Deeppipe: A semi-supervised learning for operating condition recognition of multi-product pipelines

Intelligent operating monitoring of pipelines helps to detect anomalies in time to ensure pipeline safe, reducing potential risk. However, the operating conditions of the multi-product pipeline change frequently, and the recognition and monitoring by on-site personnel are easy to cause misjudgment,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Process safety and environmental protection Ročník 150; s. 510 - 521
Hlavní autoři: Zheng, Jianqin, Du, Jian, Liang, Yongtu, Liao, Qi, Li, Zhengbing, Zhang, Haoran, Wu, Yi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Rugby Elsevier B.V 01.06.2021
Elsevier Science Ltd
Témata:
ISSN:0957-5820, 1744-3598
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Intelligent operating monitoring of pipelines helps to detect anomalies in time to ensure pipeline safe, reducing potential risk. However, the operating conditions of the multi-product pipeline change frequently, and the recognition and monitoring by on-site personnel are easy to cause misjudgment, so the operating conditions of the pipeline cannot be accurately recognized. Noticeably, operating condition recognition is an important part of pipeline safety and risk management. Although ample operating data are stored in SCADA system, these data are lack of corresponding condition labels, making it hard to be mined. In this work, a semi-supervised learning for operating condition recognition is proposed to overcome aforementioned issues. Firstly, the operating parameters of each station are preprocessed and collected to construct into data matrices to overcome transient disturbance considering the pipeline space characteristics and time series of the operating data. Then stacked autoencoder (SAE) is used to pre-train the network parameters of multi-layer neural network (MLNN) based on a large amount of unlabeled operating data. After that, MLNN is fine-tuned based on a small amount of labeled data annotated by referring to the operation log. To verify the effectiveness of the semi-supervised learning, a real multi-product pipeline is taken as an example for operating condition recognition. The accuracy, precision, recall and F1 score is 95 %, 95 %, 80 % and 80 %, respectively. Results show that the condition recognition accuracy of the proposed model is better than other machine learning models. Finally, the sensitivity analysis is conducted to illustrate the importance of SAE in this classification model.
AbstractList Intelligent operating monitoring of pipelines helps to detect anomalies in time to ensure pipeline safe, reducing potential risk. However, the operating conditions of the multi-product pipeline change frequently, and the recognition and monitoring by on-site personnel are easy to cause misjudgment, so the operating conditions of the pipeline cannot be accurately recognized. Noticeably, operating condition recognition is an important part of pipeline safety and risk management. Although ample operating data are stored in SCADA system, these data are lack of corresponding condition labels, making it hard to be mined. In this work, a semi-supervised learning for operating condition recognition is proposed to overcome aforementioned issues. Firstly, the operating parameters of each station are preprocessed and collected to construct into data matrices to overcome transient disturbance considering the pipeline space characteristics and time series of the operating data. Then stacked autoencoder (SAE) is used to pre-train the network parameters of multi-layer neural network (MLNN) based on a large amount of unlabeled operating data. After that, MLNN is fine-tuned based on a small amount of labeled data annotated by referring to the operation log. To verify the effectiveness of the semi-supervised learning, a real multi-product pipeline is taken as an example for operating condition recognition. The accuracy, precision, recall and F1 score is 95 %, 95 %, 80 % and 80 %, respectively. Results show that the condition recognition accuracy of the proposed model is better than other machine learning models. Finally, the sensitivity analysis is conducted to illustrate the importance of SAE in this classification model.
Author Li, Zhengbing
Zhang, Haoran
Du, Jian
Wu, Yi
Liao, Qi
Liang, Yongtu
Zheng, Jianqin
Author_xml – sequence: 1
  givenname: Jianqin
  surname: Zheng
  fullname: Zheng, Jianqin
  email: zhengjianqin_cup@163.com
  organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing, 102249, PR China
– sequence: 2
  givenname: Jian
  surname: Du
  fullname: Du, Jian
  organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing, 102249, PR China
– sequence: 3
  givenname: Yongtu
  surname: Liang
  fullname: Liang, Yongtu
  email: liangyt21st@163.com
  organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing, 102249, PR China
– sequence: 4
  givenname: Qi
  orcidid: 0000-0003-3209-9992
  surname: Liao
  fullname: Liao, Qi
  email: qliao_cup@outlook.com
  organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing, 102249, PR China
– sequence: 5
  givenname: Zhengbing
  surname: Li
  fullname: Li, Zhengbing
  organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing, 102249, PR China
– sequence: 6
  givenname: Haoran
  surname: Zhang
  fullname: Zhang, Haoran
  organization: Center for Spatial Information Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8568, Japan
– sequence: 7
  givenname: Yi
  orcidid: 0000-0002-9867-6898
  surname: Wu
  fullname: Wu, Yi
  organization: University of Edinburgh Business School, 29 Buccleuch Place, Edinburgh, EH8 9JS, UK
BookMark eNp9kE1PwzAMQCM0JLbBH-BUiXNLnCVri7hM41OaxAXOUZa4U6YuKUk6iX9Pq3HisJNjy8-O34xMnHdIyC3QAigs7_dFF7ErGGVQUF7QBVyQKZSc5wtRVxMypbUoc1ExekVmMe4ppcBKmBL9hNh1tsOHbJVFPNg89h2Go41oshZVcNbtssaHzA9llcZMe2dsst5lAbXfudPbN9mhb5PNu-BNr1M2Tm2tw3hNLhvVRrz5i3Py9fL8uX7LNx-v7-vVJtcLVqVc8XLLla6wrPVW0drAtmqEEkojNqJcMm401mPRgOFKwBZLxQ2lNRiAyizm5O40d_jBd48xyb3vgxtWSiYEMEE5g6GrOnXp4GMM2EhtkxpPSEHZVgKVo1K5l6NSOSqVlMtB6YCyf2gX7EGFn_PQ4wnC4fSjxSCjtug0GjvoS9J4ew7_BZWXlP8
CitedBy_id crossref_primary_10_1038_s41598_025_87283_2
crossref_primary_10_1016_j_measurement_2024_115415
crossref_primary_10_1088_2631_8695_ad4cb2
crossref_primary_10_1016_j_jpse_2025_100314
crossref_primary_10_1016_j_jtice_2023_105098
crossref_primary_10_1016_j_psep_2022_07_016
crossref_primary_10_1016_j_aei_2022_101687
crossref_primary_10_1016_j_psep_2021_09_046
crossref_primary_10_1080_15567036_2022_2087806
crossref_primary_10_1016_j_ress_2022_108932
crossref_primary_10_1016_j_energy_2022_125976
crossref_primary_10_1016_j_jprocont_2024_103283
crossref_primary_10_1016_j_petsci_2023_04_016
crossref_primary_10_1061_JPSEA2_PSENG_1464
crossref_primary_10_3389_fenrg_2021_759498
crossref_primary_10_1016_j_energy_2022_124689
crossref_primary_10_1016_j_esr_2022_100933
crossref_primary_10_1016_j_engappai_2024_109785
crossref_primary_10_1016_j_psep_2022_12_019
crossref_primary_10_1061__ASCE_PS_1949_1204_0000641
crossref_primary_10_1016_j_psep_2022_08_036
crossref_primary_10_1016_j_measurement_2025_116857
crossref_primary_10_1016_j_psep_2022_04_036
crossref_primary_10_1016_j_energy_2023_127452
crossref_primary_10_1016_j_rser_2022_113046
crossref_primary_10_1016_j_psep_2021_09_033
crossref_primary_10_1016_j_energy_2022_125325
crossref_primary_10_1016_j_engappai_2025_111564
crossref_primary_10_1016_j_enbenv_2024_03_001
crossref_primary_10_1061_JPSEA2_PSENG_1451
crossref_primary_10_3390_pr9081456
crossref_primary_10_1016_j_energy_2023_128810
crossref_primary_10_1016_j_energy_2022_125025
crossref_primary_10_1016_j_jii_2024_100726
crossref_primary_10_1016_j_psep_2022_03_049
crossref_primary_10_1109_ACCESS_2024_3406604
crossref_primary_10_1016_j_cherd_2022_12_036
crossref_primary_10_1061_JPSEA2_PSENG_1490
crossref_primary_10_1109_TIM_2025_3566817
crossref_primary_10_1016_j_compchemeng_2022_107733
Cites_doi 10.1016/j.compbiolchem.2020.107269
10.1016/j.petrol.2019.02.045
10.1016/j.jhydrol.2020.124700
10.1016/j.petrol.2005.05.004
10.1016/j.eswa.2011.08.170
10.1016/j.ins.2020.05.038
10.1016/j.ins.2020.06.062
10.1016/j.psep.2013.02.001
10.1016/j.measurement.2020.108284
10.1016/j.psep.2020.06.047
10.1016/j.psep.2019.11.038
10.1109/ICIEA.2009.5138292
10.1016/j.measurement.2019.01.029
10.1016/j.petrol.2018.11.067
10.1016/j.psep.2018.06.017
10.1016/j.apenergy.2020.115123
10.1016/j.energy.2015.03.084
10.1016/j.jlp.2011.06.017
10.1016/j.compchemeng.2021.107290
10.1016/j.compchemeng.2020.106755
10.1016/j.measurement.2013.12.009
10.1016/j.ijcip.2020.100389
10.1016/j.compbiomed.2020.103831
10.1016/j.ipm.2009.03.002
ContentType Journal Article
Copyright 2021 Institution of Chemical Engineers
Copyright Elsevier Science Ltd. Jun 2021
Copyright_xml – notice: 2021 Institution of Chemical Engineers
– notice: Copyright Elsevier Science Ltd. Jun 2021
DBID AAYXX
CITATION
7ST
7TB
7U7
8FD
C1K
FR3
KR7
SOI
DOI 10.1016/j.psep.2021.04.031
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Toxicology Abstracts
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1744-3598
EndPage 521
ExternalDocumentID 10_1016_j_psep_2021_04_031
S0957582021002172
GroupedDBID --K
--M
-QF
.~1
0R~
123
1B1
1~.
1~5
3EH
4.4
457
4G.
4P2
53G
5VS
7-5
71M
8P~
8WZ
A6W
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHIDL
AHPOS
AIAGR
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CAG
COF
CS3
DU5
EBS
EDH
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
I-F
IHE
J1W
JARJE
KCYFY
KOM
M41
ML.
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SJN
SPC
SPCBC
SSG
SSJ
SSR
SSZ
T5K
UNMZH
XFK
ZE2
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMLS
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BANNL
CITATION
EFKBS
~HD
7ST
7TB
7U7
8FD
AGCQF
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-c328t-a47b4ac8e79cba09d1b8f5a5aceef57624dce91b8fd1d4a51be7a4d0091d118d3
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000654679800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-5820
IngestDate Wed Aug 13 05:55:08 EDT 2025
Tue Nov 18 21:21:59 EST 2025
Sat Nov 29 07:05:36 EST 2025
Fri Feb 23 02:43:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords LSTM
Sensitivity analysis
AE
MRI
GMM
KS
KNN
SVM
BP
Pipeline
DT
XGB
RF
Operating condition recognition
Semi-supervised learning
SAE
GB
MLNN
SCADA
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-a47b4ac8e79cba09d1b8f5a5aceef57624dce91b8fd1d4a51be7a4d0091d118d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3209-9992
0000-0002-9867-6898
PQID 2551250421
PQPubID 2047550
PageCount 12
ParticipantIDs proquest_journals_2551250421
crossref_citationtrail_10_1016_j_psep_2021_04_031
crossref_primary_10_1016_j_psep_2021_04_031
elsevier_sciencedirect_doi_10_1016_j_psep_2021_04_031
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace Rugby
PublicationPlace_xml – name: Rugby
PublicationTitle Process safety and environmental protection
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Liang, Zhang (bib0070) 2012; 25
Zhang, Ye, Wei, Dongliang, Zhaohui (bib0150) 2009
Rai, Kim (bib0100) 2021; 167
Chen, Liu, Achuthan, Zhang (bib0015) 2020
Sokolova, Lapalme (bib0115) 2009; 45
Zhang, Zhang, He, Li, Xu, Gong (bib0170) 2021
Saha, Santara, Mitra, Chakraborty, Nanjundiah (bib0110) 2020
Zhang, Wu, Hu, Ni (bib0165) 2018; 117
Ao, Li, Zhu, Ali, Yang (bib0005) 2019; 174
Li, Tian, Jiang, Yan (bib0065) 2021; 542
Pontiggia, Vairo, Fabiano (bib0095) 2020
Yang, Ding (bib0130) 2020; 533
da Silva, Morooka, Guilherme, da Fonseca, Mendes (bib0030) 2005; 49
Wang, Zhang, Chang, Li (bib0125) 2020; 584
He, Wang, Wu, Liu (bib0040) 2020
Zhang, Li, Chen, Zhang, Jin (bib0155) 2009; 7
Chetouani (bib0020) 2014; 92
Ye, Zhang, Wei, Dongliang, Zhaohui (bib0140) 2009
Mandal, Chan, Tiwari (bib0080) 2012; 39
Zheng, Dai, Liang, Liao, Zhang (bib0175) 2020
Law, Ghosh (bib0060) 2019
Arian, Hariri, Mehridehnavi, Fassihi, Ghasemi (bib0010) 2020; 86
Zhou, Zhang, Qiu, Liang, Wu, Xiang, Yan (bib0190) 2019
Zhou, Gelder, Liang, Zhang (bib0200) 2020
Halim, Yu, Escobar, Quddus (bib0035) 2020; 143
Pathy, Balasubramanian (bib0090) 2020
Kingma, Ba (bib0055) 2014
Zhang, Chen, Li, Jin (bib0160) 2014; 49
Zhou, Daamen, Vellinga, Hoogendoorn (bib0195) 2019
Jian, Huaguang (bib0045) 2004
Liu, Zang, Liu, Ma, Fu (bib0075) 2019; 138
Sabah, Talebkeikhah, Agin, Telebkeikhah, Hasheminasab (bib0105) 2019
Yu, Zhang (bib0145) 2020
Zheng, Liang, Xu, Wang, Zheng, Li, Liao, Zhang (bib0180) 2021
Ye, Zhang, Liang, Wang (bib0135) 2009
Jiang, Xi, Rahman, Zhang (bib0050) 2020; 271
Szoplik (bib0120) 2015; 85
Cui, Quddus, Mashuga (bib0025) 2020; 134
Messner, Fediuk, Swatek, Scheidl, Pernkopf (bib0085) 2020
Zheng, Zhao (bib0185) 2020; 135
Mandal (10.1016/j.psep.2021.04.031_bib0080) 2012; 39
Szoplik (10.1016/j.psep.2021.04.031_bib0120) 2015; 85
He (10.1016/j.psep.2021.04.031_bib0040) 2020
Rai (10.1016/j.psep.2021.04.031_bib0100) 2021; 167
Yang (10.1016/j.psep.2021.04.031_bib0130) 2020; 533
Li (10.1016/j.psep.2021.04.031_bib0065) 2021; 542
Zhang (10.1016/j.psep.2021.04.031_bib0165) 2018; 117
Ye (10.1016/j.psep.2021.04.031_bib0135) 2009
Pontiggia (10.1016/j.psep.2021.04.031_bib0095) 2020
Sokolova (10.1016/j.psep.2021.04.031_bib0115) 2009; 45
Zhang (10.1016/j.psep.2021.04.031_bib0155) 2009; 7
Ao (10.1016/j.psep.2021.04.031_bib0005) 2019; 174
Zhou (10.1016/j.psep.2021.04.031_bib0200) 2020
Wang (10.1016/j.psep.2021.04.031_bib0125) 2020; 584
Ye (10.1016/j.psep.2021.04.031_bib0140) 2009
Zheng (10.1016/j.psep.2021.04.031_bib0185) 2020; 135
Jian (10.1016/j.psep.2021.04.031_bib0045) 2004
Halim (10.1016/j.psep.2021.04.031_bib0035) 2020; 143
Jiang (10.1016/j.psep.2021.04.031_bib0050) 2020; 271
Liu (10.1016/j.psep.2021.04.031_bib0075) 2019; 138
Yu (10.1016/j.psep.2021.04.031_bib0145) 2020
Zheng (10.1016/j.psep.2021.04.031_bib0180) 2021
Saha (10.1016/j.psep.2021.04.031_bib0110) 2020
Zheng (10.1016/j.psep.2021.04.031_bib0175) 2020
Arian (10.1016/j.psep.2021.04.031_bib0010) 2020; 86
Zhang (10.1016/j.psep.2021.04.031_bib0150) 2009
da Silva (10.1016/j.psep.2021.04.031_bib0030) 2005; 49
Liang (10.1016/j.psep.2021.04.031_bib0070) 2012; 25
Chen (10.1016/j.psep.2021.04.031_bib0015) 2020
Chetouani (10.1016/j.psep.2021.04.031_bib0020) 2014; 92
Kingma (10.1016/j.psep.2021.04.031_bib0055) 2014
Pathy (10.1016/j.psep.2021.04.031_bib0090) 2020
Messner (10.1016/j.psep.2021.04.031_bib0085) 2020
Cui (10.1016/j.psep.2021.04.031_bib0025) 2020; 134
Sabah (10.1016/j.psep.2021.04.031_bib0105) 2019
Zhang (10.1016/j.psep.2021.04.031_bib0160) 2014; 49
Zhang (10.1016/j.psep.2021.04.031_bib0170) 2021
Zhou (10.1016/j.psep.2021.04.031_bib0195) 2019
Law (10.1016/j.psep.2021.04.031_bib0060) 2019
Zhou (10.1016/j.psep.2021.04.031_bib0190) 2019
References_xml – year: 2020
  ident: bib0110
  article-title: Prediction of the Indian summer monsoon using a stacked autoencoder and ensemble regression model
  publication-title: Int. J. Forecast.
– start-page: 121
  year: 2019
  ident: bib0190
  article-title: A hybrid time MILP model for the pump scheduling of multi-product pipelines based on the rigorous description of the pipeline hydraulic loss changes
  publication-title: Comput. Chem. Eng.
– start-page: 682
  year: 2009
  end-page: 686
  ident: bib0135
  article-title: Fuzzy C-means algorithm in work condition recognition of oil pipeline
  publication-title: 2009 4th IEEE Conference on Industrial Electronics and Applications
– start-page: 204
  year: 2020
  ident: bib0200
  article-title: An integrated methodology for the supply reliability analysis of multi-product pipeline systems under pumps failure
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 143
  start-page: 348
  year: 2020
  end-page: 360
  ident: bib0035
  article-title: Towards a causal model from pipeline incident data analysis
  publication-title: Process. Saf. Environ. Prot.
– volume: 271
  year: 2020
  ident: bib0050
  article-title: Prediction of output power with artificial neural network using extended datasets for Stirling engines
  publication-title: Appl. Energy
– year: 2021
  ident: bib0170
  article-title: Intelligent feature recognition for STEP-NC-compliant manufacturing based on artificial bee colony algorithm and back propagation neural network
  publication-title: J. Manuf. Syst.
– start-page: 175
  year: 2019
  ident: bib0195
  article-title: Ship classification based on ship behavior clustering from AIS data
  publication-title: Ocean. Eng.
– volume: 86
  year: 2020
  ident: bib0010
  article-title: Protein kinase inhibitors’ classification using K-Nearest neighbor algorithm
  publication-title: Comput. Biol. Chem.
– volume: 92
  start-page: 206
  year: 2014
  end-page: 214
  ident: bib0020
  article-title: A sequential probability ratio test (SPRT) to detect changes and process safety monitoring
  publication-title: Process. Saf. Environ. Prot.
– year: 2020
  ident: bib0175
  article-title: An online real-time estimation tool of leakage parameters for hazardous liquid pipelines
  publication-title: International Journal of Critical Infrastructure Protection
– year: 2020
  ident: bib0040
  article-title: Automatic defects detection and classification of low carbon steel WAAM products using improved remanence/magneto-optical imaging and cost-sensitive convolutional neural network
  publication-title: Measurement
– volume: 167
  year: 2021
  ident: bib0100
  article-title: A novel pipeline leak detection approach independent of prior failure information
  publication-title: Measurement
– start-page: 220
  year: 2009
  end-page: 224
  ident: bib0150
  article-title: A novel BP algorithm for pipeline condition recognition
  publication-title: 2009 WRI World Congress on Computer Science and Information Engineering
– volume: 117
  start-page: 694
  year: 2018
  end-page: 703
  ident: bib0165
  article-title: A probabilistic analysis model of oil pipeline accidents based on an integrated Event-Evolution-Bayesian (EEB) model
  publication-title: Process. Saf. Environ. Prot.
– start-page: 358
  year: 2019
  ident: bib0060
  article-title: Multi-label classification using a cascade of stacked autoencoder and extreme learning machines
  publication-title: Neurocomputing
– year: 2021
  ident: bib0180
  article-title: Deeppipe: a customized generative model for estimations of liquid pipeline leakage parameters
  publication-title: Computers & Chemical Engineering
– year: 2019
  ident: bib0105
  article-title: Application of decision tree, artificial neural networks, and adaptive neuro-fuzzy inference system on predicting lost circulation: a case study from Marun oil field
  publication-title: J. Pet. Sci. Eng.
– start-page: 3134
  year: 2004
  end-page: 3137
  ident: bib0045
  article-title: Oil pipeline leak detection and location using double sensors pressure gradient method
  publication-title: Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No. 04EX788)
– start-page: 218
  year: 2020
  ident: bib0015
  article-title: A ship movement classification based on Automatic Identification System (AIS) data using Convolutional Neural Network
  publication-title: Ocean. Eng.
– start-page: 50
  year: 2020
  ident: bib0090
  article-title: Predicting algal biochar yield using eXtreme Gradient Boosting (XGB) algorithm of machine learning methods
  publication-title: Algal Res.
– volume: 7
  start-page: 337
  year: 2009
  end-page: 341
  ident: bib0155
  article-title: Recognition method for oil pipeline leak based on chaotic characteristics
  publication-title: Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering
– volume: 45
  start-page: 427
  year: 2009
  end-page: 437
  ident: bib0115
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manag.
– volume: 138
  start-page: 433
  year: 2019
  end-page: 445
  ident: bib0075
  article-title: A leak detection method for oil pipeline based on markov feature and two-stage decision scheme
  publication-title: Measurement
– volume: 85
  start-page: 208
  year: 2015
  end-page: 220
  ident: bib0120
  article-title: Forecasting of natural gas consumption with artificial neural networks
  publication-title: Energy
– volume: 49
  start-page: 223
  year: 2005
  end-page: 238
  ident: bib0030
  article-title: Leak detection in petroleum pipelines using a fuzzy system
  publication-title: J. Pet. Sci. Eng.
– volume: 584
  year: 2020
  ident: bib0125
  article-title: Deep learning of subsurface flow via theory-guided neural network
  publication-title: J. Hydrol. (Amst)
– start-page: 646
  year: 2009
  end-page: 650
  ident: bib0140
  article-title: Oil pipeline work conditions clustering based on simulated annealing K-means algorithm
  publication-title: 2009 WRI World Congress on Computer Science and Information Engineering
– volume: 25
  start-page: 60
  year: 2012
  end-page: 69
  ident: bib0070
  article-title: A wave change analysis (WCA) method for pipeline leak detection using Gaussian mixture model
  publication-title: J. Loss Prev. Process Ind.
– year: 2020
  ident: bib0085
  article-title: Multi-channel lung sound classification with convolutional recurrent neural networks
  publication-title: Comput. Biol. Med.
– volume: 49
  start-page: 382
  year: 2014
  end-page: 389
  ident: bib0160
  article-title: Leak detection monitoring system of long distance oil pipeline based on dynamic pressure transmitter
  publication-title: Measurement
– volume: 134
  start-page: 178
  year: 2020
  end-page: 188
  ident: bib0025
  article-title: Bayesian network and game theory risk assessment model for third-party damage to oil and gas pipelines
  publication-title: Process. Saf. Environ. Prot.
– volume: 542
  start-page: 302
  year: 2021
  end-page: 316
  ident: bib0065
  article-title: Distributed-ensemble stacked autoencoder model for non-linear process monitoring
  publication-title: Inf. Sci. (Ny)
– volume: 135
  year: 2020
  ident: bib0185
  article-title: A new unsupervised data mining method based on the stacked autoencoder for chemical process fault diagnosis
  publication-title: Comput. Chem. Eng.
– volume: 39
  start-page: 3071
  year: 2012
  end-page: 3080
  ident: bib0080
  article-title: Leak detection of pipeline: an integrated approach of rough set theory and artificial bee colony trained SVM
  publication-title: Expert Syst. Appl.
– start-page: 92
  year: 2020
  ident: bib0145
  article-title: Manifold regularized stacked autoencoders-based feature learning for fault detection in industrial processes
  publication-title: J. Process Control
– year: 2014
  ident: bib0055
  article-title: Adam: A Method for Stochastic Optimization
– year: 2020
  ident: bib0095
  article-title: Critical aspects of natural gas pipelines risk assessments. A case-study application on buried layout
  publication-title: Process Safety and Environmental Protection
– volume: 533
  start-page: 108
  year: 2020
  end-page: 119
  ident: bib0130
  article-title: Associative memory optimized method on deep neural networks for image classification
  publication-title: Inf. Sci. (Ny)
– volume: 174
  start-page: 776
  year: 2019
  end-page: 789
  ident: bib0005
  article-title: The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling
  publication-title: J. Pet. Sci. Eng.
– start-page: 50
  year: 2020
  ident: 10.1016/j.psep.2021.04.031_bib0090
  article-title: Predicting algal biochar yield using eXtreme Gradient Boosting (XGB) algorithm of machine learning methods
  publication-title: Algal Res.
– year: 2020
  ident: 10.1016/j.psep.2021.04.031_bib0095
  article-title: Critical aspects of natural gas pipelines risk assessments. A case-study application on buried layout
– start-page: 646
  year: 2009
  ident: 10.1016/j.psep.2021.04.031_bib0140
  article-title: Oil pipeline work conditions clustering based on simulated annealing K-means algorithm
  publication-title: 2009 WRI World Congress on Computer Science and Information Engineering
– volume: 86
  year: 2020
  ident: 10.1016/j.psep.2021.04.031_bib0010
  article-title: Protein kinase inhibitors’ classification using K-Nearest neighbor algorithm
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2020.107269
– year: 2019
  ident: 10.1016/j.psep.2021.04.031_bib0105
  article-title: Application of decision tree, artificial neural networks, and adaptive neuro-fuzzy inference system on predicting lost circulation: a case study from Marun oil field
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2019.02.045
– volume: 7
  start-page: 337
  year: 2009
  ident: 10.1016/j.psep.2021.04.031_bib0155
  article-title: Recognition method for oil pipeline leak based on chaotic characteristics
  publication-title: Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering
– start-page: 358
  year: 2019
  ident: 10.1016/j.psep.2021.04.031_bib0060
  article-title: Multi-label classification using a cascade of stacked autoencoder and extreme learning machines
  publication-title: Neurocomputing
– volume: 584
  year: 2020
  ident: 10.1016/j.psep.2021.04.031_bib0125
  article-title: Deep learning of subsurface flow via theory-guided neural network
  publication-title: J. Hydrol. (Amst)
  doi: 10.1016/j.jhydrol.2020.124700
– start-page: 218
  year: 2020
  ident: 10.1016/j.psep.2021.04.031_bib0015
  article-title: A ship movement classification based on Automatic Identification System (AIS) data using Convolutional Neural Network
  publication-title: Ocean. Eng.
– year: 2021
  ident: 10.1016/j.psep.2021.04.031_bib0170
  article-title: Intelligent feature recognition for STEP-NC-compliant manufacturing based on artificial bee colony algorithm and back propagation neural network
  publication-title: J. Manuf. Syst.
– volume: 49
  start-page: 223
  year: 2005
  ident: 10.1016/j.psep.2021.04.031_bib0030
  article-title: Leak detection in petroleum pipelines using a fuzzy system
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2005.05.004
– volume: 39
  start-page: 3071
  year: 2012
  ident: 10.1016/j.psep.2021.04.031_bib0080
  article-title: Leak detection of pipeline: an integrated approach of rough set theory and artificial bee colony trained SVM
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.08.170
– volume: 533
  start-page: 108
  year: 2020
  ident: 10.1016/j.psep.2021.04.031_bib0130
  article-title: Associative memory optimized method on deep neural networks for image classification
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2020.05.038
– volume: 542
  start-page: 302
  year: 2021
  ident: 10.1016/j.psep.2021.04.031_bib0065
  article-title: Distributed-ensemble stacked autoencoder model for non-linear process monitoring
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2020.06.062
– volume: 92
  start-page: 206
  year: 2014
  ident: 10.1016/j.psep.2021.04.031_bib0020
  article-title: A sequential probability ratio test (SPRT) to detect changes and process safety monitoring
  publication-title: Process. Saf. Environ. Prot.
  doi: 10.1016/j.psep.2013.02.001
– volume: 167
  year: 2021
  ident: 10.1016/j.psep.2021.04.031_bib0100
  article-title: A novel pipeline leak detection approach independent of prior failure information
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108284
– volume: 143
  start-page: 348
  year: 2020
  ident: 10.1016/j.psep.2021.04.031_bib0035
  article-title: Towards a causal model from pipeline incident data analysis
  publication-title: Process. Saf. Environ. Prot.
  doi: 10.1016/j.psep.2020.06.047
– volume: 134
  start-page: 178
  year: 2020
  ident: 10.1016/j.psep.2021.04.031_bib0025
  article-title: Bayesian network and game theory risk assessment model for third-party damage to oil and gas pipelines
  publication-title: Process. Saf. Environ. Prot.
  doi: 10.1016/j.psep.2019.11.038
– start-page: 3134
  year: 2004
  ident: 10.1016/j.psep.2021.04.031_bib0045
  article-title: Oil pipeline leak detection and location using double sensors pressure gradient method
– start-page: 92
  year: 2020
  ident: 10.1016/j.psep.2021.04.031_bib0145
  article-title: Manifold regularized stacked autoencoders-based feature learning for fault detection in industrial processes
  publication-title: J. Process Control
– year: 2020
  ident: 10.1016/j.psep.2021.04.031_bib0040
  article-title: Automatic defects detection and classification of low carbon steel WAAM products using improved remanence/magneto-optical imaging and cost-sensitive convolutional neural network
  publication-title: Measurement
– start-page: 682
  year: 2009
  ident: 10.1016/j.psep.2021.04.031_bib0135
  article-title: Fuzzy C-means algorithm in work condition recognition of oil pipeline
  publication-title: 2009 4th IEEE Conference on Industrial Electronics and Applications
  doi: 10.1109/ICIEA.2009.5138292
– volume: 138
  start-page: 433
  year: 2019
  ident: 10.1016/j.psep.2021.04.031_bib0075
  article-title: A leak detection method for oil pipeline based on markov feature and two-stage decision scheme
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.01.029
– volume: 174
  start-page: 776
  year: 2019
  ident: 10.1016/j.psep.2021.04.031_bib0005
  article-title: The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.11.067
– volume: 117
  start-page: 694
  year: 2018
  ident: 10.1016/j.psep.2021.04.031_bib0165
  article-title: A probabilistic analysis model of oil pipeline accidents based on an integrated Event-Evolution-Bayesian (EEB) model
  publication-title: Process. Saf. Environ. Prot.
  doi: 10.1016/j.psep.2018.06.017
– start-page: 175
  year: 2019
  ident: 10.1016/j.psep.2021.04.031_bib0195
  article-title: Ship classification based on ship behavior clustering from AIS data
  publication-title: Ocean. Eng.
– volume: 271
  year: 2020
  ident: 10.1016/j.psep.2021.04.031_bib0050
  article-title: Prediction of output power with artificial neural network using extended datasets for Stirling engines
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115123
– volume: 85
  start-page: 208
  year: 2015
  ident: 10.1016/j.psep.2021.04.031_bib0120
  article-title: Forecasting of natural gas consumption with artificial neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2015.03.084
– volume: 25
  start-page: 60
  year: 2012
  ident: 10.1016/j.psep.2021.04.031_bib0070
  article-title: A wave change analysis (WCA) method for pipeline leak detection using Gaussian mixture model
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2011.06.017
– year: 2021
  ident: 10.1016/j.psep.2021.04.031_bib0180
  article-title: Deeppipe: a customized generative model for estimations of liquid pipeline leakage parameters
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2021.107290
– volume: 135
  year: 2020
  ident: 10.1016/j.psep.2021.04.031_bib0185
  article-title: A new unsupervised data mining method based on the stacked autoencoder for chemical process fault diagnosis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106755
– year: 2020
  ident: 10.1016/j.psep.2021.04.031_bib0110
  article-title: Prediction of the Indian summer monsoon using a stacked autoencoder and ensemble regression model
  publication-title: Int. J. Forecast.
– volume: 49
  start-page: 382
  year: 2014
  ident: 10.1016/j.psep.2021.04.031_bib0160
  article-title: Leak detection monitoring system of long distance oil pipeline based on dynamic pressure transmitter
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.12.009
– year: 2020
  ident: 10.1016/j.psep.2021.04.031_bib0175
  article-title: An online real-time estimation tool of leakage parameters for hazardous liquid pipelines
  publication-title: International Journal of Critical Infrastructure Protection
  doi: 10.1016/j.ijcip.2020.100389
– year: 2014
  ident: 10.1016/j.psep.2021.04.031_bib0055
– year: 2020
  ident: 10.1016/j.psep.2021.04.031_bib0085
  article-title: Multi-channel lung sound classification with convolutional recurrent neural networks
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103831
– start-page: 220
  year: 2009
  ident: 10.1016/j.psep.2021.04.031_bib0150
  article-title: A novel BP algorithm for pipeline condition recognition
  publication-title: 2009 WRI World Congress on Computer Science and Information Engineering
– start-page: 121
  year: 2019
  ident: 10.1016/j.psep.2021.04.031_bib0190
  article-title: A hybrid time MILP model for the pump scheduling of multi-product pipelines based on the rigorous description of the pipeline hydraulic loss changes
  publication-title: Comput. Chem. Eng.
– start-page: 204
  year: 2020
  ident: 10.1016/j.psep.2021.04.031_bib0200
  article-title: An integrated methodology for the supply reliability analysis of multi-product pipeline systems under pumps failure
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 45
  start-page: 427
  year: 2009
  ident: 10.1016/j.psep.2021.04.031_bib0115
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2009.03.002
SSID ssj0001271
Score 2.4666162
Snippet Intelligent operating monitoring of pipelines helps to detect anomalies in time to ensure pipeline safe, reducing potential risk. However, the operating...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 510
SubjectTerms Anomalies
Learning algorithms
Machine learning
Mathematical models
Model accuracy
Monitoring
Multilayers
Neural networks
Operating condition recognition
Parameters
Pipeline
Pipeline safety
Pipelines
Recognition
Risk management
Safety management
Semi-supervised learning
Sensitivity analysis
Title Deeppipe: A semi-supervised learning for operating condition recognition of multi-product pipelines
URI https://dx.doi.org/10.1016/j.psep.2021.04.031
https://www.proquest.com/docview/2551250421
Volume 150
WOSCitedRecordID wos000654679800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1744-3598
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001271
  issn: 0957-5820
  databaseCode: AIEXJ
  dateStart: 19961101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKxgEOCAYTg4F84FYZxa4TJ9wqVgQITSAGKlys-EcgU0nD0k77b_hXeY6dkHZiAiQuUWU1rtXvy_N7z-99QehJZoUQUaJIZFJN-MRYkvPCktQoLawykW07vD--EcfH6XyevR2NfnS9MOcLUVXpxUVW_1eoYQzAdq2zfwF3PykMwGcAHa4AO1z_CPgja-u6rEPPeWO_laRZ184kNOBcLrpUiCsvXNZOUtm33bqja0eFvqLIO5JtwSGpvS7s2M3r_NJm6NOGXoNxkxeu_tNl4gftc67Ty2tBDE78P3-1oRIY2Pm97MeP1t1gXyhUhoT2p2X1ZbUeDLc53nflMG3BBuVVPpd2qZ8mJCUFiVPmT2qsN8mCc-J0BjdstlerDVY3DpWxfgOPfcv1pb3BpylOn9aNdUKljLYat2EP2tTcfu8W4tbBqH-F1zW0y0ScgeXfnb6azV_3mz1lbUzfLzz0ZfkSwu1f-p3vs-UFtK7NyW10K8QkeOq5dAeNbLWHbg6UKvfQ_myIKA47QnMX6Y5uz_AUb5ENd2TDQDbckw33ZMMDsuFlgTfIhnuy3UMfXsxOnr8k4cUdRE9YuoKnXSie69SKTKs8ygxVaRHncQ4eWQEBLuNG28wNGmp4HlNlRc4NuPvUQMBrJvtop1pW9j7CCVdFolRkWay5VixLmNapgokhbk7M5ADR7i-VOqjau5erLGRXvngqHQzSwSAjLgGGAzTu76m9psuV3447pGTwSr23KYFYV9532MEqg3loJATw1IkGMvrgH6d9iG78epwO0c7qbG0foev6fFU2Z48DPX8CO0_B-w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deeppipe%3A+A+semi-supervised+learning+for+operating+condition+recognition+of+multi-product+pipelines&rft.jtitle=Process+safety+and+environmental+protection&rft.au=Zheng%2C+Jianqin&rft.au=Du%2C+Jian&rft.au=Liang%2C+Yongtu&rft.au=Liao%2C+Qi&rft.date=2021-06-01&rft.pub=Elsevier+B.V&rft.issn=0957-5820&rft.eissn=1744-3598&rft.volume=150&rft.spage=510&rft.epage=521&rft_id=info:doi/10.1016%2Fj.psep.2021.04.031&rft.externalDocID=S0957582021002172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-5820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-5820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-5820&client=summon