Feature selection using Binary Crow Search Algorithm with time varying flight length

•Feature selection approach based on Binary Crow Search Algorithm is proposed.•Time varying flight length is used to enhance balance between exploration & exploitation.•8 variants of the proposed method based on different transfer functions are tested.•Performance of proposed method is evaluated...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 168; s. 114288
Hlavní autori: Chaudhuri, Abhilasha, Sahu, Tirath Prasad
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 15.04.2021
Elsevier BV
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Feature selection approach based on Binary Crow Search Algorithm is proposed.•Time varying flight length is used to enhance balance between exploration & exploitation.•8 variants of the proposed method based on different transfer functions are tested.•Performance of proposed method is evaluated on 20 benchmark datasets.•Proposed approach outperformed other feature selection approaches. Crow Search Algorithm (CSA) is a simple yet effective meta-heuristic algorithm that has been applied to solve many engineering problems. In CSA, fl parameter controls the search capability of crows and AP parameter balances the trade-off between exploration and exploitation. The parameter fl is initialized to a constant value in CSA. However, CSA faces the problem of being trapped in local minima. This work proposes the solution to this problem by introducing the new concept of time varying flight length in CSA. The value of fl should be large in initial stages of algorithm in order to support random exploration and it should gradually decrease in later iterations to encourage the exploitation of good solutions found so far. The proposed approach, Binary Crow Search Algorithm with Time Varying Flight Length (BCSA-TVFL) is applied to feature selection problems in wrapper mode. Eight variants of BCSA-TVFL based on eight different transfer functions are tested. The best performing variant is then selected and compared with other state-of-the-art wrapper feature selection techniques and standard filter feature selection techniques. Performance of proposed approach is tested on 20 standard UCI datasets. Experimental result comparison shows that the proposed feature selection technique performs better than other competitors.
AbstractList Crow Search Algorithm (CSA) is a simple yet effective meta-heuristic algorithm that has been applied to solve many engineering problems. In CSA, fl parameter controls the search capability of crows and AP parameter balances the trade-off between exploration and exploitation. The parameter fl is initialized to a constant value in CSA. However, CSA faces the problem of being trapped in local minima. This work proposes the solution to this problem by introducing the new concept of time varying flight length in CSA. The value of fl should be large in initial stages of algorithm in order to support random exploration and it should gradually decrease in later iterations to encourage the exploitation of good solutions found so far. The proposed approach, Binary Crow Search Algorithm with Time Varying Flight Length (BCSA-TVFL) is applied to feature selection problems in wrapper mode. Eight variants of BCSA-TVFL based on eight different transfer functions are tested. The best performing variant is then selected and compared with other state-of-the-art wrapper feature selection techniques and standard filter feature selection techniques. Performance of proposed approach is tested on 20 standard UCI datasets. Experimental result comparison shows that the proposed feature selection technique performs better than other competitors.
•Feature selection approach based on Binary Crow Search Algorithm is proposed.•Time varying flight length is used to enhance balance between exploration & exploitation.•8 variants of the proposed method based on different transfer functions are tested.•Performance of proposed method is evaluated on 20 benchmark datasets.•Proposed approach outperformed other feature selection approaches. Crow Search Algorithm (CSA) is a simple yet effective meta-heuristic algorithm that has been applied to solve many engineering problems. In CSA, fl parameter controls the search capability of crows and AP parameter balances the trade-off between exploration and exploitation. The parameter fl is initialized to a constant value in CSA. However, CSA faces the problem of being trapped in local minima. This work proposes the solution to this problem by introducing the new concept of time varying flight length in CSA. The value of fl should be large in initial stages of algorithm in order to support random exploration and it should gradually decrease in later iterations to encourage the exploitation of good solutions found so far. The proposed approach, Binary Crow Search Algorithm with Time Varying Flight Length (BCSA-TVFL) is applied to feature selection problems in wrapper mode. Eight variants of BCSA-TVFL based on eight different transfer functions are tested. The best performing variant is then selected and compared with other state-of-the-art wrapper feature selection techniques and standard filter feature selection techniques. Performance of proposed approach is tested on 20 standard UCI datasets. Experimental result comparison shows that the proposed feature selection technique performs better than other competitors.
ArticleNumber 114288
Author Sahu, Tirath Prasad
Chaudhuri, Abhilasha
Author_xml – sequence: 1
  givenname: Abhilasha
  orcidid: 0000-0003-4820-1613
  surname: Chaudhuri
  fullname: Chaudhuri, Abhilasha
  email: achaudhuri.phd2018.it@nitrr.ac.in
– sequence: 2
  givenname: Tirath Prasad
  surname: Sahu
  fullname: Sahu, Tirath Prasad
  email: tpsahu.it@nitrr.ac.in
BookMark eNp9kE1PAyEQhompiW31D3gi8bwV2A8g8VIbqyZNPFjPhGVnW5rtbgW2jf9eNvXkoZdhQt6HGZ4JGrVdCwjdUzKjhBaPuxn4k54xwuIFzZgQV2hMBU-Tgst0hMZE5jzJKM9u0MT7HSGUE8LHaL0EHXoH2EMDJtiuxb237QY_21a7H7xw3Ql_gnZmi-fNpnM2bPf4FCsOdg_4GENDvG7sZhtwA-0mbG_Rda0bD3d_5xR9LV_Wi7dk9fH6vpivEpMyERKd5dSQrC4KymsoM8NllssqtiUXZVpxWRaS67zSTOpC1ELSQlRM6FrwMieQTtHD-d2D67578EHtut61caRimWQpzQuexxQ7p4zrvHdQq4Oz-7i3okQN9tRODfbUYE-d7UVI_IOMDXrwE5y2zWX06YxC_PrRglPeWGgNVNZFxarq7CX8F75ZjWQ
CitedBy_id crossref_primary_10_1002_cpe_70052
crossref_primary_10_1016_j_knosys_2023_111108
crossref_primary_10_1016_j_eswa_2022_117493
crossref_primary_10_1007_s10462_025_11351_2
crossref_primary_10_3390_e23091189
crossref_primary_10_3390_math10193606
crossref_primary_10_1016_j_knosys_2022_108771
crossref_primary_10_1111_exsy_13330
crossref_primary_10_1016_j_bspc_2022_104399
crossref_primary_10_1007_s10489_023_04732_z
crossref_primary_10_1109_ACCESS_2023_3343734
crossref_primary_10_1080_15325008_2022_2136784
crossref_primary_10_1016_j_eswa_2023_121712
crossref_primary_10_1016_j_heliyon_2024_e24192
crossref_primary_10_1093_jcde_qwad009
crossref_primary_10_1016_j_bspc_2023_105879
crossref_primary_10_1155_2021_6686826
crossref_primary_10_1016_j_knosys_2021_107638
crossref_primary_10_1016_j_engappai_2024_108390
crossref_primary_10_3390_a15060189
crossref_primary_10_3390_biomimetics9010009
crossref_primary_10_1007_s00521_023_08812_6
crossref_primary_10_1007_s11042_023_15647_9
crossref_primary_10_1016_j_knosys_2021_107219
crossref_primary_10_1016_j_matpr_2022_04_803
crossref_primary_10_3390_app12146907
crossref_primary_10_1109_ACCESS_2022_3143802
crossref_primary_10_1007_s00500_023_09347_7
crossref_primary_10_3390_rs15163980
crossref_primary_10_1016_j_knosys_2021_107804
crossref_primary_10_1016_j_ins_2023_01_069
crossref_primary_10_1016_j_compbiomed_2021_105152
crossref_primary_10_3390_e24070873
crossref_primary_10_1002_2050_7038_13196
crossref_primary_10_1007_s00432_024_05968_z
crossref_primary_10_1016_j_eswa_2024_123871
crossref_primary_10_1109_ACCESS_2023_3310429
crossref_primary_10_1007_s12530_024_09584_7
crossref_primary_10_1016_j_eswa_2022_119095
crossref_primary_10_3390_math10142396
crossref_primary_10_3390_sym17070999
crossref_primary_10_1007_s13042_025_02721_x
crossref_primary_10_1016_j_eswa_2023_120802
crossref_primary_10_1016_j_ins_2024_120185
crossref_primary_10_1016_j_asoc_2022_109590
crossref_primary_10_1109_ACCESS_2022_3182685
crossref_primary_10_1002_cpe_7239
crossref_primary_10_1007_s12530_024_09595_4
crossref_primary_10_1109_ACCESS_2021_3117853
crossref_primary_10_1109_ACCESS_2021_3065400
crossref_primary_10_3390_electronics12143123
crossref_primary_10_1007_s10586_022_03725_w
crossref_primary_10_1016_j_eswa_2021_116470
crossref_primary_10_1016_j_eswa_2021_116431
crossref_primary_10_1016_j_compbiomed_2022_105675
crossref_primary_10_1007_s11042_023_16638_6
crossref_primary_10_1007_s13042_022_01703_7
crossref_primary_10_1007_s11356_022_20472_y
crossref_primary_10_3233_JIFS_230421
crossref_primary_10_1007_s00500_023_08274_x
crossref_primary_10_1016_j_asoc_2023_110704
crossref_primary_10_3390_s22051795
Cites_doi 10.1016/j.neucom.2014.06.067
10.1016/j.asoc.2016.02.027
10.1016/j.eswa.2020.113572
10.1016/j.eswa.2019.112824
10.1007/s00521-018-3688-6
10.1007/s00500-019-03988-3
10.1016/j.asoc.2017.11.006
10.1016/j.ins.2019.05.038
10.1016/j.jestch.2017.02.004
10.1016/j.eswa.2018.09.015
10.1145/3231053.3231071
10.1007/978-1-4615-5689-3
10.1109/ICTCS.2017.43
10.1016/j.eswa.2019.03.039
10.1016/j.cub.2005.01.020
10.1002/047174882X
10.1016/j.procs.2020.03.420
10.1007/s12559-019-09668-6
10.1016/j.neulet.2008.01.026
10.3390/en11030571
10.1109/ACCESS.2019.2897325
10.1016/j.eswa.2017.04.019
10.1016/j.ejor.2006.02.040
10.1016/j.eswa.2019.112976
10.1016/j.swevo.2017.04.002
10.1002/9780470496916
10.1016/j.eswa.2016.06.004
10.1016/j.compstruc.2016.03.001
10.1145/3102304.3102325
10.1109/CEC.2016.7744378
10.1016/j.asoc.2007.05.007
10.1016/j.neucom.2011.03.034
10.1016/j.compeleceng.2018.04.014
10.1016/j.eswa.2018.08.051
10.1016/j.cose.2018.11.005
10.1109/ACCESS.2019.2906757
10.1007/978-3-319-69811-3_7
10.1038/s41559-017-0429-7
10.1109/CEC.2018.8477975
10.1109/4235.585893
10.1016/j.swevo.2012.09.002
10.1016/j.eswa.2017.02.042
10.1016/j.asoc.2018.03.019
10.3233/IDA-1997-1302
10.1007/s00521-017-2988-6
10.1016/j.jksuci.2018.06.003
10.1109/TKDE.2005.66
10.1016/j.neucom.2017.04.053
10.1016/j.knosys.2018.08.003
10.1016/j.asoc.2019.04.037
10.1016/j.asoc.2018.10.036
10.1016/j.eswa.2018.10.009
10.1016/j.neucom.2015.06.083
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Apr 15, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 15, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.114288
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_114288
S0957417420309908
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-a451c04f6617feb4c79459dfebb78b3d79b697a5da29a68f89168d28af87b50e3
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640552200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Oct 05 00:15:31 EDT 2025
Sat Nov 29 07:05:56 EST 2025
Tue Nov 18 22:39:57 EST 2025
Fri Feb 23 02:48:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Crow Search Algorithm
Feature selection
High dimensional data
Transfer function
Classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-a451c04f6617feb4c79459dfebb78b3d79b697a5da29a68f89168d28af87b50e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4820-1613
PQID 2492315675
PQPubID 2045477
ParticipantIDs proquest_journals_2492315675
crossref_primary_10_1016_j_eswa_2020_114288
crossref_citationtrail_10_1016_j_eswa_2020_114288
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_114288
PublicationCentury 2000
PublicationDate 2021-04-15
PublicationDateYYYYMMDD 2021-04-15
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Kennedy, Eberhart (b0150) 1995
Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li, Mirjalili (b0185) 2018; 161
Faris, Aljarah, Al-Shboul (b0100) 2016
Dash, Liu (b0075) 1997; 1
Mafarja, M., Eleyan, D., Abdullah, S., & Mirjalili, S. (2017). S-shaped vs. V-shaped transfer functions for ant lion optimization algorithm in feature selection problem. ACM International Conference Proceeding Series, Part F1305.
Shunmugapriya, Kanmani (b0280) 2017; 36
Ahmed, Mafarja, Faris, Aljarah (b0015) 2018; 65–69
Chen, Zhou, Yuan (b0050) 2019; 128
Pourpanah, Shi, Lim, Hao, Tan (b0255) 2019; 80
Talbi, E. G. (2009). Metaheuristics: From Design to Implementation. In Metaheuristics: From Design to Implementation.
Anter, Ali (b0025) 2020; 24
Jain, Rani, Singh (b0130) 2017; 33
Mirjalili, Lewis (b0225) 2013; 9
Wolpert, Macready (b0305) 1997
Huan Liu, Lei Yu (b0175) 2005; 17
Selvakumar, Muneeswaran (b0275) 2019; 81
Arora, Anand (b0035) 2019; 116
Zhang, Xu, Yu, Heidari, Li, Chen, Li (b0315) 2020; 141
Cover, T. M., & Thomas, J. A. (2005). Elements of Information Theory. In Elements of Information Theory.
Pamir, Javaid, Mohsin, Iqbal, Yasmeen, Ali (b0245) 2019
Zorarpacı, Özel (b0325) 2016; 62
Anter, Hassenian, Oliva (b0030) 2019; 118
Sikora, Piramuthu (b0285) 2007; 180
.
Zhang, Wu, Li, Wang, Yang, Lee, Jung (b0320) 2016; 43
De Souza, R. C. T., Coelho, L. D. S., De MacEdo, C. A., & Pierezan, J. (2018). A V-Shaped Binary Crow Search Algorithm for Feature Selection. In: 2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings, pp. 1–8.
Mafarja, M., Jarrar, R., Ahmad, S., & Abusnaina, A. A. (2018). Feature selection using Binary Particle Swarm optimization with time varying inertia weight strategies. In ACM International Conference Proceeding Series.
Majhi, Sahoo, Pradhan (b0220) 2019
Kabir, Shahjahan, Murase (b0135) 2011; 74
Chen, Li, Wang, Zheng, Xu, Fan, Cui (b0055) 2017; 83
Arora, Singh, Sharma, Sharma, Anand (b0040) 2019; 7
Hegazy, Makhlouf, El-Tawel (b0120) 2020; 32
Gupta, Sundaram, Khanna, Ella Hassanien, de Albuquerque (b0110) 2018; 68
Mafarja, Mirjalili (b0205) 2017; 260
Taradeh, Mafarja, Heidari, Faris, Aljarah, Mirjalili, Fujita (b0300) 2019; 497
Al-Tashi, Abdul Kadir, Rais, Mirjalili, Alhussian (b0020) 2019; 7
Kennedy, Eberhart (b0155) 1997
Askarzadeh (b0045) 2016; 169
Rizk-Allah, Hassanien, Bhattacharyya (b0265) 2018; 71
Karaboga, Basturk (b0140) 2008; 8
Gupta, Rodrigues, Sundaram, Khanna, Korotaev, de Albuquerque (b0105) 2020; 32
Oliva, Hinojosa, Cuevas, Pajares, Avalos, Gálvez (b0235) 2017; 79
Rao, Shi, Rodrigue, Feng, Xia, Elhoseny, Gu (b0260) 2019; 74
Clayton, Emery (b0060) 2005; 15
Díaz, Pérez-Cisneros, Cuevas, Avalos, Gálvez, Hinojosa, Zaldivar (b0090) 2018
Liu, H., & Motoda, H. (1998). Feature Selection for Knowledge Discovery and Data Mining. In Feature Selection for Knowledge Discovery and Data Mining.
St Clair, Klump, Sugasawa, Higgott, Colegrave, Rutz (b0290) 2018; 2
Cnotka, Güntürkün, Rehkämper, Gray, Hunt (b0065) 2008; 433
Abdel-Basset, El-Shahat, El-henawy, de Albuquerque, Mirjalili (b0005) 2020; 139
Ouadfel, Abd Elaziz (b0240) 2020; 159
Hassanien, Rizk-Allah, Elhoseny (b0115) 2018
Mafarja, Qasem, Heidari, Aljarah, Faris, Mirjalili (b0215) 2020; 12
Zawbaa, H. M., Emary, E., Parv, B., & Sharawi, M. (2016). Feature selection approach based on moth-flame optimization algorithm. In 2016 IEEE Congress on Evolutionary Computation, CEC 2016.
Hichem, Elkamel, Rafik, Mesaaoud, Ouahiba (b0125) 2019
Pamir, Javaid, S., Ali, I., Mushtaq, N., Faiz, Z., Sadiq, H. A., & Javaid, N. (2018). Enhanced Differential Evolution and Crow Search Algorithm Based Home Energy Management in Smart Grid.
Sayed, Hassanien, Azar (b0270) 2019; 31
Kira, Rendell (b0160) 1992
Abdelaziz, Fathy (b0010) 2017; 20
Mafarja, M. M., Eleyan, D., Jaber, I., Hammouri, A., & Mirjalili, S. (2017). Binary Dragonfly Algorithm for Feature Selection. In Proceedings - 2017 International Conference on New Trends in Computing Sciences, ICTCS 2017.
Laabadi, Naimi, Amri, Achchab (b0165) 2020; 167
Mafarja, Aljarah, Faris, Hammouri, Al-Zoubi, Mirjalili (b0180) 2019; 117
Kashef, Nezamabadi-pour (b0145) 2015; 147
Emary, Zawbaa, Hassanien (b0095) 2016; 172
Mafarja, Mirjalili (b0210) 2018; 62
Nakamura, Pereira, Rodrigues, Costa, Papa, Yang (b0230) 2013
Demšar (b0085) 2006
Kira (10.1016/j.eswa.2020.114288_b0160) 1992
Selvakumar (10.1016/j.eswa.2020.114288_b0275) 2019; 81
Abdelaziz (10.1016/j.eswa.2020.114288_b0010) 2017; 20
Pamir (10.1016/j.eswa.2020.114288_b0245) 2019
Hegazy (10.1016/j.eswa.2020.114288_b0120) 2020; 32
Clayton (10.1016/j.eswa.2020.114288_b0060) 2005; 15
Sikora (10.1016/j.eswa.2020.114288_b0285) 2007; 180
Askarzadeh (10.1016/j.eswa.2020.114288_b0045) 2016; 169
10.1016/j.eswa.2020.114288_b0295
10.1016/j.eswa.2020.114288_b0250
Arora (10.1016/j.eswa.2020.114288_b0035) 2019; 116
Kashef (10.1016/j.eswa.2020.114288_b0145) 2015; 147
10.1016/j.eswa.2020.114288_b0170
Mirjalili (10.1016/j.eswa.2020.114288_b0225) 2013; 9
Nakamura (10.1016/j.eswa.2020.114288_b0230) 2013
Oliva (10.1016/j.eswa.2020.114288_b0235) 2017; 79
Karaboga (10.1016/j.eswa.2020.114288_b0140) 2008; 8
Hichem (10.1016/j.eswa.2020.114288_b0125) 2019
Laabadi (10.1016/j.eswa.2020.114288_b0165) 2020; 167
Abdel-Basset (10.1016/j.eswa.2020.114288_b0005) 2020; 139
Anter (10.1016/j.eswa.2020.114288_b0030) 2019; 118
Cnotka (10.1016/j.eswa.2020.114288_b0065) 2008; 433
Zhang (10.1016/j.eswa.2020.114288_b0315) 2020; 141
Kennedy (10.1016/j.eswa.2020.114288_b0155) 1997
10.1016/j.eswa.2020.114288_b0200
Taradeh (10.1016/j.eswa.2020.114288_b0300) 2019; 497
Majhi (10.1016/j.eswa.2020.114288_b0220) 2019
10.1016/j.eswa.2020.114288_b0080
Zorarpacı (10.1016/j.eswa.2020.114288_b0325) 2016; 62
Gupta (10.1016/j.eswa.2020.114288_b0105) 2020; 32
Chen (10.1016/j.eswa.2020.114288_b0050) 2019; 128
Ouadfel (10.1016/j.eswa.2020.114288_b0240) 2020; 159
Rao (10.1016/j.eswa.2020.114288_b0260) 2019; 74
Kennedy (10.1016/j.eswa.2020.114288_b0150) 1995
Dash (10.1016/j.eswa.2020.114288_b0075) 1997; 1
Zhang (10.1016/j.eswa.2020.114288_b0320) 2016; 43
10.1016/j.eswa.2020.114288_b0310
Anter (10.1016/j.eswa.2020.114288_b0025) 2020; 24
Mafarja (10.1016/j.eswa.2020.114288_b0185) 2018; 161
10.1016/j.eswa.2020.114288_b0195
Rizk-Allah (10.1016/j.eswa.2020.114288_b0265) 2018; 71
10.1016/j.eswa.2020.114288_b0070
10.1016/j.eswa.2020.114288_b0190
Huan Liu (10.1016/j.eswa.2020.114288_b0175) 2005; 17
Chen (10.1016/j.eswa.2020.114288_b0055) 2017; 83
St Clair (10.1016/j.eswa.2020.114288_b0290) 2018; 2
Sayed (10.1016/j.eswa.2020.114288_b0270) 2019; 31
Mafarja (10.1016/j.eswa.2020.114288_b0180) 2019; 117
Demšar (10.1016/j.eswa.2020.114288_b0085) 2006
Faris (10.1016/j.eswa.2020.114288_b0100) 2016
Pourpanah (10.1016/j.eswa.2020.114288_b0255) 2019; 80
Mafarja (10.1016/j.eswa.2020.114288_b0205) 2017; 260
Arora (10.1016/j.eswa.2020.114288_b0040) 2019; 7
Shunmugapriya (10.1016/j.eswa.2020.114288_b0280) 2017; 36
Díaz (10.1016/j.eswa.2020.114288_b0090) 2018
Emary (10.1016/j.eswa.2020.114288_b0095) 2016; 172
Ahmed (10.1016/j.eswa.2020.114288_b0015) 2018; 65–69
Wolpert (10.1016/j.eswa.2020.114288_b0305) 1997
Al-Tashi (10.1016/j.eswa.2020.114288_b0020) 2019; 7
Mafarja (10.1016/j.eswa.2020.114288_b0210) 2018; 62
Jain (10.1016/j.eswa.2020.114288_b0130) 2017; 33
Hassanien (10.1016/j.eswa.2020.114288_b0115) 2018
Kabir (10.1016/j.eswa.2020.114288_b0135) 2011; 74
Mafarja (10.1016/j.eswa.2020.114288_b0215) 2020; 12
Gupta (10.1016/j.eswa.2020.114288_b0110) 2018; 68
References_xml – volume: 167
  start-page: 809
  year: 2020
  end-page: 818
  ident: b0165
  article-title: A Binary Crow Search Algorithm for Solving Two-dimensional Bin Packing Problem with Fixed Orientation
  publication-title: Procedia Computer Science
– volume: 169
  start-page: 1
  year: 2016
  end-page: 12
  ident: b0045
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
  publication-title: Computers & Structures
– volume: 80
  start-page: 761
  year: 2019
  end-page: 775
  ident: b0255
  article-title: Feature selection based on brain storm optimization for data classification
  publication-title: Applied Soft Computing
– reference: Mafarja, M., Jarrar, R., Ahmad, S., & Abusnaina, A. A. (2018). Feature selection using Binary Particle Swarm optimization with time varying inertia weight strategies. In ACM International Conference Proceeding Series.
– volume: 8
  start-page: 687
  year: 2008
  end-page: 697
  ident: b0140
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Applied Soft Computing
– volume: 65–69
  year: 2018
  ident: b0015
  article-title: Feature selection using salp swarm algorithm with chaos
  publication-title: ACM International Conference Proceeding Series
– volume: 81
  start-page: 148
  year: 2019
  end-page: 155
  ident: b0275
  article-title: Firefly algorithm based feature selection for network intrusion detection
  publication-title: Computers & Security
– reference: Mafarja, M., Eleyan, D., Abdullah, S., & Mirjalili, S. (2017). S-shaped vs. V-shaped transfer functions for ant lion optimization algorithm in feature selection problem. ACM International Conference Proceeding Series, Part F1305.
– start-page: 225
  year: 2013
  end-page: 237
  ident: b0230
  article-title: Binary Bat Algorithm for Feature Selection
  publication-title: Swarm Intelligence and Bio-Inspired Computation
– volume: 24
  start-page: 1565
  year: 2020
  end-page: 1584
  ident: b0025
  article-title: Feature selection strategy based on hybrid crow search optimization algorithm integrated with chaos theory and fuzzy c-means algorithm for medical diagnosis problems
  publication-title: Soft Computing
– volume: 116
  start-page: 147
  year: 2019
  end-page: 160
  ident: b0035
  article-title: Binary butterfly optimization approaches for feature selection
  publication-title: Expert Systems with Applications
– year: 1997
  ident: b0305
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 172
  start-page: 371
  year: 2016
  end-page: 381
  ident: b0095
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
– volume: 20
  start-page: 391
  year: 2017
  end-page: 402
  ident: b0010
  article-title: A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks
  publication-title: Engineering Science and Technology, an International Journal
– volume: 33
  start-page: 3597
  year: 2017
  end-page: 3614
  ident: b0130
  article-title: An improved Crow Search Algorithm for high-dimensional problems
  publication-title: Journal of Intelligent and Fuzzy Systems
– volume: 139
  start-page: 112824
  year: 2020
  ident: b0005
  article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection
  publication-title: Expert Systems with Applications
– volume: 36
  start-page: 27
  year: 2017
  end-page: 36
  ident: b0280
  article-title: A hybrid algorithm using ant and bee colony optimization for feature selection and classification (AC-ABC Hybrid)
  publication-title: Swarm and Evolutionary Computation
– volume: 433
  start-page: 241
  year: 2008
  end-page: 245
  ident: b0065
  article-title: Extraordinary large brains in tool-using New Caledonian crows (Corvus moneduloides)
  publication-title: Neuroscience Letters
– year: 1995
  ident: b0150
  article-title: Particle swarm optimization
  publication-title: IEEE International Conference on Neural Networks - Conference Proceedings
– volume: 15
  start-page: R80
  year: 2005
  end-page: R81
  ident: b0060
  article-title: Corvid cognition
  publication-title: Current Biology
– reference: Pamir, Javaid, S., Ali, I., Mushtaq, N., Faiz, Z., Sadiq, H. A., & Javaid, N. (2018). Enhanced Differential Evolution and Crow Search Algorithm Based Home Energy Management in Smart Grid.
– year: 2019
  ident: b0220
  article-title: Oppositional Crow Search Algorithm with mutation operator for global optimization and application in designing FOPID controller
  publication-title: Evolving Systems
– year: 2019
  ident: b0245
  article-title: A hybrid bat-crow search algorithm based home energy management in smart grid
  publication-title: Advances in Intelligent Systems and Computing
– volume: 32
  start-page: 335
  year: 2020
  end-page: 344
  ident: b0120
  article-title: Improved salp swarm algorithm for feature selection
  publication-title: Journal of King Saud University - Computer and Information Sciences
– volume: 117
  start-page: 267
  year: 2019
  end-page: 286
  ident: b0180
  article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems
  publication-title: Expert Systems with Applications
– reference: Zawbaa, H. M., Emary, E., Parv, B., & Sharawi, M. (2016). Feature selection approach based on moth-flame optimization algorithm. In 2016 IEEE Congress on Evolutionary Computation, CEC 2016.
– year: 2019
  ident: b0125
  article-title: A new binary grasshopper optimization algorithm for feature selection problem
  publication-title: Journal of King Saud University - Computer and Information Sciences
– volume: 74
  start-page: 634
  year: 2019
  end-page: 642
  ident: b0260
  article-title: Feature selection based on artificial bee colony and gradient boosting decision tree
  publication-title: Applied Soft Computing
– volume: 43
  start-page: 583
  year: 2016
  end-page: 595
  ident: b0320
  article-title: Binary artificial algae algorithm for multidimensional knapsack problems
  publication-title: Applied Soft Computing
– volume: 1
  start-page: 131
  year: 1997
  end-page: 156
  ident: b0075
  article-title: Feature Selection for Classification
  publication-title: Intelligent Data Analysis
– volume: 147
  start-page: 271
  year: 2015
  end-page: 279
  ident: b0145
  article-title: An advanced ACO algorithm for feature subset selection
  publication-title: Neurocomputing
– volume: 32
  start-page: 10915
  year: 2020
  end-page: 10925
  ident: b0105
  article-title: Usability feature extraction using modified crow search algorithm: A novel approach
  publication-title: Neural Computing and Applications
– volume: 62
  start-page: 91
  year: 2016
  end-page: 103
  ident: b0325
  article-title: A hybrid approach of differential evolution and artificial bee colony for feature selection
  publication-title: Expert Systems with Applications
– reference: Liu, H., & Motoda, H. (1998). Feature Selection for Knowledge Discovery and Data Mining. In Feature Selection for Knowledge Discovery and Data Mining.
– volume: 260
  start-page: 302
  year: 2017
  end-page: 312
  ident: b0205
  article-title: Hybrid Whale Optimization Algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
– volume: 9
  start-page: 1
  year: 2013
  end-page: 14
  ident: b0225
  article-title: S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization
  publication-title: Swarm and Evolutionary Computation
– year: 1997
  ident: b0155
  article-title: Discrete binary version of the particle swarm algorithm
  publication-title: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics
– year: 2018
  ident: b0115
  article-title: A hybrid crow search algorithm based on rough searching scheme for solving engineering optimization problems
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– volume: 62
  start-page: 441
  year: 2018
  end-page: 453
  ident: b0210
  article-title: Whale optimization approaches for wrapper feature selection
  publication-title: Applied Soft Computing Journal
– reference: Talbi, E. G. (2009). Metaheuristics: From Design to Implementation. In Metaheuristics: From Design to Implementation.
– volume: 7
  start-page: 39496
  year: 2019
  end-page: 39508
  ident: b0020
  article-title: Binary optimization using hybrid grey wolf optimization for feature selection
  publication-title: IEEE Access
– year: 2018
  ident: b0090
  article-title: An improved crow search algorithm applied to energy problems
  publication-title: Energies
– year: 1992
  ident: b0160
  article-title: Feature selection problem: Traditional methods and a new algorithm
  publication-title: Proceedings Tenth National Conference on Artificial Intelligence
– reference: De Souza, R. C. T., Coelho, L. D. S., De MacEdo, C. A., & Pierezan, J. (2018). A V-Shaped Binary Crow Search Algorithm for Feature Selection. In: 2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings, pp. 1–8.
– volume: 17
  start-page: 491
  year: 2005
  end-page: 502
  ident: b0175
  article-title: Toward integrating feature selection algorithms for classification and clustering
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: Cover, T. M., & Thomas, J. A. (2005). Elements of Information Theory. In Elements of Information Theory.
– volume: 31
  start-page: 171
  year: 2019
  end-page: 188
  ident: b0270
  article-title: Feature selection via a novel chaotic crow search algorithm
  publication-title: Neural Computing and Applications
– year: 2006
  ident: b0085
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– volume: 79
  start-page: 164
  year: 2017
  end-page: 180
  ident: b0235
  article-title: Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm
  publication-title: Expert Systems with Applications
– volume: 7
  start-page: 26343
  year: 2019
  end-page: 26361
  ident: b0040
  article-title: A New Hybrid Algorithm Based on Grey Wolf Optimization and Crow Search Algorithm for Unconstrained Function Optimization and Feature Selection
  publication-title: IEEE Access
– volume: 128
  start-page: 140
  year: 2019
  end-page: 156
  ident: b0050
  article-title: Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection
  publication-title: Expert Systems with Applications
– volume: 83
  start-page: 1
  year: 2017
  end-page: 17
  ident: b0055
  article-title: A novel bacterial foraging optimization algorithm for feature selection
  publication-title: Expert Systems with Applications
– volume: 497
  start-page: 219
  year: 2019
  end-page: 239
  ident: b0300
  article-title: An evolutionary gravitational search-based feature selection
  publication-title: Information Sciences
– volume: 118
  start-page: 340
  year: 2019
  end-page: 354
  ident: b0030
  article-title: An improved fast fuzzy c-means using crow search optimization algorithm for crop identification in agricultural
  publication-title: Expert Systems with Applications
– volume: 71
  start-page: 1161
  year: 2018
  end-page: 1175
  ident: b0265
  article-title: Chaotic crow search algorithm for fractional optimization problems
  publication-title: Applied Soft Computing
– reference: .
– volume: 161
  start-page: 185
  year: 2018
  end-page: 204
  ident: b0185
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowledge-Based Systems
– volume: 74
  start-page: 2914
  year: 2011
  end-page: 2928
  ident: b0135
  article-title: A new local search based hybrid genetic algorithm for feature selection
  publication-title: Neurocomputing
– volume: 141
  start-page: 112976
  year: 2020
  ident: b0315
  article-title: Gaussian mutational chaotic fruit fly-built optimization and feature selection
  publication-title: Expert Systems with Applications
– volume: 12
  start-page: 150
  year: 2020
  end-page: 175
  ident: b0215
  article-title: Efficient Hybrid Nature-Inspired Binary Optimizers for Feature Selection
  publication-title: Cognitive Computation
– volume: 2
  start-page: 441
  year: 2018
  end-page: 444
  ident: b0290
  article-title: Hook innovation boosts foraging efficiency in tool-using crows
  publication-title: Nature Ecology & Evolution
– volume: 68
  start-page: 412
  year: 2018
  end-page: 424
  ident: b0110
  article-title: Improved diagnosis of Parkinson's disease using optimized crow search algorithm
  publication-title: Computers & Electrical Engineering
– volume: 159
  start-page: 113572
  year: 2020
  ident: b0240
  article-title: Enhanced Crow Search Algorithm for Feature Selection
  publication-title: Expert Systems with Applications
– year: 2016
  ident: b0100
  article-title: A hybrid approach based on particle swarm optimization and random forests for e-mail spam filtering
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– reference: Mafarja, M. M., Eleyan, D., Jaber, I., Hammouri, A., & Mirjalili, S. (2017). Binary Dragonfly Algorithm for Feature Selection. In Proceedings - 2017 International Conference on New Trends in Computing Sciences, ICTCS 2017.
– volume: 180
  start-page: 723
  year: 2007
  end-page: 737
  ident: b0285
  article-title: Framework for efficient feature selection in genetic algorithm based data mining
  publication-title: European Journal of Operational Research
– volume: 147
  start-page: 271
  year: 2015
  ident: 10.1016/j.eswa.2020.114288_b0145
  article-title: An advanced ACO algorithm for feature subset selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.067
– volume: 43
  start-page: 583
  year: 2016
  ident: 10.1016/j.eswa.2020.114288_b0320
  article-title: Binary artificial algae algorithm for multidimensional knapsack problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.02.027
– year: 1992
  ident: 10.1016/j.eswa.2020.114288_b0160
  article-title: Feature selection problem: Traditional methods and a new algorithm
– volume: 159
  start-page: 113572
  year: 2020
  ident: 10.1016/j.eswa.2020.114288_b0240
  article-title: Enhanced Crow Search Algorithm for Feature Selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113572
– year: 2019
  ident: 10.1016/j.eswa.2020.114288_b0245
  article-title: A hybrid bat-crow search algorithm based home energy management in smart grid
  publication-title: Advances in Intelligent Systems and Computing
– volume: 139
  start-page: 112824
  year: 2020
  ident: 10.1016/j.eswa.2020.114288_b0005
  article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.112824
– volume: 32
  start-page: 10915
  issue: 15
  year: 2020
  ident: 10.1016/j.eswa.2020.114288_b0105
  article-title: Usability feature extraction using modified crow search algorithm: A novel approach
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-018-3688-6
– volume: 24
  start-page: 1565
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2020.114288_b0025
  article-title: Feature selection strategy based on hybrid crow search optimization algorithm integrated with chaos theory and fuzzy c-means algorithm for medical diagnosis problems
  publication-title: Soft Computing
  doi: 10.1007/s00500-019-03988-3
– year: 2006
  ident: 10.1016/j.eswa.2020.114288_b0085
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– volume: 62
  start-page: 441
  year: 2018
  ident: 10.1016/j.eswa.2020.114288_b0210
  article-title: Whale optimization approaches for wrapper feature selection
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2017.11.006
– volume: 33
  start-page: 3597
  issue: 6
  year: 2017
  ident: 10.1016/j.eswa.2020.114288_b0130
  article-title: An improved Crow Search Algorithm for high-dimensional problems
  publication-title: Journal of Intelligent and Fuzzy Systems
– volume: 497
  start-page: 219
  year: 2019
  ident: 10.1016/j.eswa.2020.114288_b0300
  article-title: An evolutionary gravitational search-based feature selection
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.05.038
– volume: 20
  start-page: 391
  issue: 2
  year: 2017
  ident: 10.1016/j.eswa.2020.114288_b0010
  article-title: A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks
  publication-title: Engineering Science and Technology, an International Journal
  doi: 10.1016/j.jestch.2017.02.004
– volume: 117
  start-page: 267
  year: 2019
  ident: 10.1016/j.eswa.2020.114288_b0180
  article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.09.015
– ident: 10.1016/j.eswa.2020.114288_b0195
  doi: 10.1145/3231053.3231071
– ident: 10.1016/j.eswa.2020.114288_b0170
  doi: 10.1007/978-1-4615-5689-3
– ident: 10.1016/j.eswa.2020.114288_b0200
  doi: 10.1109/ICTCS.2017.43
– volume: 128
  start-page: 140
  year: 2019
  ident: 10.1016/j.eswa.2020.114288_b0050
  article-title: Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.03.039
– volume: 15
  start-page: R80
  issue: 3
  year: 2005
  ident: 10.1016/j.eswa.2020.114288_b0060
  article-title: Corvid cognition
  publication-title: Current Biology
  doi: 10.1016/j.cub.2005.01.020
– ident: 10.1016/j.eswa.2020.114288_b0070
  doi: 10.1002/047174882X
– volume: 167
  start-page: 809
  year: 2020
  ident: 10.1016/j.eswa.2020.114288_b0165
  article-title: A Binary Crow Search Algorithm for Solving Two-dimensional Bin Packing Problem with Fixed Orientation
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2020.03.420
– volume: 12
  start-page: 150
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2020.114288_b0215
  article-title: Efficient Hybrid Nature-Inspired Binary Optimizers for Feature Selection
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-019-09668-6
– volume: 433
  start-page: 241
  issue: 3
  year: 2008
  ident: 10.1016/j.eswa.2020.114288_b0065
  article-title: Extraordinary large brains in tool-using New Caledonian crows (Corvus moneduloides)
  publication-title: Neuroscience Letters
  doi: 10.1016/j.neulet.2008.01.026
– year: 2018
  ident: 10.1016/j.eswa.2020.114288_b0090
  article-title: An improved crow search algorithm applied to energy problems
  publication-title: Energies
  doi: 10.3390/en11030571
– volume: 7
  start-page: 26343
  year: 2019
  ident: 10.1016/j.eswa.2020.114288_b0040
  article-title: A New Hybrid Algorithm Based on Grey Wolf Optimization and Crow Search Algorithm for Unconstrained Function Optimization and Feature Selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897325
– volume: 83
  start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2020.114288_b0055
  article-title: A novel bacterial foraging optimization algorithm for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.04.019
– year: 1995
  ident: 10.1016/j.eswa.2020.114288_b0150
  article-title: Particle swarm optimization
– year: 2016
  ident: 10.1016/j.eswa.2020.114288_b0100
  article-title: A hybrid approach based on particle swarm optimization and random forests for e-mail spam filtering
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 180
  start-page: 723
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2020.114288_b0285
  article-title: Framework for efficient feature selection in genetic algorithm based data mining
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.02.040
– volume: 65–69
  year: 2018
  ident: 10.1016/j.eswa.2020.114288_b0015
  article-title: Feature selection using salp swarm algorithm with chaos
  publication-title: ACM International Conference Proceeding Series
– volume: 141
  start-page: 112976
  year: 2020
  ident: 10.1016/j.eswa.2020.114288_b0315
  article-title: Gaussian mutational chaotic fruit fly-built optimization and feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.112976
– volume: 36
  start-page: 27
  year: 2017
  ident: 10.1016/j.eswa.2020.114288_b0280
  article-title: A hybrid algorithm using ant and bee colony optimization for feature selection and classification (AC-ABC Hybrid)
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2017.04.002
– ident: 10.1016/j.eswa.2020.114288_b0295
  doi: 10.1002/9780470496916
– volume: 62
  start-page: 91
  year: 2016
  ident: 10.1016/j.eswa.2020.114288_b0325
  article-title: A hybrid approach of differential evolution and artificial bee colony for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.06.004
– volume: 169
  start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2020.114288_b0045
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2016.03.001
– ident: 10.1016/j.eswa.2020.114288_b0190
  doi: 10.1145/3102304.3102325
– ident: 10.1016/j.eswa.2020.114288_b0310
  doi: 10.1109/CEC.2016.7744378
– volume: 8
  start-page: 687
  issue: 1
  year: 2008
  ident: 10.1016/j.eswa.2020.114288_b0140
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2007.05.007
– year: 2019
  ident: 10.1016/j.eswa.2020.114288_b0125
  article-title: A new binary grasshopper optimization algorithm for feature selection problem
  publication-title: Journal of King Saud University - Computer and Information Sciences
– volume: 74
  start-page: 2914
  issue: 17
  year: 2011
  ident: 10.1016/j.eswa.2020.114288_b0135
  article-title: A new local search based hybrid genetic algorithm for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.03.034
– start-page: 225
  year: 2013
  ident: 10.1016/j.eswa.2020.114288_b0230
  article-title: Binary Bat Algorithm for Feature Selection
– volume: 68
  start-page: 412
  year: 2018
  ident: 10.1016/j.eswa.2020.114288_b0110
  article-title: Improved diagnosis of Parkinson's disease using optimized crow search algorithm
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2018.04.014
– year: 1997
  ident: 10.1016/j.eswa.2020.114288_b0155
  article-title: Discrete binary version of the particle swarm algorithm
– volume: 116
  start-page: 147
  year: 2019
  ident: 10.1016/j.eswa.2020.114288_b0035
  article-title: Binary butterfly optimization approaches for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.08.051
– year: 2019
  ident: 10.1016/j.eswa.2020.114288_b0220
  article-title: Oppositional Crow Search Algorithm with mutation operator for global optimization and application in designing FOPID controller
  publication-title: Evolving Systems
– volume: 81
  start-page: 148
  year: 2019
  ident: 10.1016/j.eswa.2020.114288_b0275
  article-title: Firefly algorithm based feature selection for network intrusion detection
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2018.11.005
– volume: 7
  start-page: 39496
  year: 2019
  ident: 10.1016/j.eswa.2020.114288_b0020
  article-title: Binary optimization using hybrid grey wolf optimization for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906757
– ident: 10.1016/j.eswa.2020.114288_b0250
  doi: 10.1007/978-3-319-69811-3_7
– volume: 2
  start-page: 441
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2020.114288_b0290
  article-title: Hook innovation boosts foraging efficiency in tool-using crows
  publication-title: Nature Ecology & Evolution
  doi: 10.1038/s41559-017-0429-7
– ident: 10.1016/j.eswa.2020.114288_b0080
  doi: 10.1109/CEC.2018.8477975
– year: 1997
  ident: 10.1016/j.eswa.2020.114288_b0305
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– volume: 9
  start-page: 1
  year: 2013
  ident: 10.1016/j.eswa.2020.114288_b0225
  article-title: S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2012.09.002
– volume: 79
  start-page: 164
  year: 2017
  ident: 10.1016/j.eswa.2020.114288_b0235
  article-title: Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.02.042
– volume: 71
  start-page: 1161
  year: 2018
  ident: 10.1016/j.eswa.2020.114288_b0265
  article-title: Chaotic crow search algorithm for fractional optimization problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.03.019
– volume: 1
  start-page: 131
  issue: 3
  year: 1997
  ident: 10.1016/j.eswa.2020.114288_b0075
  article-title: Feature Selection for Classification
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-1997-1302
– volume: 31
  start-page: 171
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2020.114288_b0270
  article-title: Feature selection via a novel chaotic crow search algorithm
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-017-2988-6
– volume: 32
  start-page: 335
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2020.114288_b0120
  article-title: Improved salp swarm algorithm for feature selection
  publication-title: Journal of King Saud University - Computer and Information Sciences
  doi: 10.1016/j.jksuci.2018.06.003
– volume: 17
  start-page: 491
  issue: 4
  year: 2005
  ident: 10.1016/j.eswa.2020.114288_b0175
  article-title: Toward integrating feature selection algorithms for classification and clustering
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2005.66
– volume: 260
  start-page: 302
  year: 2017
  ident: 10.1016/j.eswa.2020.114288_b0205
  article-title: Hybrid Whale Optimization Algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– year: 2018
  ident: 10.1016/j.eswa.2020.114288_b0115
  article-title: A hybrid crow search algorithm based on rough searching scheme for solving engineering optimization problems
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– volume: 161
  start-page: 185
  year: 2018
  ident: 10.1016/j.eswa.2020.114288_b0185
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.08.003
– volume: 80
  start-page: 761
  year: 2019
  ident: 10.1016/j.eswa.2020.114288_b0255
  article-title: Feature selection based on brain storm optimization for data classification
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.04.037
– volume: 74
  start-page: 634
  year: 2019
  ident: 10.1016/j.eswa.2020.114288_b0260
  article-title: Feature selection based on artificial bee colony and gradient boosting decision tree
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.10.036
– volume: 118
  start-page: 340
  year: 2019
  ident: 10.1016/j.eswa.2020.114288_b0030
  article-title: An improved fast fuzzy c-means using crow search optimization algorithm for crop identification in agricultural
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.10.009
– volume: 172
  start-page: 371
  year: 2016
  ident: 10.1016/j.eswa.2020.114288_b0095
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
SSID ssj0017007
Score 2.578413
Snippet •Feature selection approach based on Binary Crow Search Algorithm is proposed.•Time varying flight length is used to enhance balance between exploration &...
Crow Search Algorithm (CSA) is a simple yet effective meta-heuristic algorithm that has been applied to solve many engineering problems. In CSA, fl parameter...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114288
SubjectTerms Algorithms
Classification
Crow Search Algorithm
Exploitation
Feature selection
Heuristic methods
High dimensional data
Parameters
Search algorithms
Transfer function
Transfer functions
Title Feature selection using Binary Crow Search Algorithm with time varying flight length
URI https://dx.doi.org/10.1016/j.eswa.2020.114288
https://www.proquest.com/docview/2492315675
Volume 168
WOSCitedRecordID wos000640552200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXQlgMXvhEtBfnALUqVdeK1fVyqIkCoQuoi7S2y80G22qbVJin9-cxknHRZRAVIXKIocuLI78UZj2fmMfZWZE5j0ZIwSpQKk9gloRHShXluy2jmplFU9kVcP6vTU71cmi9eFbXp5QRUXeubG3P1X6GGawA2ps7-BdzjQ-ECnAPocATY4fhHwKNRh7sCTa9wg-h2vT_gHWXeHsO6O6Ag42C-_na5WbXVhXfHri6K4Boa9dGVa1y2Byi00lY_-e-xOHLrS0APyXFb2-BbAQNdXnWUyT531Qrs9Gr8CZzZqiOuAAUrLJvU2HzbBSGmuJtCSZjkFxtyY24DkcjBCOBPSYPnqKDpVas4nCnSRBznX9LV-WUuJ7fC-VHRfMcCUaKvayxIBHCnRvYZdoZ9CdwxMpj8vSeUNHrC9uYfT5afxo0lFVEG_fByPo-KQv52e_qdrbLz1-5NkcVj9tCvIficsH_C7hX1U_Zo0Ofgfrp-xhaeCnykAu-pwIkKHKnAiQp8pAJHQDlSgXsqcKICJyo8Z1_fnyyOP4ReRSPMYqHb0CZymkVJCYaYKguXZDADS5PDqVPaxbkybmaUlbkVxs50qWHBoHOhbamVk1ERv2CT-rIuXjKuYGhlGevYxkmS5MKWJgcLNovB5nRCZvtsOoxXmvkS86h0sk6HWMLzFMc4xTFOaYz3WTDec0UFVu5sLQcYUm8ikumXAmvuvO9wwCz132qTir44oYQl88E_PvYVe3D7PRyySbvpitfsfnbdrprNG8-9HxnPlpQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+using+Binary+Crow+Search+Algorithm+with+time+varying+flight+length&rft.jtitle=Expert+systems+with+applications&rft.au=Chaudhuri%2C+Abhilasha&rft.au=Sahu%2C+Tirath+Prasad&rft.date=2021-04-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=168&rft_id=info:doi/10.1016%2Fj.eswa.2020.114288&rft.externalDocID=S0957417420309908
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon