments. Critical issues in advanced automotive systems and human-centred design
– start-page: 2124
  year: 2002
  end-page: 2129
  ident: bib0010
  article-title: Design of fuzzy PDI controller for tracking control
  publication-title: Proceedings of American Control Conference
– volume: 3
  start-page: 231
  year: 2011
  end-page: 251
  ident: bib0002
  article-title: A simple lane change model for microscopic traffic flow simulation in weaving sections
  publication-title: Transportation Letters: The International Journal of Transportation Research
– year: 2000
  ident: bib0012
  article-title: A driver behavior recognition method based on a driver model framework
  publication-title: Proceedings of the Society of Automotive Engineers World Congress
– start-page: 276
  year: 2008
  end-page: 281
  ident: bib0026
  article-title: Driver behavior analysis and route recognition by hidden Markov models
  publication-title: Proceedings of the IEEE International Conference on Vehicular Electronics and Safety
– volume: 37
  start-page: 457
  year: 2001
  end-page: 473
  ident: bib0021
  article-title: Cognitive approaches to the fractionation of visuo-spatial working memory
  publication-title: Cortex
– start-page: 249
  year: 2010
  end-page: 253
  ident: bib0032
  article-title: Prediction of lane change trajectories through neural network
  publication-title: Proceedings of the International Conference on Computational Intelligence and Communication Networks
– volume: 38
  start-page: 936
  issue: 5
  year: 2006
  ident: 10.1016/j.eswa.2019.04.032_bib0018
  article-title: Assessment of freeway traffic parameters leading to lane-change related collisions
  publication-title: Accident Analysis & Prevention
  doi: 10.1016/j.aap.2006.03.004
– start-page: 231
  year: 2007
  ident: 10.1016/j.eswa.2019.04.032_bib0007
  article-title: The quality of behavioral and environmental indicators used to infer the intention to change lanes
– start-page: 276
  year: 2008
  ident: 10.1016/j.eswa.2019.04.032_bib0026
  article-title: Driver behavior analysis and route recognition by hidden Markov models
– volume: 506
  start-page: 566
  year: 2018
  ident: 10.1016/j.eswa.2019.04.032_bib0031
  article-title: Inferring driving trajectories based on probabilistic model from large scale taxi GPS data
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.04.073
– start-page: 49
  year: 2008
  ident: 10.1016/j.eswa.2019.04.032_bib0005
  article-title: A comparative exploration of eye gaze and head motion cues for lane change intent prediction
  publication-title: In: Proceedings of IEEE Intelligent Vehicles Symposium,
– start-page: 2124
  year: 2002
  ident: 10.1016/j.eswa.2019.04.032_bib0010
  article-title: Design of fuzzy PDI controller for tracking control
– volume: 50
  start-page: 207
  year: 2015
  ident: 10.1016/j.eswa.2019.04.032_bib0019
  article-title: Multi-parameter prediction of drivers lane-changing behaviour with neural network model
  publication-title: Applied Ergonomics
  doi: 10.1016/j.apergo.2015.03.017
– volume: 3
  start-page: 231
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2019.04.032_bib0002
  article-title: A simple lane change model for microscopic traffic flow simulation in weaving sections
  publication-title: Transportation Letters: The International Journal of Transportation Research
  doi: 10.3328/TL.2011.03.04.231-251
– volume: 48
  start-page: 3523
  issue: 10
  year: 2018
  ident: 10.1016/j.eswa.2019.04.032_bib0006
  article-title: Multivariate time series prediction of lane changing behavior using deep neural network
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-018-1163-9
– volume: 32
  start-page: 895
  year: 2011
  ident: 10.1016/j.eswa.2019.04.032_bib0016
  article-title: Lane change intent prediction for driver assistance: On-road design and evaluation
  publication-title: IEEE Intelligent Vehicles Symposium
– volume: 14
  start-page: 67
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2019.04.032_bib0023
  article-title: Location-dependent lane-changing behavior for arterial road traffic
  publication-title: Networks and Spatial Economics
  doi: 10.1007/s11067-013-9202-x
– volume: 25
  start-page: 3
  issue: 1
  year: 1996
  ident: 10.1016/j.eswa.2019.04.032_bib0014
  article-title: Application of elementary neural networks and preview sensors for representing driver steering control behavior
  publication-title: Vehicle System Dynamics
  doi: 10.1080/00423119608968955
– volume: 25
  start-page: 385
  issue: 3–4
  year: 2014
  ident: 10.1016/j.eswa.2019.04.032_bib0033
  article-title: An all-in-one efficient lane-changing model for virtual traffic
  publication-title: Computer Animation & Virtual Worlds
– volume: 49
  start-page: 85
  year: 2014
  ident: 10.1016/j.eswa.2019.04.032_bib0027
  article-title: A mathematical model for predicting lane changes using the steering wheel angle
  publication-title: Journal of Safety Research
  doi: 10.1016/j.jsr.2014.02.014
– year: 1995
  ident: 10.1016/j.eswa.2019.04.032_bib0008
– year: 2000
  ident: 10.1016/j.eswa.2019.04.032_bib0012
  article-title: A driver behavior recognition method based on a driver model framework
– volume: 12
  start-page: 172
  issue: 2
  year: 2008
  ident: 10.1016/j.eswa.2019.04.032_bib0015
  article-title: Fuzzy Logic Based Lane Change Model for Microscopic Traffic Flow Simulation
  publication-title: Journal of Advanced Computational Intelligence and Intelligent Informatics
  doi: 10.20965/jaciii.2008.p0172
– volume: 35
  start-page: 695
  issue: 7
  year: 2001
  ident: 10.1016/j.eswa.2019.04.032_bib0029
  article-title: Stochastic modeling and real-time prediction of vehicular lane-changing behavior
  publication-title: Transportation Research Part B Methodological
  doi: 10.1016/S0191-2615(00)00015-1
– start-page: 2057
  year: 1992
  ident: 10.1016/j.eswa.2019.04.032_bib0003
  article-title: Neuromorphic controller for AGV steering
– volume: 2013
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2019.04.032_bib0004
  article-title: A neural network model for driver's lane-changing trajectory prediction in urban traffic flow
  publication-title: Mathematical Problems in Engineering
– start-page: 249
  year: 2010
  ident: 10.1016/j.eswa.2019.04.032_bib0032
  article-title: Prediction of lane change trajectories through neural network
– year: 2012
  ident: 10.1016/j.eswa.2019.04.032_bib0022
– volume: 38
  start-page: 969
  issue: 5
  year: 2006
  ident: 10.1016/j.eswa.2019.04.032_bib0030
  article-title: Influence of visibility out of the vehicle cabin on lane-change crashes
  publication-title: Accident; analysis and prevention
  doi: 10.1016/j.aap.2006.03.008
– year: 2013
  ident: 10.1016/j.eswa.2019.04.032_bib0011
  article-title: Learning-based approach for online lane change intention prediction
– volume: 48
  start-page: 362
  issue: 2
  year: 2006
  ident: 10.1016/j.eswa.2019.04.032_bib0024
  article-title: Modeling driver behavior in a cognitive architecture
  publication-title: Human Factors
  doi: 10.1518/001872006777724417
– volume: 49
  start-page: 532
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2019.04.032_bib0025
  article-title: Lane-change detection using a computational driver model
  publication-title: Human Factors
  doi: 10.1518/001872007X200157
– volume: 37
  start-page: 457
  issue: 4
  year: 2001
  ident: 10.1016/j.eswa.2019.04.032_bib0021
  article-title: Cognitive approaches to the fractionation of visuo-spatial working memory
  publication-title: Cortex
  doi: 10.1016/S0010-9452(08)70587-2
– year: 2003
  ident: 10.1016/j.eswa.2019.04.032_bib0017
– start-page: 253
  year: 2007
  ident: 10.1016/j.eswa.2019.04.032_bib0001
  article-title: Situation awareness and driving: A cognitive model
– volume: 10
  start-page: 351
  issue: 5
  year: 2002
  ident: 10.1016/j.eswa.2019.04.032_bib0009
  article-title: Modelling lane changing and merging in microscopic traffic simulation
  publication-title: Transportation Research Part C
  doi: 10.1016/S0968-090X(02)00026-8
– start-page: 236
  year: 1997
  ident: 10.1016/j.eswa.2019.04.032_bib0013
  article-title: Towards real-time recognition of driver intention
– volume: 11
  start-page: 229
  issue: 1
  year: 1999
  ident: 10.1016/j.eswa.2019.04.032_bib0020
  article-title: Modeling and prediction of human behavior
  publication-title: Neural Computation
  doi: 10.1162/089976699300016890
– volume: 419
  start-page: 790
  year: 2013
  ident: 10.1016/j.eswa.2019.04.032_bib0028
  article-title: Decision analysis of lane change based on fuzzy logic
  publication-title: Applied Mechanics & Materials
  doi: 10.4028/www.scientific.net/AMM.419.790
SSID ssj0017007
Score 2.516856
Snippet •A hierarchical prediction model is proposed to predict steering angles.•The model combines fuzzy c-means and adaptive neural network.•A clustering learning...
Lane changing behavior generally expresses uncertainty due to the impact of environmental factors, and unreasonable lane changes can cause serious collisions....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 265
SubjectTerms Adaptive algorithms
Advanced driver assistance systems
Artificial neural networks
Clustering
Computer simulation
Driving prediction
Driving simulation
Environmental impact
Fuzzy C-means algorithm
Fuzzy logic
Lane changes
Lane changing
Neural network
Neural networks
Supervised learning
Teaching methods
Vehicle safety
Title A hierarchical prediction model for lane-changes based on combination of fuzzy C-means and adaptive neural network
URI https://dx.doi.org/10.1016/j.eswa.2019.04.032
https://www.proquest.com/docview/2239632709
Volume 130
WOSCitedRecordID wos000470341900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlgMXdkShoDkgLtFUXsaZmWOEEgGqAocUmdNobI-Fo9Zxs7RVfw6_lDeLnaSICA5crGgcOyN_X957fitC78zII5EFmiQZywmNc0aypIhJogRl1DjeFLXDJthkwtNUfO31fra1MFfnrK75zY1o_ivUsAZgm9LZf4C7uykswGcAHY4AOxz_Cvhh34y3tgEC8_ybhQnFWJTt1BubV2gyXImr-V32jSIrTNAAdgPvyZ0NWa5vb0FgkAsN6sw1dS1UY1ONTBdMuHftcsh3vPumdfLKN4huS-e2guQbT4FPBa7q2boj6Pe19cb-UPNrXXW5QpVdHSuvZG0ygpOWaVVfVu26912ENjnLVW86h1pXVPNtxzHJCA3d7J4T7cQyZzEZMDdLsZPbPqDjJa8bOfGbRnDOidmJXl6bNlOhsJ1tvU91p_325Iscn52eyukonb5vLomZTGYi-H5Myz10GLFEgPA_HH4apZ-7WBULXFF-u29fmuWyCO_-7J_MnzuGgLVupo_RQ_9agoeOTk9QT9dP0aN25Af2GuAZWgzxNrvwhl3YsgsDu_A2u7BlF4bzW-zC8xJbdmHPLgzswi27sGMX9ux6js7Go-mHj8SP7SB5HPEVUTzguWJgWA-KJIuLkoc6LgZZHgYZWP8h1UlSRFzpLKBZmYUZNeXaOaVUKKGFil-gg3pe65cItpjkg7jkYAQrynXMyzJgRaQDHdNAc36EwvZpytz3tDejVc5lm7w4kwYBaRCQAZWAwBHqd9c0rqPL3m8nLUjS26TO1pRAsL3XHbeISi8clhJMcdB3EQvEq_2nX6MHm7_LMTpYLdb6DbqfX62q5eKtJ-AvKEi4fg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hierarchical+prediction+model+for+lane-changes+based+on+combination+of+fuzzy+C-means+and+adaptive+neural+network&rft.jtitle=Expert+systems+with+applications&rft.au=Tang%2C+Jinjun&rft.au=Yu%2C+Shaowei&rft.au=Liu%2C+Fang&rft.au=Chen%2C+Xinqiang&rft.date=2019-09-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=130&rft.spage=265&rft_id=info:doi/10.1016%2Fj.eswa.2019.04.032&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon