Feature selection using Binary Crow Search Algorithm with time varying flight length
•Feature selection approach based on Binary Crow Search Algorithm is proposed.•Time varying flight length is used to enhance balance between exploration & exploitation.•8 variants of the proposed method based on different transfer functions are tested.•Performance of proposed method is evaluated...
Uložené v:
| Vydané v: | Expert systems with applications Ročník 168; s. 114288 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Elsevier Ltd
15.04.2021
Elsevier BV |
| Predmet: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Feature selection approach based on Binary Crow Search Algorithm is proposed.•Time varying flight length is used to enhance balance between exploration & exploitation.•8 variants of the proposed method based on different transfer functions are tested.•Performance of proposed method is evaluated on 20 benchmark datasets.•Proposed approach outperformed other feature selection approaches.
Crow Search Algorithm (CSA) is a simple yet effective meta-heuristic algorithm that has been applied to solve many engineering problems. In CSA, fl parameter controls the search capability of crows and AP parameter balances the trade-off between exploration and exploitation. The parameter fl is initialized to a constant value in CSA. However, CSA faces the problem of being trapped in local minima. This work proposes the solution to this problem by introducing the new concept of time varying flight length in CSA. The value of fl should be large in initial stages of algorithm in order to support random exploration and it should gradually decrease in later iterations to encourage the exploitation of good solutions found so far. The proposed approach, Binary Crow Search Algorithm with Time Varying Flight Length (BCSA-TVFL) is applied to feature selection problems in wrapper mode. Eight variants of BCSA-TVFL based on eight different transfer functions are tested. The best performing variant is then selected and compared with other state-of-the-art wrapper feature selection techniques and standard filter feature selection techniques. Performance of proposed approach is tested on 20 standard UCI datasets. Experimental result comparison shows that the proposed feature selection technique performs better than other competitors. |
|---|---|
| AbstractList | Crow Search Algorithm (CSA) is a simple yet effective meta-heuristic algorithm that has been applied to solve many engineering problems. In CSA, fl parameter controls the search capability of crows and AP parameter balances the trade-off between exploration and exploitation. The parameter fl is initialized to a constant value in CSA. However, CSA faces the problem of being trapped in local minima. This work proposes the solution to this problem by introducing the new concept of time varying flight length in CSA. The value of fl should be large in initial stages of algorithm in order to support random exploration and it should gradually decrease in later iterations to encourage the exploitation of good solutions found so far. The proposed approach, Binary Crow Search Algorithm with Time Varying Flight Length (BCSA-TVFL) is applied to feature selection problems in wrapper mode. Eight variants of BCSA-TVFL based on eight different transfer functions are tested. The best performing variant is then selected and compared with other state-of-the-art wrapper feature selection techniques and standard filter feature selection techniques. Performance of proposed approach is tested on 20 standard UCI datasets. Experimental result comparison shows that the proposed feature selection technique performs better than other competitors. •Feature selection approach based on Binary Crow Search Algorithm is proposed.•Time varying flight length is used to enhance balance between exploration & exploitation.•8 variants of the proposed method based on different transfer functions are tested.•Performance of proposed method is evaluated on 20 benchmark datasets.•Proposed approach outperformed other feature selection approaches. Crow Search Algorithm (CSA) is a simple yet effective meta-heuristic algorithm that has been applied to solve many engineering problems. In CSA, fl parameter controls the search capability of crows and AP parameter balances the trade-off between exploration and exploitation. The parameter fl is initialized to a constant value in CSA. However, CSA faces the problem of being trapped in local minima. This work proposes the solution to this problem by introducing the new concept of time varying flight length in CSA. The value of fl should be large in initial stages of algorithm in order to support random exploration and it should gradually decrease in later iterations to encourage the exploitation of good solutions found so far. The proposed approach, Binary Crow Search Algorithm with Time Varying Flight Length (BCSA-TVFL) is applied to feature selection problems in wrapper mode. Eight variants of BCSA-TVFL based on eight different transfer functions are tested. The best performing variant is then selected and compared with other state-of-the-art wrapper feature selection techniques and standard filter feature selection techniques. Performance of proposed approach is tested on 20 standard UCI datasets. Experimental result comparison shows that the proposed feature selection technique performs better than other competitors. |
| ArticleNumber | 114288 |
| Author | Sahu, Tirath Prasad Chaudhuri, Abhilasha |
| Author_xml | – sequence: 1 givenname: Abhilasha orcidid: 0000-0003-4820-1613 surname: Chaudhuri fullname: Chaudhuri, Abhilasha email: achaudhuri.phd2018.it@nitrr.ac.in – sequence: 2 givenname: Tirath Prasad surname: Sahu fullname: Sahu, Tirath Prasad email: tpsahu.it@nitrr.ac.in |
| BookMark | eNp9kE1PAyEQhompiW31D3gi8bwV2A8g8VIbqyZNPFjPhGVnW5rtbgW2jf9eNvXkoZdhQt6HGZ4JGrVdCwjdUzKjhBaPuxn4k54xwuIFzZgQV2hMBU-Tgst0hMZE5jzJKM9u0MT7HSGUE8LHaL0EHXoH2EMDJtiuxb237QY_21a7H7xw3Ql_gnZmi-fNpnM2bPf4FCsOdg_4GENDvG7sZhtwA-0mbG_Rda0bD3d_5xR9LV_Wi7dk9fH6vpivEpMyERKd5dSQrC4KymsoM8NllssqtiUXZVpxWRaS67zSTOpC1ELSQlRM6FrwMieQTtHD-d2D67578EHtut61caRimWQpzQuexxQ7p4zrvHdQq4Oz-7i3okQN9tRODfbUYE-d7UVI_IOMDXrwE5y2zWX06YxC_PrRglPeWGgNVNZFxarq7CX8F75ZjWQ |
| CitedBy_id | crossref_primary_10_1002_cpe_70052 crossref_primary_10_1016_j_knosys_2023_111108 crossref_primary_10_1016_j_eswa_2022_117493 crossref_primary_10_1007_s10462_025_11351_2 crossref_primary_10_3390_e23091189 crossref_primary_10_3390_math10193606 crossref_primary_10_1016_j_knosys_2022_108771 crossref_primary_10_1111_exsy_13330 crossref_primary_10_1016_j_bspc_2022_104399 crossref_primary_10_1007_s10489_023_04732_z crossref_primary_10_1109_ACCESS_2023_3343734 crossref_primary_10_1080_15325008_2022_2136784 crossref_primary_10_1016_j_eswa_2023_121712 crossref_primary_10_1016_j_heliyon_2024_e24192 crossref_primary_10_1093_jcde_qwad009 crossref_primary_10_1016_j_bspc_2023_105879 crossref_primary_10_1155_2021_6686826 crossref_primary_10_1016_j_knosys_2021_107638 crossref_primary_10_1016_j_engappai_2024_108390 crossref_primary_10_3390_a15060189 crossref_primary_10_3390_biomimetics9010009 crossref_primary_10_1007_s00521_023_08812_6 crossref_primary_10_1007_s11042_023_15647_9 crossref_primary_10_1016_j_knosys_2021_107219 crossref_primary_10_1016_j_matpr_2022_04_803 crossref_primary_10_3390_app12146907 crossref_primary_10_1109_ACCESS_2022_3143802 crossref_primary_10_1007_s00500_023_09347_7 crossref_primary_10_3390_rs15163980 crossref_primary_10_1016_j_knosys_2021_107804 crossref_primary_10_1016_j_ins_2023_01_069 crossref_primary_10_1016_j_compbiomed_2021_105152 crossref_primary_10_3390_e24070873 crossref_primary_10_1002_2050_7038_13196 crossref_primary_10_1007_s00432_024_05968_z crossref_primary_10_1016_j_eswa_2024_123871 crossref_primary_10_1109_ACCESS_2023_3310429 crossref_primary_10_1007_s12530_024_09584_7 crossref_primary_10_1016_j_eswa_2022_119095 crossref_primary_10_3390_math10142396 crossref_primary_10_3390_sym17070999 crossref_primary_10_1007_s13042_025_02721_x crossref_primary_10_1016_j_eswa_2023_120802 crossref_primary_10_1016_j_ins_2024_120185 crossref_primary_10_1016_j_asoc_2022_109590 crossref_primary_10_1109_ACCESS_2022_3182685 crossref_primary_10_1002_cpe_7239 crossref_primary_10_1007_s12530_024_09595_4 crossref_primary_10_1109_ACCESS_2021_3117853 crossref_primary_10_1109_ACCESS_2021_3065400 crossref_primary_10_3390_electronics12143123 crossref_primary_10_1007_s10586_022_03725_w crossref_primary_10_1016_j_eswa_2021_116470 crossref_primary_10_1016_j_eswa_2021_116431 crossref_primary_10_1016_j_compbiomed_2022_105675 crossref_primary_10_1007_s11042_023_16638_6 crossref_primary_10_1007_s13042_022_01703_7 crossref_primary_10_1007_s11356_022_20472_y crossref_primary_10_3233_JIFS_230421 crossref_primary_10_1007_s00500_023_08274_x crossref_primary_10_1016_j_asoc_2023_110704 crossref_primary_10_3390_s22051795 |
| Cites_doi | 10.1016/j.neucom.2014.06.067 10.1016/j.asoc.2016.02.027 10.1016/j.eswa.2020.113572 10.1016/j.eswa.2019.112824 10.1007/s00521-018-3688-6 10.1007/s00500-019-03988-3 10.1016/j.asoc.2017.11.006 10.1016/j.ins.2019.05.038 10.1016/j.jestch.2017.02.004 10.1016/j.eswa.2018.09.015 10.1145/3231053.3231071 10.1007/978-1-4615-5689-3 10.1109/ICTCS.2017.43 10.1016/j.eswa.2019.03.039 10.1016/j.cub.2005.01.020 10.1002/047174882X 10.1016/j.procs.2020.03.420 10.1007/s12559-019-09668-6 10.1016/j.neulet.2008.01.026 10.3390/en11030571 10.1109/ACCESS.2019.2897325 10.1016/j.eswa.2017.04.019 10.1016/j.ejor.2006.02.040 10.1016/j.eswa.2019.112976 10.1016/j.swevo.2017.04.002 10.1002/9780470496916 10.1016/j.eswa.2016.06.004 10.1016/j.compstruc.2016.03.001 10.1145/3102304.3102325 10.1109/CEC.2016.7744378 10.1016/j.asoc.2007.05.007 10.1016/j.neucom.2011.03.034 10.1016/j.compeleceng.2018.04.014 10.1016/j.eswa.2018.08.051 10.1016/j.cose.2018.11.005 10.1109/ACCESS.2019.2906757 10.1007/978-3-319-69811-3_7 10.1038/s41559-017-0429-7 10.1109/CEC.2018.8477975 10.1109/4235.585893 10.1016/j.swevo.2012.09.002 10.1016/j.eswa.2017.02.042 10.1016/j.asoc.2018.03.019 10.3233/IDA-1997-1302 10.1007/s00521-017-2988-6 10.1016/j.jksuci.2018.06.003 10.1109/TKDE.2005.66 10.1016/j.neucom.2017.04.053 10.1016/j.knosys.2018.08.003 10.1016/j.asoc.2019.04.037 10.1016/j.asoc.2018.10.036 10.1016/j.eswa.2018.10.009 10.1016/j.neucom.2015.06.083 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Apr 15, 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Apr 15, 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2020.114288 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2020_114288 S0957417420309908 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c328t-a451c04f6617feb4c79459dfebb78b3d79b697a5da29a68f89168d28af87b50e3 |
| ISICitedReferencesCount | 76 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640552200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sun Oct 05 00:15:31 EDT 2025 Sat Nov 29 07:05:56 EST 2025 Tue Nov 18 22:39:57 EST 2025 Fri Feb 23 02:48:44 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Crow Search Algorithm Feature selection High dimensional data Transfer function Classification |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-a451c04f6617feb4c79459dfebb78b3d79b697a5da29a68f89168d28af87b50e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4820-1613 |
| PQID | 2492315675 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2492315675 crossref_primary_10_1016_j_eswa_2020_114288 crossref_citationtrail_10_1016_j_eswa_2020_114288 elsevier_sciencedirect_doi_10_1016_j_eswa_2020_114288 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-15 |
| PublicationDateYYYYMMDD | 2021-04-15 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Kennedy, Eberhart (b0150) 1995 Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li, Mirjalili (b0185) 2018; 161 Faris, Aljarah, Al-Shboul (b0100) 2016 Dash, Liu (b0075) 1997; 1 Mafarja, M., Eleyan, D., Abdullah, S., & Mirjalili, S. (2017). S-shaped vs. V-shaped transfer functions for ant lion optimization algorithm in feature selection problem. ACM International Conference Proceeding Series, Part F1305. Shunmugapriya, Kanmani (b0280) 2017; 36 Ahmed, Mafarja, Faris, Aljarah (b0015) 2018; 65–69 Chen, Zhou, Yuan (b0050) 2019; 128 Pourpanah, Shi, Lim, Hao, Tan (b0255) 2019; 80 Talbi, E. G. (2009). Metaheuristics: From Design to Implementation. In Metaheuristics: From Design to Implementation. Anter, Ali (b0025) 2020; 24 Jain, Rani, Singh (b0130) 2017; 33 Mirjalili, Lewis (b0225) 2013; 9 Wolpert, Macready (b0305) 1997 Huan Liu, Lei Yu (b0175) 2005; 17 Selvakumar, Muneeswaran (b0275) 2019; 81 Arora, Anand (b0035) 2019; 116 Zhang, Xu, Yu, Heidari, Li, Chen, Li (b0315) 2020; 141 Cover, T. M., & Thomas, J. A. (2005). Elements of Information Theory. In Elements of Information Theory. Pamir, Javaid, Mohsin, Iqbal, Yasmeen, Ali (b0245) 2019 Zorarpacı, Özel (b0325) 2016; 62 Anter, Hassenian, Oliva (b0030) 2019; 118 Sikora, Piramuthu (b0285) 2007; 180 . Zhang, Wu, Li, Wang, Yang, Lee, Jung (b0320) 2016; 43 De Souza, R. C. T., Coelho, L. D. S., De MacEdo, C. A., & Pierezan, J. (2018). A V-Shaped Binary Crow Search Algorithm for Feature Selection. In: 2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings, pp. 1–8. Mafarja, M., Jarrar, R., Ahmad, S., & Abusnaina, A. A. (2018). Feature selection using Binary Particle Swarm optimization with time varying inertia weight strategies. In ACM International Conference Proceeding Series. Majhi, Sahoo, Pradhan (b0220) 2019 Kabir, Shahjahan, Murase (b0135) 2011; 74 Chen, Li, Wang, Zheng, Xu, Fan, Cui (b0055) 2017; 83 Arora, Singh, Sharma, Sharma, Anand (b0040) 2019; 7 Hegazy, Makhlouf, El-Tawel (b0120) 2020; 32 Gupta, Sundaram, Khanna, Ella Hassanien, de Albuquerque (b0110) 2018; 68 Mafarja, Mirjalili (b0205) 2017; 260 Taradeh, Mafarja, Heidari, Faris, Aljarah, Mirjalili, Fujita (b0300) 2019; 497 Al-Tashi, Abdul Kadir, Rais, Mirjalili, Alhussian (b0020) 2019; 7 Kennedy, Eberhart (b0155) 1997 Askarzadeh (b0045) 2016; 169 Rizk-Allah, Hassanien, Bhattacharyya (b0265) 2018; 71 Karaboga, Basturk (b0140) 2008; 8 Gupta, Rodrigues, Sundaram, Khanna, Korotaev, de Albuquerque (b0105) 2020; 32 Oliva, Hinojosa, Cuevas, Pajares, Avalos, Gálvez (b0235) 2017; 79 Rao, Shi, Rodrigue, Feng, Xia, Elhoseny, Gu (b0260) 2019; 74 Clayton, Emery (b0060) 2005; 15 Díaz, Pérez-Cisneros, Cuevas, Avalos, Gálvez, Hinojosa, Zaldivar (b0090) 2018 Liu, H., & Motoda, H. (1998). Feature Selection for Knowledge Discovery and Data Mining. In Feature Selection for Knowledge Discovery and Data Mining. St Clair, Klump, Sugasawa, Higgott, Colegrave, Rutz (b0290) 2018; 2 Cnotka, Güntürkün, Rehkämper, Gray, Hunt (b0065) 2008; 433 Abdel-Basset, El-Shahat, El-henawy, de Albuquerque, Mirjalili (b0005) 2020; 139 Ouadfel, Abd Elaziz (b0240) 2020; 159 Hassanien, Rizk-Allah, Elhoseny (b0115) 2018 Mafarja, Qasem, Heidari, Aljarah, Faris, Mirjalili (b0215) 2020; 12 Zawbaa, H. M., Emary, E., Parv, B., & Sharawi, M. (2016). Feature selection approach based on moth-flame optimization algorithm. In 2016 IEEE Congress on Evolutionary Computation, CEC 2016. Hichem, Elkamel, Rafik, Mesaaoud, Ouahiba (b0125) 2019 Pamir, Javaid, S., Ali, I., Mushtaq, N., Faiz, Z., Sadiq, H. A., & Javaid, N. (2018). Enhanced Differential Evolution and Crow Search Algorithm Based Home Energy Management in Smart Grid. Sayed, Hassanien, Azar (b0270) 2019; 31 Kira, Rendell (b0160) 1992 Abdelaziz, Fathy (b0010) 2017; 20 Mafarja, M. M., Eleyan, D., Jaber, I., Hammouri, A., & Mirjalili, S. (2017). Binary Dragonfly Algorithm for Feature Selection. In Proceedings - 2017 International Conference on New Trends in Computing Sciences, ICTCS 2017. Laabadi, Naimi, Amri, Achchab (b0165) 2020; 167 Mafarja, Aljarah, Faris, Hammouri, Al-Zoubi, Mirjalili (b0180) 2019; 117 Kashef, Nezamabadi-pour (b0145) 2015; 147 Emary, Zawbaa, Hassanien (b0095) 2016; 172 Mafarja, Mirjalili (b0210) 2018; 62 Nakamura, Pereira, Rodrigues, Costa, Papa, Yang (b0230) 2013 Demšar (b0085) 2006 Kira (10.1016/j.eswa.2020.114288_b0160) 1992 Selvakumar (10.1016/j.eswa.2020.114288_b0275) 2019; 81 Abdelaziz (10.1016/j.eswa.2020.114288_b0010) 2017; 20 Pamir (10.1016/j.eswa.2020.114288_b0245) 2019 Hegazy (10.1016/j.eswa.2020.114288_b0120) 2020; 32 Clayton (10.1016/j.eswa.2020.114288_b0060) 2005; 15 Sikora (10.1016/j.eswa.2020.114288_b0285) 2007; 180 Askarzadeh (10.1016/j.eswa.2020.114288_b0045) 2016; 169 10.1016/j.eswa.2020.114288_b0295 10.1016/j.eswa.2020.114288_b0250 Arora (10.1016/j.eswa.2020.114288_b0035) 2019; 116 Kashef (10.1016/j.eswa.2020.114288_b0145) 2015; 147 10.1016/j.eswa.2020.114288_b0170 Mirjalili (10.1016/j.eswa.2020.114288_b0225) 2013; 9 Nakamura (10.1016/j.eswa.2020.114288_b0230) 2013 Oliva (10.1016/j.eswa.2020.114288_b0235) 2017; 79 Karaboga (10.1016/j.eswa.2020.114288_b0140) 2008; 8 Hichem (10.1016/j.eswa.2020.114288_b0125) 2019 Laabadi (10.1016/j.eswa.2020.114288_b0165) 2020; 167 Abdel-Basset (10.1016/j.eswa.2020.114288_b0005) 2020; 139 Anter (10.1016/j.eswa.2020.114288_b0030) 2019; 118 Cnotka (10.1016/j.eswa.2020.114288_b0065) 2008; 433 Zhang (10.1016/j.eswa.2020.114288_b0315) 2020; 141 Kennedy (10.1016/j.eswa.2020.114288_b0155) 1997 10.1016/j.eswa.2020.114288_b0200 Taradeh (10.1016/j.eswa.2020.114288_b0300) 2019; 497 Majhi (10.1016/j.eswa.2020.114288_b0220) 2019 10.1016/j.eswa.2020.114288_b0080 Zorarpacı (10.1016/j.eswa.2020.114288_b0325) 2016; 62 Gupta (10.1016/j.eswa.2020.114288_b0105) 2020; 32 Chen (10.1016/j.eswa.2020.114288_b0050) 2019; 128 Ouadfel (10.1016/j.eswa.2020.114288_b0240) 2020; 159 Rao (10.1016/j.eswa.2020.114288_b0260) 2019; 74 Kennedy (10.1016/j.eswa.2020.114288_b0150) 1995 Dash (10.1016/j.eswa.2020.114288_b0075) 1997; 1 Zhang (10.1016/j.eswa.2020.114288_b0320) 2016; 43 10.1016/j.eswa.2020.114288_b0310 Anter (10.1016/j.eswa.2020.114288_b0025) 2020; 24 Mafarja (10.1016/j.eswa.2020.114288_b0185) 2018; 161 10.1016/j.eswa.2020.114288_b0195 Rizk-Allah (10.1016/j.eswa.2020.114288_b0265) 2018; 71 10.1016/j.eswa.2020.114288_b0070 10.1016/j.eswa.2020.114288_b0190 Huan Liu (10.1016/j.eswa.2020.114288_b0175) 2005; 17 Chen (10.1016/j.eswa.2020.114288_b0055) 2017; 83 St Clair (10.1016/j.eswa.2020.114288_b0290) 2018; 2 Sayed (10.1016/j.eswa.2020.114288_b0270) 2019; 31 Mafarja (10.1016/j.eswa.2020.114288_b0180) 2019; 117 Demšar (10.1016/j.eswa.2020.114288_b0085) 2006 Faris (10.1016/j.eswa.2020.114288_b0100) 2016 Pourpanah (10.1016/j.eswa.2020.114288_b0255) 2019; 80 Mafarja (10.1016/j.eswa.2020.114288_b0205) 2017; 260 Arora (10.1016/j.eswa.2020.114288_b0040) 2019; 7 Shunmugapriya (10.1016/j.eswa.2020.114288_b0280) 2017; 36 Díaz (10.1016/j.eswa.2020.114288_b0090) 2018 Emary (10.1016/j.eswa.2020.114288_b0095) 2016; 172 Ahmed (10.1016/j.eswa.2020.114288_b0015) 2018; 65–69 Wolpert (10.1016/j.eswa.2020.114288_b0305) 1997 Al-Tashi (10.1016/j.eswa.2020.114288_b0020) 2019; 7 Mafarja (10.1016/j.eswa.2020.114288_b0210) 2018; 62 Jain (10.1016/j.eswa.2020.114288_b0130) 2017; 33 Hassanien (10.1016/j.eswa.2020.114288_b0115) 2018 Kabir (10.1016/j.eswa.2020.114288_b0135) 2011; 74 Mafarja (10.1016/j.eswa.2020.114288_b0215) 2020; 12 Gupta (10.1016/j.eswa.2020.114288_b0110) 2018; 68 |
| References_xml | – volume: 167 start-page: 809 year: 2020 end-page: 818 ident: b0165 article-title: A Binary Crow Search Algorithm for Solving Two-dimensional Bin Packing Problem with Fixed Orientation publication-title: Procedia Computer Science – volume: 169 start-page: 1 year: 2016 end-page: 12 ident: b0045 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm publication-title: Computers & Structures – volume: 80 start-page: 761 year: 2019 end-page: 775 ident: b0255 article-title: Feature selection based on brain storm optimization for data classification publication-title: Applied Soft Computing – reference: Mafarja, M., Jarrar, R., Ahmad, S., & Abusnaina, A. A. (2018). Feature selection using Binary Particle Swarm optimization with time varying inertia weight strategies. In ACM International Conference Proceeding Series. – volume: 8 start-page: 687 year: 2008 end-page: 697 ident: b0140 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Applied Soft Computing – volume: 65–69 year: 2018 ident: b0015 article-title: Feature selection using salp swarm algorithm with chaos publication-title: ACM International Conference Proceeding Series – volume: 81 start-page: 148 year: 2019 end-page: 155 ident: b0275 article-title: Firefly algorithm based feature selection for network intrusion detection publication-title: Computers & Security – reference: Mafarja, M., Eleyan, D., Abdullah, S., & Mirjalili, S. (2017). S-shaped vs. V-shaped transfer functions for ant lion optimization algorithm in feature selection problem. ACM International Conference Proceeding Series, Part F1305. – start-page: 225 year: 2013 end-page: 237 ident: b0230 article-title: Binary Bat Algorithm for Feature Selection publication-title: Swarm Intelligence and Bio-Inspired Computation – volume: 24 start-page: 1565 year: 2020 end-page: 1584 ident: b0025 article-title: Feature selection strategy based on hybrid crow search optimization algorithm integrated with chaos theory and fuzzy c-means algorithm for medical diagnosis problems publication-title: Soft Computing – volume: 116 start-page: 147 year: 2019 end-page: 160 ident: b0035 article-title: Binary butterfly optimization approaches for feature selection publication-title: Expert Systems with Applications – year: 1997 ident: b0305 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 172 start-page: 371 year: 2016 end-page: 381 ident: b0095 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing – volume: 20 start-page: 391 year: 2017 end-page: 402 ident: b0010 article-title: A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks publication-title: Engineering Science and Technology, an International Journal – volume: 33 start-page: 3597 year: 2017 end-page: 3614 ident: b0130 article-title: An improved Crow Search Algorithm for high-dimensional problems publication-title: Journal of Intelligent and Fuzzy Systems – volume: 139 start-page: 112824 year: 2020 ident: b0005 article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection publication-title: Expert Systems with Applications – volume: 36 start-page: 27 year: 2017 end-page: 36 ident: b0280 article-title: A hybrid algorithm using ant and bee colony optimization for feature selection and classification (AC-ABC Hybrid) publication-title: Swarm and Evolutionary Computation – volume: 433 start-page: 241 year: 2008 end-page: 245 ident: b0065 article-title: Extraordinary large brains in tool-using New Caledonian crows (Corvus moneduloides) publication-title: Neuroscience Letters – year: 1995 ident: b0150 article-title: Particle swarm optimization publication-title: IEEE International Conference on Neural Networks - Conference Proceedings – volume: 15 start-page: R80 year: 2005 end-page: R81 ident: b0060 article-title: Corvid cognition publication-title: Current Biology – reference: Pamir, Javaid, S., Ali, I., Mushtaq, N., Faiz, Z., Sadiq, H. A., & Javaid, N. (2018). Enhanced Differential Evolution and Crow Search Algorithm Based Home Energy Management in Smart Grid. – year: 2019 ident: b0220 article-title: Oppositional Crow Search Algorithm with mutation operator for global optimization and application in designing FOPID controller publication-title: Evolving Systems – year: 2019 ident: b0245 article-title: A hybrid bat-crow search algorithm based home energy management in smart grid publication-title: Advances in Intelligent Systems and Computing – volume: 32 start-page: 335 year: 2020 end-page: 344 ident: b0120 article-title: Improved salp swarm algorithm for feature selection publication-title: Journal of King Saud University - Computer and Information Sciences – volume: 117 start-page: 267 year: 2019 end-page: 286 ident: b0180 article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems publication-title: Expert Systems with Applications – reference: Zawbaa, H. M., Emary, E., Parv, B., & Sharawi, M. (2016). Feature selection approach based on moth-flame optimization algorithm. In 2016 IEEE Congress on Evolutionary Computation, CEC 2016. – year: 2019 ident: b0125 article-title: A new binary grasshopper optimization algorithm for feature selection problem publication-title: Journal of King Saud University - Computer and Information Sciences – volume: 74 start-page: 634 year: 2019 end-page: 642 ident: b0260 article-title: Feature selection based on artificial bee colony and gradient boosting decision tree publication-title: Applied Soft Computing – volume: 43 start-page: 583 year: 2016 end-page: 595 ident: b0320 article-title: Binary artificial algae algorithm for multidimensional knapsack problems publication-title: Applied Soft Computing – volume: 1 start-page: 131 year: 1997 end-page: 156 ident: b0075 article-title: Feature Selection for Classification publication-title: Intelligent Data Analysis – volume: 147 start-page: 271 year: 2015 end-page: 279 ident: b0145 article-title: An advanced ACO algorithm for feature subset selection publication-title: Neurocomputing – volume: 32 start-page: 10915 year: 2020 end-page: 10925 ident: b0105 article-title: Usability feature extraction using modified crow search algorithm: A novel approach publication-title: Neural Computing and Applications – volume: 62 start-page: 91 year: 2016 end-page: 103 ident: b0325 article-title: A hybrid approach of differential evolution and artificial bee colony for feature selection publication-title: Expert Systems with Applications – reference: Liu, H., & Motoda, H. (1998). Feature Selection for Knowledge Discovery and Data Mining. In Feature Selection for Knowledge Discovery and Data Mining. – volume: 260 start-page: 302 year: 2017 end-page: 312 ident: b0205 article-title: Hybrid Whale Optimization Algorithm with simulated annealing for feature selection publication-title: Neurocomputing – volume: 9 start-page: 1 year: 2013 end-page: 14 ident: b0225 article-title: S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization publication-title: Swarm and Evolutionary Computation – year: 1997 ident: b0155 article-title: Discrete binary version of the particle swarm algorithm publication-title: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics – year: 2018 ident: b0115 article-title: A hybrid crow search algorithm based on rough searching scheme for solving engineering optimization problems publication-title: Journal of Ambient Intelligence and Humanized Computing – volume: 62 start-page: 441 year: 2018 end-page: 453 ident: b0210 article-title: Whale optimization approaches for wrapper feature selection publication-title: Applied Soft Computing Journal – reference: Talbi, E. G. (2009). Metaheuristics: From Design to Implementation. In Metaheuristics: From Design to Implementation. – volume: 7 start-page: 39496 year: 2019 end-page: 39508 ident: b0020 article-title: Binary optimization using hybrid grey wolf optimization for feature selection publication-title: IEEE Access – year: 2018 ident: b0090 article-title: An improved crow search algorithm applied to energy problems publication-title: Energies – year: 1992 ident: b0160 article-title: Feature selection problem: Traditional methods and a new algorithm publication-title: Proceedings Tenth National Conference on Artificial Intelligence – reference: De Souza, R. C. T., Coelho, L. D. S., De MacEdo, C. A., & Pierezan, J. (2018). A V-Shaped Binary Crow Search Algorithm for Feature Selection. In: 2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings, pp. 1–8. – volume: 17 start-page: 491 year: 2005 end-page: 502 ident: b0175 article-title: Toward integrating feature selection algorithms for classification and clustering publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: Cover, T. M., & Thomas, J. A. (2005). Elements of Information Theory. In Elements of Information Theory. – volume: 31 start-page: 171 year: 2019 end-page: 188 ident: b0270 article-title: Feature selection via a novel chaotic crow search algorithm publication-title: Neural Computing and Applications – year: 2006 ident: b0085 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – volume: 79 start-page: 164 year: 2017 end-page: 180 ident: b0235 article-title: Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm publication-title: Expert Systems with Applications – volume: 7 start-page: 26343 year: 2019 end-page: 26361 ident: b0040 article-title: A New Hybrid Algorithm Based on Grey Wolf Optimization and Crow Search Algorithm for Unconstrained Function Optimization and Feature Selection publication-title: IEEE Access – volume: 128 start-page: 140 year: 2019 end-page: 156 ident: b0050 article-title: Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection publication-title: Expert Systems with Applications – volume: 83 start-page: 1 year: 2017 end-page: 17 ident: b0055 article-title: A novel bacterial foraging optimization algorithm for feature selection publication-title: Expert Systems with Applications – volume: 497 start-page: 219 year: 2019 end-page: 239 ident: b0300 article-title: An evolutionary gravitational search-based feature selection publication-title: Information Sciences – volume: 118 start-page: 340 year: 2019 end-page: 354 ident: b0030 article-title: An improved fast fuzzy c-means using crow search optimization algorithm for crop identification in agricultural publication-title: Expert Systems with Applications – volume: 71 start-page: 1161 year: 2018 end-page: 1175 ident: b0265 article-title: Chaotic crow search algorithm for fractional optimization problems publication-title: Applied Soft Computing – reference: . – volume: 161 start-page: 185 year: 2018 end-page: 204 ident: b0185 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowledge-Based Systems – volume: 74 start-page: 2914 year: 2011 end-page: 2928 ident: b0135 article-title: A new local search based hybrid genetic algorithm for feature selection publication-title: Neurocomputing – volume: 141 start-page: 112976 year: 2020 ident: b0315 article-title: Gaussian mutational chaotic fruit fly-built optimization and feature selection publication-title: Expert Systems with Applications – volume: 12 start-page: 150 year: 2020 end-page: 175 ident: b0215 article-title: Efficient Hybrid Nature-Inspired Binary Optimizers for Feature Selection publication-title: Cognitive Computation – volume: 2 start-page: 441 year: 2018 end-page: 444 ident: b0290 article-title: Hook innovation boosts foraging efficiency in tool-using crows publication-title: Nature Ecology & Evolution – volume: 68 start-page: 412 year: 2018 end-page: 424 ident: b0110 article-title: Improved diagnosis of Parkinson's disease using optimized crow search algorithm publication-title: Computers & Electrical Engineering – volume: 159 start-page: 113572 year: 2020 ident: b0240 article-title: Enhanced Crow Search Algorithm for Feature Selection publication-title: Expert Systems with Applications – year: 2016 ident: b0100 article-title: A hybrid approach based on particle swarm optimization and random forests for e-mail spam filtering publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – reference: Mafarja, M. M., Eleyan, D., Jaber, I., Hammouri, A., & Mirjalili, S. (2017). Binary Dragonfly Algorithm for Feature Selection. In Proceedings - 2017 International Conference on New Trends in Computing Sciences, ICTCS 2017. – volume: 180 start-page: 723 year: 2007 end-page: 737 ident: b0285 article-title: Framework for efficient feature selection in genetic algorithm based data mining publication-title: European Journal of Operational Research – volume: 147 start-page: 271 year: 2015 ident: 10.1016/j.eswa.2020.114288_b0145 article-title: An advanced ACO algorithm for feature subset selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.06.067 – volume: 43 start-page: 583 year: 2016 ident: 10.1016/j.eswa.2020.114288_b0320 article-title: Binary artificial algae algorithm for multidimensional knapsack problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.02.027 – year: 1992 ident: 10.1016/j.eswa.2020.114288_b0160 article-title: Feature selection problem: Traditional methods and a new algorithm – volume: 159 start-page: 113572 year: 2020 ident: 10.1016/j.eswa.2020.114288_b0240 article-title: Enhanced Crow Search Algorithm for Feature Selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113572 – year: 2019 ident: 10.1016/j.eswa.2020.114288_b0245 article-title: A hybrid bat-crow search algorithm based home energy management in smart grid publication-title: Advances in Intelligent Systems and Computing – volume: 139 start-page: 112824 year: 2020 ident: 10.1016/j.eswa.2020.114288_b0005 article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.112824 – volume: 32 start-page: 10915 issue: 15 year: 2020 ident: 10.1016/j.eswa.2020.114288_b0105 article-title: Usability feature extraction using modified crow search algorithm: A novel approach publication-title: Neural Computing and Applications doi: 10.1007/s00521-018-3688-6 – volume: 24 start-page: 1565 issue: 3 year: 2020 ident: 10.1016/j.eswa.2020.114288_b0025 article-title: Feature selection strategy based on hybrid crow search optimization algorithm integrated with chaos theory and fuzzy c-means algorithm for medical diagnosis problems publication-title: Soft Computing doi: 10.1007/s00500-019-03988-3 – year: 2006 ident: 10.1016/j.eswa.2020.114288_b0085 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – volume: 62 start-page: 441 year: 2018 ident: 10.1016/j.eswa.2020.114288_b0210 article-title: Whale optimization approaches for wrapper feature selection publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2017.11.006 – volume: 33 start-page: 3597 issue: 6 year: 2017 ident: 10.1016/j.eswa.2020.114288_b0130 article-title: An improved Crow Search Algorithm for high-dimensional problems publication-title: Journal of Intelligent and Fuzzy Systems – volume: 497 start-page: 219 year: 2019 ident: 10.1016/j.eswa.2020.114288_b0300 article-title: An evolutionary gravitational search-based feature selection publication-title: Information Sciences doi: 10.1016/j.ins.2019.05.038 – volume: 20 start-page: 391 issue: 2 year: 2017 ident: 10.1016/j.eswa.2020.114288_b0010 article-title: A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks publication-title: Engineering Science and Technology, an International Journal doi: 10.1016/j.jestch.2017.02.004 – volume: 117 start-page: 267 year: 2019 ident: 10.1016/j.eswa.2020.114288_b0180 article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.09.015 – ident: 10.1016/j.eswa.2020.114288_b0195 doi: 10.1145/3231053.3231071 – ident: 10.1016/j.eswa.2020.114288_b0170 doi: 10.1007/978-1-4615-5689-3 – ident: 10.1016/j.eswa.2020.114288_b0200 doi: 10.1109/ICTCS.2017.43 – volume: 128 start-page: 140 year: 2019 ident: 10.1016/j.eswa.2020.114288_b0050 article-title: Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.03.039 – volume: 15 start-page: R80 issue: 3 year: 2005 ident: 10.1016/j.eswa.2020.114288_b0060 article-title: Corvid cognition publication-title: Current Biology doi: 10.1016/j.cub.2005.01.020 – ident: 10.1016/j.eswa.2020.114288_b0070 doi: 10.1002/047174882X – volume: 167 start-page: 809 year: 2020 ident: 10.1016/j.eswa.2020.114288_b0165 article-title: A Binary Crow Search Algorithm for Solving Two-dimensional Bin Packing Problem with Fixed Orientation publication-title: Procedia Computer Science doi: 10.1016/j.procs.2020.03.420 – volume: 12 start-page: 150 issue: 1 year: 2020 ident: 10.1016/j.eswa.2020.114288_b0215 article-title: Efficient Hybrid Nature-Inspired Binary Optimizers for Feature Selection publication-title: Cognitive Computation doi: 10.1007/s12559-019-09668-6 – volume: 433 start-page: 241 issue: 3 year: 2008 ident: 10.1016/j.eswa.2020.114288_b0065 article-title: Extraordinary large brains in tool-using New Caledonian crows (Corvus moneduloides) publication-title: Neuroscience Letters doi: 10.1016/j.neulet.2008.01.026 – year: 2018 ident: 10.1016/j.eswa.2020.114288_b0090 article-title: An improved crow search algorithm applied to energy problems publication-title: Energies doi: 10.3390/en11030571 – volume: 7 start-page: 26343 year: 2019 ident: 10.1016/j.eswa.2020.114288_b0040 article-title: A New Hybrid Algorithm Based on Grey Wolf Optimization and Crow Search Algorithm for Unconstrained Function Optimization and Feature Selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897325 – volume: 83 start-page: 1 year: 2017 ident: 10.1016/j.eswa.2020.114288_b0055 article-title: A novel bacterial foraging optimization algorithm for feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.04.019 – year: 1995 ident: 10.1016/j.eswa.2020.114288_b0150 article-title: Particle swarm optimization – year: 2016 ident: 10.1016/j.eswa.2020.114288_b0100 article-title: A hybrid approach based on particle swarm optimization and random forests for e-mail spam filtering publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 180 start-page: 723 issue: 2 year: 2007 ident: 10.1016/j.eswa.2020.114288_b0285 article-title: Framework for efficient feature selection in genetic algorithm based data mining publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.02.040 – volume: 65–69 year: 2018 ident: 10.1016/j.eswa.2020.114288_b0015 article-title: Feature selection using salp swarm algorithm with chaos publication-title: ACM International Conference Proceeding Series – volume: 141 start-page: 112976 year: 2020 ident: 10.1016/j.eswa.2020.114288_b0315 article-title: Gaussian mutational chaotic fruit fly-built optimization and feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.112976 – volume: 36 start-page: 27 year: 2017 ident: 10.1016/j.eswa.2020.114288_b0280 article-title: A hybrid algorithm using ant and bee colony optimization for feature selection and classification (AC-ABC Hybrid) publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2017.04.002 – ident: 10.1016/j.eswa.2020.114288_b0295 doi: 10.1002/9780470496916 – volume: 62 start-page: 91 year: 2016 ident: 10.1016/j.eswa.2020.114288_b0325 article-title: A hybrid approach of differential evolution and artificial bee colony for feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.06.004 – volume: 169 start-page: 1 year: 2016 ident: 10.1016/j.eswa.2020.114288_b0045 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm publication-title: Computers & Structures doi: 10.1016/j.compstruc.2016.03.001 – ident: 10.1016/j.eswa.2020.114288_b0190 doi: 10.1145/3102304.3102325 – ident: 10.1016/j.eswa.2020.114288_b0310 doi: 10.1109/CEC.2016.7744378 – volume: 8 start-page: 687 issue: 1 year: 2008 ident: 10.1016/j.eswa.2020.114288_b0140 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2007.05.007 – year: 2019 ident: 10.1016/j.eswa.2020.114288_b0125 article-title: A new binary grasshopper optimization algorithm for feature selection problem publication-title: Journal of King Saud University - Computer and Information Sciences – volume: 74 start-page: 2914 issue: 17 year: 2011 ident: 10.1016/j.eswa.2020.114288_b0135 article-title: A new local search based hybrid genetic algorithm for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.03.034 – start-page: 225 year: 2013 ident: 10.1016/j.eswa.2020.114288_b0230 article-title: Binary Bat Algorithm for Feature Selection – volume: 68 start-page: 412 year: 2018 ident: 10.1016/j.eswa.2020.114288_b0110 article-title: Improved diagnosis of Parkinson's disease using optimized crow search algorithm publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2018.04.014 – year: 1997 ident: 10.1016/j.eswa.2020.114288_b0155 article-title: Discrete binary version of the particle swarm algorithm – volume: 116 start-page: 147 year: 2019 ident: 10.1016/j.eswa.2020.114288_b0035 article-title: Binary butterfly optimization approaches for feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.08.051 – year: 2019 ident: 10.1016/j.eswa.2020.114288_b0220 article-title: Oppositional Crow Search Algorithm with mutation operator for global optimization and application in designing FOPID controller publication-title: Evolving Systems – volume: 81 start-page: 148 year: 2019 ident: 10.1016/j.eswa.2020.114288_b0275 article-title: Firefly algorithm based feature selection for network intrusion detection publication-title: Computers & Security doi: 10.1016/j.cose.2018.11.005 – volume: 7 start-page: 39496 year: 2019 ident: 10.1016/j.eswa.2020.114288_b0020 article-title: Binary optimization using hybrid grey wolf optimization for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906757 – ident: 10.1016/j.eswa.2020.114288_b0250 doi: 10.1007/978-3-319-69811-3_7 – volume: 2 start-page: 441 issue: 3 year: 2018 ident: 10.1016/j.eswa.2020.114288_b0290 article-title: Hook innovation boosts foraging efficiency in tool-using crows publication-title: Nature Ecology & Evolution doi: 10.1038/s41559-017-0429-7 – ident: 10.1016/j.eswa.2020.114288_b0080 doi: 10.1109/CEC.2018.8477975 – year: 1997 ident: 10.1016/j.eswa.2020.114288_b0305 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585893 – volume: 9 start-page: 1 year: 2013 ident: 10.1016/j.eswa.2020.114288_b0225 article-title: S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2012.09.002 – volume: 79 start-page: 164 year: 2017 ident: 10.1016/j.eswa.2020.114288_b0235 article-title: Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.02.042 – volume: 71 start-page: 1161 year: 2018 ident: 10.1016/j.eswa.2020.114288_b0265 article-title: Chaotic crow search algorithm for fractional optimization problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.03.019 – volume: 1 start-page: 131 issue: 3 year: 1997 ident: 10.1016/j.eswa.2020.114288_b0075 article-title: Feature Selection for Classification publication-title: Intelligent Data Analysis doi: 10.3233/IDA-1997-1302 – volume: 31 start-page: 171 issue: 1 year: 2019 ident: 10.1016/j.eswa.2020.114288_b0270 article-title: Feature selection via a novel chaotic crow search algorithm publication-title: Neural Computing and Applications doi: 10.1007/s00521-017-2988-6 – volume: 32 start-page: 335 issue: 3 year: 2020 ident: 10.1016/j.eswa.2020.114288_b0120 article-title: Improved salp swarm algorithm for feature selection publication-title: Journal of King Saud University - Computer and Information Sciences doi: 10.1016/j.jksuci.2018.06.003 – volume: 17 start-page: 491 issue: 4 year: 2005 ident: 10.1016/j.eswa.2020.114288_b0175 article-title: Toward integrating feature selection algorithms for classification and clustering publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2005.66 – volume: 260 start-page: 302 year: 2017 ident: 10.1016/j.eswa.2020.114288_b0205 article-title: Hybrid Whale Optimization Algorithm with simulated annealing for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.053 – year: 2018 ident: 10.1016/j.eswa.2020.114288_b0115 article-title: A hybrid crow search algorithm based on rough searching scheme for solving engineering optimization problems publication-title: Journal of Ambient Intelligence and Humanized Computing – volume: 161 start-page: 185 year: 2018 ident: 10.1016/j.eswa.2020.114288_b0185 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.08.003 – volume: 80 start-page: 761 year: 2019 ident: 10.1016/j.eswa.2020.114288_b0255 article-title: Feature selection based on brain storm optimization for data classification publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.04.037 – volume: 74 start-page: 634 year: 2019 ident: 10.1016/j.eswa.2020.114288_b0260 article-title: Feature selection based on artificial bee colony and gradient boosting decision tree publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.10.036 – volume: 118 start-page: 340 year: 2019 ident: 10.1016/j.eswa.2020.114288_b0030 article-title: An improved fast fuzzy c-means using crow search optimization algorithm for crop identification in agricultural publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.10.009 – volume: 172 start-page: 371 year: 2016 ident: 10.1016/j.eswa.2020.114288_b0095 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 |
| SSID | ssj0017007 |
| Score | 2.578413 |
| Snippet | •Feature selection approach based on Binary Crow Search Algorithm is proposed.•Time varying flight length is used to enhance balance between exploration &... Crow Search Algorithm (CSA) is a simple yet effective meta-heuristic algorithm that has been applied to solve many engineering problems. In CSA, fl parameter... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114288 |
| SubjectTerms | Algorithms Classification Crow Search Algorithm Exploitation Feature selection Heuristic methods High dimensional data Parameters Search algorithms Transfer function Transfer functions |
| Title | Feature selection using Binary Crow Search Algorithm with time varying flight length |
| URI | https://dx.doi.org/10.1016/j.eswa.2020.114288 https://www.proquest.com/docview/2492315675 |
| Volume | 168 |
| WOSCitedRecordID | wos000640552200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXQlgMXvhEtBfnALUqVdeK1fVyqIkCoQuoi7S2y80G22qbVJin9-cxknHRZRAVIXKIocuLI78UZj2fmMfZWZE5j0ZIwSpQKk9gloRHShXluy2jmplFU9kVcP6vTU71cmi9eFbXp5QRUXeubG3P1X6GGawA2ps7-BdzjQ-ECnAPocATY4fhHwKNRh7sCTa9wg-h2vT_gHWXeHsO6O6Ag42C-_na5WbXVhXfHri6K4Boa9dGVa1y2Byi00lY_-e-xOHLrS0APyXFb2-BbAQNdXnWUyT531Qrs9Gr8CZzZqiOuAAUrLJvU2HzbBSGmuJtCSZjkFxtyY24DkcjBCOBPSYPnqKDpVas4nCnSRBznX9LV-WUuJ7fC-VHRfMcCUaKvayxIBHCnRvYZdoZ9CdwxMpj8vSeUNHrC9uYfT5afxo0lFVEG_fByPo-KQv52e_qdrbLz1-5NkcVj9tCvIficsH_C7hX1U_Zo0Ofgfrp-xhaeCnykAu-pwIkKHKnAiQp8pAJHQDlSgXsqcKICJyo8Z1_fnyyOP4ReRSPMYqHb0CZymkVJCYaYKguXZDADS5PDqVPaxbkybmaUlbkVxs50qWHBoHOhbamVk1ERv2CT-rIuXjKuYGhlGevYxkmS5MKWJgcLNovB5nRCZvtsOoxXmvkS86h0sk6HWMLzFMc4xTFOaYz3WTDec0UFVu5sLQcYUm8ikumXAmvuvO9wwCz132qTir44oYQl88E_PvYVe3D7PRyySbvpitfsfnbdrprNG8-9HxnPlpQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+using+Binary+Crow+Search+Algorithm+with+time+varying+flight+length&rft.jtitle=Expert+systems+with+applications&rft.au=Chaudhuri%2C+Abhilasha&rft.au=Sahu%2C+Tirath+Prasad&rft.date=2021-04-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=168&rft_id=info:doi/10.1016%2Fj.eswa.2020.114288&rft.externalDocID=S0957417420309908 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |