Refined Multi-Focus image fusion using Multi-Scale neural network with SpSwin Autoencoder-based matting

This paper proposes a novel method based on a Multi-Scale neural network with a SpatialSwin (SpSwin) Autoencoder-based matting for the multi-focus image fusion (MFIF) task. The proposed strategy introduces several innovations to enhance image quality and address challenges like boundary precision an...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 276; p. 126980
Main Authors: Jiang, Shengchuan, Yu, Shanchuan
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.06.2025
Subjects:
ISSN:0957-4174
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a novel method based on a Multi-Scale neural network with a SpatialSwin (SpSwin) Autoencoder-based matting for the multi-focus image fusion (MFIF) task. The proposed strategy introduces several innovations to enhance image quality and address challenges like boundary precision and texture preservation. The Sum of Edge-Weighted Gaussian-based Modified Laplacian (SEWG-ML) focus measure is developed to refine boundary detection, while a Pyramid Squeeze Attention (PSA) module dynamically adapts spatial and channel-wise attention at multiple scales for precise feature refinement. Trimap generation integrates superpixel segmentation and fuzzy k-means clustering for accurate foreground-background separation. The SpSwin Autoencoder leverages Swin Transformers for hierarchical token reduction and includes a Hierarchical Feature Enhancement Block (HFEB) to reconstruct high-level contextual features, ensuring seamless image fusion with reduced artifacts. These contributions result in a robust, high-performance framework. Experimental evaluations on benchmark datasets demonstrate superior performance, with metrics including SSIM (0.982), PSNR (39.60 dB), and MI (7.968), surpassing existing techniques. The proposed method in this paper is especially good at preserving fine details and suppressing artifacts, indicating its potential applicability in surveillance, medical imaging, and object detection.
AbstractList This paper proposes a novel method based on a Multi-Scale neural network with a SpatialSwin (SpSwin) Autoencoder-based matting for the multi-focus image fusion (MFIF) task. The proposed strategy introduces several innovations to enhance image quality and address challenges like boundary precision and texture preservation. The Sum of Edge-Weighted Gaussian-based Modified Laplacian (SEWG-ML) focus measure is developed to refine boundary detection, while a Pyramid Squeeze Attention (PSA) module dynamically adapts spatial and channel-wise attention at multiple scales for precise feature refinement. Trimap generation integrates superpixel segmentation and fuzzy k-means clustering for accurate foreground-background separation. The SpSwin Autoencoder leverages Swin Transformers for hierarchical token reduction and includes a Hierarchical Feature Enhancement Block (HFEB) to reconstruct high-level contextual features, ensuring seamless image fusion with reduced artifacts. These contributions result in a robust, high-performance framework. Experimental evaluations on benchmark datasets demonstrate superior performance, with metrics including SSIM (0.982), PSNR (39.60 dB), and MI (7.968), surpassing existing techniques. The proposed method in this paper is especially good at preserving fine details and suppressing artifacts, indicating its potential applicability in surveillance, medical imaging, and object detection.
ArticleNumber 126980
Author Yu, Shanchuan
Jiang, Shengchuan
Author_xml – sequence: 1
  givenname: Shengchuan
  surname: Jiang
  fullname: Jiang, Shengchuan
  organization: Department of Traffic Engineering, Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
– sequence: 2
  givenname: Shanchuan
  surname: Yu
  fullname: Yu, Shanchuan
  email: yushanchuan@cmhk.com
  organization: National Engineering and Research Center for Mountainous Highways, China Merchants Chongqing Communications Research & Design Institute Co. Ltd, Chongqing 400067, China
BookMark eNp9kMtOwzAQRb0oEm3hB1j5BxL8SOpUYlNVFJCKkAisLdeZFJfUrmyHiL_HVbti0VnMLEbnSvdM0Mg6CwjdUZJTQmf3uxzCoHJGWJlTNptXZITGZF6KrKCiuEaTEHaEUEGIGKPtO7TGQoNf-y6abOV0H7DZqy3gtg_GWZy23Z7ftVYdYAu9V106cXD-Gw8mfuH6UA_G4kUfHVjtGvDZRoWUu1cxpoAbdNWqLsDt-U7R5-rxY_mcrd-eXpaLdaY5q2KmBLA0QvCm1EyLuU4FNpuqaARvmQbFWSmEonpGCKecF6AVqYoWFAUKJeVTVJ1ytXcheGilNlHFVCR6ZTpJiTxKkjt5lCSPkuRJUkLZP_Tgkwn_exl6OEGQSv0Y8DJokwxAYzzoKBtnLuF_YVeGVg
CitedBy_id crossref_primary_10_3934_electreng_2025023
crossref_primary_10_1016_j_eswa_2025_128895
Cites_doi 10.1049/ipr2.12668
10.1007/s40747-023-01151-y
10.1016/j.jksuci.2023.101751
10.1016/j.ijmecsci.2022.107741
10.1016/j.neunet.2024.106603
10.1016/j.imavis.2024.105210
10.1016/j.ijleo.2022.170223
10.1016/j.compeleceng.2024.109629
10.1016/j.displa.2024.102837
10.1016/j.inffus.2023.102125
10.1007/s00521-023-08568-z
10.1016/j.compeleceng.2024.109299
10.1038/s41598-023-35663-x
10.1007/s00521-022-07766-5
10.1109/TIP.2023.3276330
10.1049/ipr2.12363
10.1109/JSTARS.2023.3239119
10.1038/s41598-024-69193-x
10.1016/j.bspc.2022.103534
10.1007/s42979-022-01607-x
10.1016/j.eswa.2023.121156
10.1049/ipr2.12430
10.1016/j.inffus.2024.102230
10.1016/j.autcon.2023.105213
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2025.126980
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2025_126980
S0957417425006025
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSH
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AAYXX
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c328t-a7e2222773d5c2c79c269bb84d73f2cea32577a1c60031334eca084fea1e1e513
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001486933800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 18 21:47:17 EST 2025
Sat Nov 29 07:55:22 EST 2025
Sat Jun 21 16:53:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Combined Convolutional Blocks (CCBs)
Pyramid Squeeze Attention (PSA)
And Hierarchical Feature Enhancement Block (HFEB)
Depthwise Separable Convolution (DSC)
SpatialSwin (SpSwin) Autoencoder
Transpose Convolution (TC)
Image fusion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-a7e2222773d5c2c79c269bb84d73f2cea32577a1c60031334eca084fea1e1e513
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2025_126980
crossref_primary_10_1016_j_eswa_2025_126980
elsevier_sciencedirect_doi_10_1016_j_eswa_2025_126980
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jin, Xi, Zhou, Ren, Yang, Jiang (b0050) 2023; 17
Chen, Jiang, Li, Yao (b0015) 2024; 103
Xie, Guo, Li, He, Zhou (b0120) 2024; 1–24
Mahler, Wang, Steiglechner, Birk, Heczko, Scheffler, Lohmann (b0085) 2023
Reyad, Sarhan, Arafa (b0090) 2023; 35
Karacan (b0055) 2023; 119
Liu, Peng, Liu, Zhao, Su, Zhang (b0080) 2023; 35
Fang, Ning, Mao, Zhang, Zhao, Hu, Wang (b0035) 2024; 117
Zhai, Ouyang, Luo, Chen, Zeng (b0130) 2024
Elshamy, Abu-Elnasr, Elhoseny, Elmougy (b0030) 2024; 14
Bouzos, Andreadis, Mitianoudis (b0010) 2023; 32
Vidyashree, Rajendra (b0110) 2023; 4
Li, Zhang, Liu, Peng, Wang, Liu (b0060) 2024; 179
Li, Li, Lu, Wang, Zhou (b0070) 2023; 272
Sheikh, Meier, Blankenship, Vangelatos, Zhao, Marcus, Grigoropoulos (b0105) 2022; 236
Zhang, Wu, Yuan, Zhao (b0135) 2022; 16
Behera, Bakshi, Nappi, Sa (b0005) 2023; 16
Rivera-Aguilar, Cuevas, Pérez, Camarena, Rodríguez (b0095) 2024; 1–17
Shao, Jin, Jiang, Miao, Wang, Chu (b0100) 2024; 119
Duan, Luo, Zhang (b0020) 2024; 235
Wang, Qu, Zhang, Xie (b0115) 2024; 105
Ghezelbash, Maghsoudi, Shamekhi, Pradhan, Daviran (b0040) 2023; 35
Huang, Cai, Zhang, Lu, Hammad, Fan (b0045) 2024; 158
Elshamy, Abu-Elnasr, Elhoseny, Elmougy (b0025) 2023; 13
Zhai, Chen, Wang, Ouyang, Zeng (b0125) 2024
Zhou, Jin, Jiang, Cai, Lee, Yao (b0140) 2022; 16
Li, Li, Jiang (b0065) 2023; 9
Li, Li, Fu, Peng (b0075) 2022; 74
Bouzos (10.1016/j.eswa.2025.126980_b0010) 2023; 32
Li (10.1016/j.eswa.2025.126980_b0070) 2023; 272
Huang (10.1016/j.eswa.2025.126980_b0045) 2024; 158
Shao (10.1016/j.eswa.2025.126980_b0100) 2024; 119
Ghezelbash (10.1016/j.eswa.2025.126980_b0040) 2023; 35
Liu (10.1016/j.eswa.2025.126980_b0080) 2023; 35
Rivera-Aguilar (10.1016/j.eswa.2025.126980_b0095) 2024; 1–17
Li (10.1016/j.eswa.2025.126980_b0060) 2024; 179
Zhou (10.1016/j.eswa.2025.126980_b0140) 2022; 16
Duan (10.1016/j.eswa.2025.126980_b0020) 2024; 235
Reyad (10.1016/j.eswa.2025.126980_b0090) 2023; 35
Chen (10.1016/j.eswa.2025.126980_b0015) 2024; 103
Mahler (10.1016/j.eswa.2025.126980_b0085) 2023
Elshamy (10.1016/j.eswa.2025.126980_b0030) 2024; 14
Xie (10.1016/j.eswa.2025.126980_b0120) 2024; 1–24
Elshamy (10.1016/j.eswa.2025.126980_b0025) 2023; 13
Li (10.1016/j.eswa.2025.126980_b0065) 2023; 9
Sheikh (10.1016/j.eswa.2025.126980_b0105) 2022; 236
Zhai (10.1016/j.eswa.2025.126980_b0130) 2024
Behera (10.1016/j.eswa.2025.126980_b0005) 2023; 16
Zhai (10.1016/j.eswa.2025.126980_b0125) 2024
Jin (10.1016/j.eswa.2025.126980_b0050) 2023; 17
Zhang (10.1016/j.eswa.2025.126980_b0135) 2022; 16
Fang (10.1016/j.eswa.2025.126980_b0035) 2024; 117
Karacan (10.1016/j.eswa.2025.126980_b0055) 2023; 119
Li (10.1016/j.eswa.2025.126980_b0075) 2022; 74
Wang (10.1016/j.eswa.2025.126980_b0115) 2024; 105
Vidyashree (10.1016/j.eswa.2025.126980_b0110) 2023; 4
References_xml – volume: 17
  start-page: 733
  year: 2023
  end-page: 746
  ident: b0050
  article-title: An unsupervised multi‐focus image fusion method based on Transformer and U‐Net
  publication-title: IET Image Processing
– volume: 1–17
  year: 2024
  ident: b0095
  article-title: A new histogram equalization technique for contrast enhancement of grayscale images using the differential evolution algorithm
  publication-title: Neural Computing and Applications
– volume: 119
  year: 2024
  ident: b0100
  article-title: Multi-focus image fusion based on transformer and depth information learning
  publication-title: Computers and Electrical Engineering
– volume: 9
  start-page: 7395
  year: 2023
  end-page: 7422
  ident: b0065
  article-title: GIPC-GAN: An end-to-end gradient and intensity joint proportional constraint generative adversarial network for multi-focus image fusion
  publication-title: Complex & Intelligent Systems
– volume: 117
  year: 2024
  ident: b0035
  article-title: A multi-focus image fusion network combining dilated convolution with learnable spacings and residual dense network
  publication-title: Computers and Electrical Engineering
– volume: 16
  start-page: 499
  year: 2022
  end-page: 508
  ident: b0135
  article-title: CFNet: Context fusion network for multi‐focus images
  publication-title: IET Image Processing
– volume: 272
  year: 2023
  ident: b0070
  article-title: Multi-focus image fusion with convolutional neural network based on Dempster-Shafer theory
  publication-title: Optik
– volume: 235
  year: 2024
  ident: b0020
  article-title: Combining transformers with CNN for multi-focus image fusion
  publication-title: Expert Systems with Applications
– volume: 16
  start-page: 1558
  year: 2022
  end-page: 1574
  ident: b0140
  article-title: MCRD‐Net: An unsupervised dense network with multi‐scale convolutional block attention for multi‐focus image fusion
  publication-title: IET Image Processing
– volume: 119
  year: 2023
  ident: b0055
  article-title: Multi-image transformer for multi-focus image fusion
  publication-title: Signal Processing: Image Communication
– volume: 4
  start-page: 190
  year: 2023
  ident: b0110
  article-title: An improvised sentiment analysis model on twitter data using stochastic gradient descent (SGD) optimization algorithm in stochastic gate neural network (SGNN)
  publication-title: SN computer science
– volume: 236
  year: 2022
  ident: b0105
  article-title: Systematic design of Cauchy symmetric structures through Bayesian optimization
  publication-title: International Journal of Mechanical Sciences
– volume: 35
  start-page: 719
  year: 2023
  end-page: 733
  ident: b0040
  article-title: Genetic algorithm to optimize the SVM and K-means algorithms for mapping of mineral prospectivity
  publication-title: Neural Computing and Applications
– volume: 105
  year: 2024
  ident: b0115
  article-title: New insights into multi-focus image fusion: A fusion method based on multi-dictionary linear sparse representation and region fusion model
  publication-title: Information Fusion
– year: 2024
  ident: b0125
  article-title: W-shaped network combined with dual transformers and edge protection for multi-focus image fusion
  publication-title: Image and Vision Computing
– volume: 179
  year: 2024
  ident: b0060
  article-title: Multi-focus image fusion with parameter adaptive dual channel dynamic threshold neural P systems
  publication-title: Neural Networks
– volume: 13
  start-page: 8814
  year: 2023
  ident: b0025
  article-title: Improving the efficiency of RMSProp optimizer by utilizing Nestrove in deep learning
  publication-title: Scientific Reports
– start-page: 123
  year: 2023
  end-page: 132
  ident: b0085
  publication-title: Pretraining is All You Need: A Multi-Atlas Enhanced Transformer Framework for Autism Spectrum Disorder Classification
– volume: 74
  year: 2022
  ident: b0075
  article-title: MSENet: A multi-scale enhanced network based on unique features guidance for medical image fusion
  publication-title: Biomedical Signal Processing and Control
– year: 2024
  ident: b0130
  article-title: MSI-DTrans: A multi-focus image fusion using multilayer semantic interaction and dynamic transformer
  publication-title: Displays
– volume: 16
  start-page: 1771
  year: 2023
  end-page: 1784
  ident: b0005
  article-title: Superpixel-based multiscale CNN approach toward multiclass object segmentation from UAV-captured aerial images
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 103
  year: 2024
  ident: b0015
  article-title: A defocus and similarity attention-based cascaded network for multi-focus and misaligned image fusion
  publication-title: Information Fusion
– volume: 35
  start-page: 17095
  year: 2023
  end-page: 17112
  ident: b0090
  article-title: A modified Adam algorithm for deep neural network optimization
  publication-title: Neural Computing and Applications
– volume: 158
  year: 2024
  ident: b0045
  article-title: Crack detection of masonry structure based on thermal and visible image fusion and semantic segmentation
  publication-title: Automation in Construction
– volume: 32
  start-page: 2915
  year: 2023
  end-page: 2930
  ident: b0010
  article-title: A convolutional neural network-based conditional random field model for structured multi-focus image fusion robust to noise
  publication-title: IEEE Transactions on Image Processing
– volume: 35
  year: 2023
  ident: b0080
  article-title: AFCANet: An adaptive feature concatenate attention network for multi-focus image fusion
  publication-title: Journal of King Saud University-Computer and Information Sciences
– volume: 14
  start-page: 19534
  year: 2024
  ident: b0030
  article-title: Enhancing colorectal cancer histology diagnosis using modified deep neural networks optimizer
  publication-title: Scientific Reports
– volume: 1–24
  year: 2024
  ident: b0120
  article-title: SwinMFF: Toward high-fidelity end-to-end multi-focus image fusion via swin transformer-based network
  publication-title: The Visual Computer
– volume: 17
  start-page: 733
  issue: 3
  year: 2023
  ident: 10.1016/j.eswa.2025.126980_b0050
  article-title: An unsupervised multi‐focus image fusion method based on Transformer and U‐Net
  publication-title: IET Image Processing
  doi: 10.1049/ipr2.12668
– volume: 9
  start-page: 7395
  issue: 6
  year: 2023
  ident: 10.1016/j.eswa.2025.126980_b0065
  article-title: GIPC-GAN: An end-to-end gradient and intensity joint proportional constraint generative adversarial network for multi-focus image fusion
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-023-01151-y
– volume: 35
  issue: 9
  year: 2023
  ident: 10.1016/j.eswa.2025.126980_b0080
  article-title: AFCANet: An adaptive feature concatenate attention network for multi-focus image fusion
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2023.101751
– volume: 236
  year: 2022
  ident: 10.1016/j.eswa.2025.126980_b0105
  article-title: Systematic design of Cauchy symmetric structures through Bayesian optimization
  publication-title: International Journal of Mechanical Sciences
  doi: 10.1016/j.ijmecsci.2022.107741
– volume: 179
  year: 2024
  ident: 10.1016/j.eswa.2025.126980_b0060
  article-title: Multi-focus image fusion with parameter adaptive dual channel dynamic threshold neural P systems
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2024.106603
– year: 2024
  ident: 10.1016/j.eswa.2025.126980_b0125
  article-title: W-shaped network combined with dual transformers and edge protection for multi-focus image fusion
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2024.105210
– volume: 272
  year: 2023
  ident: 10.1016/j.eswa.2025.126980_b0070
  article-title: Multi-focus image fusion with convolutional neural network based on Dempster-Shafer theory
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.170223
– volume: 119
  year: 2024
  ident: 10.1016/j.eswa.2025.126980_b0100
  article-title: Multi-focus image fusion based on transformer and depth information learning
  publication-title: Computers and Electrical Engineering
  doi: 10.1016/j.compeleceng.2024.109629
– year: 2024
  ident: 10.1016/j.eswa.2025.126980_b0130
  article-title: MSI-DTrans: A multi-focus image fusion using multilayer semantic interaction and dynamic transformer
  publication-title: Displays
  doi: 10.1016/j.displa.2024.102837
– volume: 103
  year: 2024
  ident: 10.1016/j.eswa.2025.126980_b0015
  article-title: A defocus and similarity attention-based cascaded network for multi-focus and misaligned image fusion
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2023.102125
– start-page: 123
  year: 2023
  ident: 10.1016/j.eswa.2025.126980_b0085
– volume: 35
  start-page: 17095
  issue: 23
  year: 2023
  ident: 10.1016/j.eswa.2025.126980_b0090
  article-title: A modified Adam algorithm for deep neural network optimization
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-023-08568-z
– volume: 117
  year: 2024
  ident: 10.1016/j.eswa.2025.126980_b0035
  article-title: A multi-focus image fusion network combining dilated convolution with learnable spacings and residual dense network
  publication-title: Computers and Electrical Engineering
  doi: 10.1016/j.compeleceng.2024.109299
– volume: 13
  start-page: 8814
  issue: 1
  year: 2023
  ident: 10.1016/j.eswa.2025.126980_b0025
  article-title: Improving the efficiency of RMSProp optimizer by utilizing Nestrove in deep learning
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-35663-x
– volume: 35
  start-page: 719
  issue: 1
  year: 2023
  ident: 10.1016/j.eswa.2025.126980_b0040
  article-title: Genetic algorithm to optimize the SVM and K-means algorithms for mapping of mineral prospectivity
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-022-07766-5
– volume: 32
  start-page: 2915
  year: 2023
  ident: 10.1016/j.eswa.2025.126980_b0010
  article-title: A convolutional neural network-based conditional random field model for structured multi-focus image fusion robust to noise
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2023.3276330
– volume: 1–24
  year: 2024
  ident: 10.1016/j.eswa.2025.126980_b0120
  article-title: SwinMFF: Toward high-fidelity end-to-end multi-focus image fusion via swin transformer-based network
  publication-title: The Visual Computer
– volume: 16
  start-page: 499
  issue: 2
  year: 2022
  ident: 10.1016/j.eswa.2025.126980_b0135
  article-title: CFNet: Context fusion network for multi‐focus images
  publication-title: IET Image Processing
  doi: 10.1049/ipr2.12363
– volume: 16
  start-page: 1771
  year: 2023
  ident: 10.1016/j.eswa.2025.126980_b0005
  article-title: Superpixel-based multiscale CNN approach toward multiclass object segmentation from UAV-captured aerial images
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2023.3239119
– volume: 1–17
  year: 2024
  ident: 10.1016/j.eswa.2025.126980_b0095
  article-title: A new histogram equalization technique for contrast enhancement of grayscale images using the differential evolution algorithm
  publication-title: Neural Computing and Applications
– volume: 14
  start-page: 19534
  issue: 1
  year: 2024
  ident: 10.1016/j.eswa.2025.126980_b0030
  article-title: Enhancing colorectal cancer histology diagnosis using modified deep neural networks optimizer
  publication-title: Scientific Reports
  doi: 10.1038/s41598-024-69193-x
– volume: 119
  year: 2023
  ident: 10.1016/j.eswa.2025.126980_b0055
  article-title: Multi-image transformer for multi-focus image fusion
  publication-title: Signal Processing: Image Communication
– volume: 74
  year: 2022
  ident: 10.1016/j.eswa.2025.126980_b0075
  article-title: MSENet: A multi-scale enhanced network based on unique features guidance for medical image fusion
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2022.103534
– volume: 4
  start-page: 190
  issue: 2
  year: 2023
  ident: 10.1016/j.eswa.2025.126980_b0110
  article-title: An improvised sentiment analysis model on twitter data using stochastic gradient descent (SGD) optimization algorithm in stochastic gate neural network (SGNN)
  publication-title: SN computer science
  doi: 10.1007/s42979-022-01607-x
– volume: 235
  year: 2024
  ident: 10.1016/j.eswa.2025.126980_b0020
  article-title: Combining transformers with CNN for multi-focus image fusion
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121156
– volume: 16
  start-page: 1558
  issue: 6
  year: 2022
  ident: 10.1016/j.eswa.2025.126980_b0140
  article-title: MCRD‐Net: An unsupervised dense network with multi‐scale convolutional block attention for multi‐focus image fusion
  publication-title: IET Image Processing
  doi: 10.1049/ipr2.12430
– volume: 105
  year: 2024
  ident: 10.1016/j.eswa.2025.126980_b0115
  article-title: New insights into multi-focus image fusion: A fusion method based on multi-dictionary linear sparse representation and region fusion model
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2024.102230
– volume: 158
  year: 2024
  ident: 10.1016/j.eswa.2025.126980_b0045
  article-title: Crack detection of masonry structure based on thermal and visible image fusion and semantic segmentation
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2023.105213
SSID ssj0017007
Score 2.4804533
Snippet This paper proposes a novel method based on a Multi-Scale neural network with a SpatialSwin (SpSwin) Autoencoder-based matting for the multi-focus image fusion...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126980
SubjectTerms And Hierarchical Feature Enhancement Block (HFEB)
Combined Convolutional Blocks (CCBs)
Depthwise Separable Convolution (DSC)
Image fusion
Pyramid Squeeze Attention (PSA)
SpatialSwin (SpSwin) Autoencoder
Transpose Convolution (TC)
Title Refined Multi-Focus image fusion using Multi-Scale neural network with SpSwin Autoencoder-based matting
URI https://dx.doi.org/10.1016/j.eswa.2025.126980
Volume 276
WOSCitedRecordID wos001486933800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3Nb9MwFMAt6Dhw4RsxvuQDt8hT4sSxfZymTcBhQnRI5RQljrO1grRqE7Y_f895dlptaAIkDo0qN3YS_16dl5f3QcgHWZU2sVqxKjclA_22ZjrXDYsbFWubNwo-Q7EJeXqqZjP9xdfY3AzlBGTbqqsrvfqvqKENYLvQ2b_APQ4KDfAdoMMWsMP2j8B_tQ1ojnU0hNayk6XpN9H8p3PNaXpnGov6wTyAP08BkY1cUktA1aJLONpmp6vp5WAL6ZYu12Vt18zd8eoIVNwu3O8WoyOfXXc-K3SIl9t5Mz666cyDdfrCtufmot-K5vce20EIx2ZvjOBi6zSFFrIQJbN1SUJTo2RZgtV4wqrLsezLrRUcjQmLA7u5dGmhuDhIeK6x2tONzNhTN7AbF9S4OIdd75M9LoVWE7J3-Ol49nl8nSRjjJsPJ-Kjp9DR7-aRfq-h7GgdZ0_II_-4QA8R81Nyz7bPyONQioP6lfk5OffU6Q51OlCnSJ0O1OkOdYrUqadOHTWK1Okt6tRTf0G-nRyfHX1kvoYGMylXHSul5S7cWaa1MNxIbeAaq0pltUwbbmyZwpoty8TkQxbPNLOmjFXW2DKB_7BI0pdk0i5b-4pQFYMym4hawRN8JoSoQJExiTWNVbXJS7FPkjBvhfEJ5l2dkx9F8CRcFG6uCzfXBc71PonGPitMr3Ln3iLgKLyCiIpfAdJzR7_X_9jvDXm4FfK3ZNKte_uOPDC_uvlm_d4L2TWc8o6O
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Refined+Multi-Focus+image+fusion+using+Multi-Scale+neural+network+with+SpSwin+Autoencoder-based+matting&rft.jtitle=Expert+systems+with+applications&rft.au=Jiang%2C+Shengchuan&rft.au=Yu%2C+Shanchuan&rft.date=2025-06-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=276&rft_id=info:doi/10.1016%2Fj.eswa.2025.126980&rft.externalDocID=S0957417425006025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon