Self-adaptive MRPBIL-DE for 6D robot multiobjective trajectory planning

•Efficient self-adaptive multiobjective meta-heuristic (MOMH) algorithm.•Use of success-history based parameter adaptation for optimisation parameters.•Comparative results of a robot path planning problem with well-established MOMHs.•New design results set as the baseline for further studies. This w...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 136; pp. 133 - 144
Main Authors: Bureerat, Sujin, Pholdee, Nantiwat, Radpukdee, Thana, Jaroenapibal, Papot
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01.12.2019
Elsevier BV
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Efficient self-adaptive multiobjective meta-heuristic (MOMH) algorithm.•Use of success-history based parameter adaptation for optimisation parameters.•Comparative results of a robot path planning problem with well-established MOMHs.•New design results set as the baseline for further studies. This work presents self-adaptive multiobjective real-code population-based incremental learning hybridised with differential evolution (MRPBIL-DE) for solving a 6D robot trajectory planning multiobjective optimisation problem. The objective functions are assigned to minimise travelling time and minimise maximum jerk taking place during motion while the constraints are velocity, acceleration and jerk constraints. A five order polynomial function is used to represent a motion equation while the motion path is divided into two sub-paths; from initial to intermediate positions and from intermediate to final positions. The optimiser is used to find a set of design variables including joint positions, velocities and accelerations at intermediate positions, moving time from the initial to intermediate positions, and that from the intermediate to final positions. Several multiobjective meta-heuristics (MOMHs) along with the proposed algorithm are used to solve the trajectory optimisation problem of robot manipulators while their performances are investigated. The results indicated that the proposed algorithm is effective and efficient for multiobjective robot trajectory planning optimisation problem. The results obtained from such a method are set as the baseline for further study of robot trajectory planning optimisation.
AbstractList This work presents self-adaptive multiobjective real-code population-based incremental learning hybridised with differential evolution (MRPBIL-DE) for solving a 6D robot trajectory planning multiobjective optimisation problem. The objective functions are assigned to minimise travelling time and minimise maximum jerk taking place during motion while the constraints are velocity, acceleration and jerk constraints. A five order polynomial function is used to represent a motion equation while the motion path is divided into two sub-paths; from initial to intermediate positions and from intermediate to final positions. The optimiser is used to find a set of design variables including joint positions, velocities and accelerations at intermediate positions, moving time from the initial to intermediate positions, and that from the intermediate to final positions. Several multiobjective meta-heuristics (MOMHs) along with the proposed algorithm are used to solve the trajectory optimisation problem of robot manipulators while their performances are investigated. The results indicated that the proposed algorithm is effective and efficient for multiobjective robot trajectory planning optimisation problem. The results obtained from such a method are set as the baseline for further study of robot trajectory planning optimisation.
•Efficient self-adaptive multiobjective meta-heuristic (MOMH) algorithm.•Use of success-history based parameter adaptation for optimisation parameters.•Comparative results of a robot path planning problem with well-established MOMHs.•New design results set as the baseline for further studies. This work presents self-adaptive multiobjective real-code population-based incremental learning hybridised with differential evolution (MRPBIL-DE) for solving a 6D robot trajectory planning multiobjective optimisation problem. The objective functions are assigned to minimise travelling time and minimise maximum jerk taking place during motion while the constraints are velocity, acceleration and jerk constraints. A five order polynomial function is used to represent a motion equation while the motion path is divided into two sub-paths; from initial to intermediate positions and from intermediate to final positions. The optimiser is used to find a set of design variables including joint positions, velocities and accelerations at intermediate positions, moving time from the initial to intermediate positions, and that from the intermediate to final positions. Several multiobjective meta-heuristics (MOMHs) along with the proposed algorithm are used to solve the trajectory optimisation problem of robot manipulators while their performances are investigated. The results indicated that the proposed algorithm is effective and efficient for multiobjective robot trajectory planning optimisation problem. The results obtained from such a method are set as the baseline for further study of robot trajectory planning optimisation.
Author Jaroenapibal, Papot
Bureerat, Sujin
Pholdee, Nantiwat
Radpukdee, Thana
Author_xml – sequence: 1
  givenname: Sujin
  orcidid: 0000-0002-6332-1202
  surname: Bureerat
  fullname: Bureerat, Sujin
  email: sujbur@kku.ac.th
  organization: Sustainable and Infrastructure Research and Development Center, Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University, 40002, Thailand
– sequence: 2
  givenname: Nantiwat
  orcidid: 0000-0002-4370-5241
  surname: Pholdee
  fullname: Pholdee, Nantiwat
  email: nantiwat@kku.ac.th
  organization: Sustainable and Infrastructure Research and Development Center, Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University, 40002, Thailand
– sequence: 3
  givenname: Thana
  surname: Radpukdee
  fullname: Radpukdee, Thana
  organization: Department of Industrial Engineering, Faculty of Engineering, Khon Kaen University, 40002, Thailand
– sequence: 4
  givenname: Papot
  surname: Jaroenapibal
  fullname: Jaroenapibal, Papot
  email: papoja@kku.ac.th
  organization: Department of Industrial Engineering, Faculty of Engineering, Khon Kaen University, 40002, Thailand
BookMark eNp9kEtPwzAQhC1UJNrCH-AUiXOC344lLtCWglQE4nG2nMRBjlK7OGlR_z0O5cShp93DfLszMwEj550B4BLBDEHEr5vMdN86wxDJDPIMEnICxigXJOVCkhEYQ8lESpGgZ2DSdQ2ESEAoxmD5Zto61ZXe9HZnkqfXl7vHVTpfJLUPCZ8nwRe-T9bbtre-aEz5q-qDHlYf9smm1c5Z93kOTmvddubib07Bx_3iffaQrp6Xj7PbVVoSnPepJlIKqHk0YkSRQ14RWmDJK14UUGtWMcoqIikTtEZMlphJmkNMak0px6ImU3B1uLsJ_mtrul41fhtcfKkwziXjCMXwU5AfVGXwXRdMrUrb6xjBReu2VQiqoTbVqKE2NdSmIFeRjCj-h26CXeuwPw7dHCATo--sCaorrXGlqWyIRanK22P4D_UWhqk
CitedBy_id crossref_primary_10_3390_electronics9050859
crossref_primary_10_3390_app132011479
crossref_primary_10_1016_j_mechmachtheory_2020_103957
crossref_primary_10_1155_2021_4740995
crossref_primary_10_3390_app12147219
crossref_primary_10_1155_2022_6506379
crossref_primary_10_1007_s11370_022_00440_8
crossref_primary_10_3390_pr10040728
crossref_primary_10_1007_s00500_020_05249_0
crossref_primary_10_1016_j_eswa_2021_115853
crossref_primary_10_3390_pr10051014
crossref_primary_10_1016_j_knosys_2022_109533
crossref_primary_10_1088_1742_6596_2483_1_012046
crossref_primary_10_1177_16878132241262578
crossref_primary_10_1016_j_ymssp_2025_112518
crossref_primary_10_1016_j_eswa_2021_115690
crossref_primary_10_1016_j_rcim_2023_102677
crossref_primary_10_1007_s11071_025_11248_3
crossref_primary_10_3390_aerospace12060461
crossref_primary_10_1177_09544062241296591
crossref_primary_10_1016_j_jmsy_2024_10_021
crossref_primary_10_3390_app12168145
Cites_doi 10.1016/j.advengsoft.2014.04.005
10.1016/j.eswa.2018.02.035
10.1016/j.eswa.2016.06.005
10.1016/j.eswa.2018.06.047
10.1016/j.robot.2016.08.001
10.1007/978-3-540-70706-6_21
10.1023/A:1008202821328
10.1007/978-3-319-59072-1_18
10.1109/41.824136
10.1109/TEVC.2014.2378512
10.1016/S0952-1976(02)00067-2
10.1016/j.eswa.2017.06.009
10.1109/TEVC.2014.2350987
10.1109/TEVC.2009.2014613
10.1016/j.eswa.2016.03.035
10.1016/j.ins.2012.10.008
10.1109/TEVC.2007.892759
10.1109/TEVC.2012.2204264
10.1109/4235.996017
10.1016/j.mechmachtheory.2017.11.006
10.1080/00207721.2014.891664
10.1016/j.asoc.2005.06.009
10.1016/j.eswa.2017.12.008
10.1080/10556780903548265
10.1016/j.eswa.2015.03.016
10.1016/j.asoc.2017.05.012
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Dec 1, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 1, 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2019.06.033
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 144
ExternalDocumentID 10_1016_j_eswa_2019_06_033
S0957417419304336
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-a39970a6174e7b806d34b296d6bb0aa5d545d394574f159c25948023fa44627f3
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000484871300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 09 07:54:53 EST 2025
Sat Nov 29 07:05:10 EST 2025
Tue Nov 18 22:39:57 EST 2025
Fri Feb 23 02:24:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Time-jerk minimisation
Multiobjective meta-heuristic algorithm
Robot trajectory planning multiobjective
Optimisation
Self-adaptive algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-a39970a6174e7b806d34b296d6bb0aa5d545d394574f159c25948023fa44627f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6332-1202
0000-0002-4370-5241
PQID 2289561103
PQPubID 2045477
PageCount 12
ParticipantIDs proquest_journals_2289561103
crossref_citationtrail_10_1016_j_eswa_2019_06_033
crossref_primary_10_1016_j_eswa_2019_06_033
elsevier_sciencedirect_doi_10_1016_j_eswa_2019_06_033
PublicationCentury 2000
PublicationDate 2019-12-01
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Tanabe, Fukunaga (bib0028) 2013
Hidalgo-Paniagua, Vega-Rodríguez, Ferruz (bib0008) 2016; 58
Xu, Li, Chen, Hou (bib0033) 2015
Pholdee, Bureerat, Jaroenapibal, Radpukdee (bib0020) 2017; 10261
Robič, Filipič (bib0024) 2005; 3410
Pholdee, Bureerat (bib0016) 2013
Aittokoski, Miettinen (bib0001) 2010; 25
Garg, Kumar (bib0007) 2002; 15
Savsani, Jhala, Savsani (bib0026) 2013
Nuaekaew, Artrit, Pholdee, Bureerat (bib0014) 2017; 87
Coello Coello, Lechuga (bib0004) 2002; vol. 2
Pires, de Moura Oliveira, Machado (bib0022) 2007; 7
Tangpattanakul, Artrit (bib0030) 2009
Wang, Purshouse, Fleming (bib0032) 2013; 17
Bureerat, Sriworamas (bib0003) 2007; 9
Pholdee, Bureerat (bib0018) 2014; 75
Zhang, Sanderson (bib0035) 2009; 13
Pholdee, Bureerat (bib0017) 2013; 223
Pholdee, Bureerat (bib0019) 2016; 47
Wang, Jiao, Yao (bib0031) 2015; 19
Tanabe, Fukunaga (bib0029) 2014
Zareizadeh, Helfroush, Rahideh, Kazemi (bib0034) 2018; 113
Deb, Pratap, Agarwal, Meyarivan (bib0005) 2002; 6
Huang, Hu, Wu, Zeng (bib0009) 2018; 121
Piazzi, Visioli (bib0021) 2000; 47
Onan, Korukoğlu, Bulut (bib0015) 2016; 62
Wichapong, Bureerat, Pholdee (bib0010) 2018; 220
Zhang, Tian, Jin (bib0036) 2015; 19
Bureerat (bib0002) 2011; 96
Mac, Copot, Tran, De Keyser (bib0012) 2016; 86
Mac, Copot, Tran, Keyser (bib0013) 2017; 59
Qingfu, Hui (bib0023) 2007; 11
Liu, Zhang, He, Jiang (bib0011) 2018; 102
Storn, Price (bib0027) 1997; 11
Gao, Zhou, Li, Pan, Yi (bib0006) 2015; 42
Russo, Bernardino, Barbosa (bib0025) 2018; 99
Hidalgo-Paniagua (10.1016/j.eswa.2019.06.033_bib0008) 2016; 58
Liu (10.1016/j.eswa.2019.06.033_bib0011) 2018; 102
Pholdee (10.1016/j.eswa.2019.06.033_bib0018) 2014; 75
Piazzi (10.1016/j.eswa.2019.06.033_bib0021) 2000; 47
Pholdee (10.1016/j.eswa.2019.06.033_bib0017) 2013; 223
Savsani (10.1016/j.eswa.2019.06.033_bib0026) 2013
Robič (10.1016/j.eswa.2019.06.033_bib0024) 2005; 3410
Garg (10.1016/j.eswa.2019.06.033_bib0007) 2002; 15
Tangpattanakul (10.1016/j.eswa.2019.06.033_bib0030) 2009
Storn (10.1016/j.eswa.2019.06.033_bib0027) 1997; 11
Pires (10.1016/j.eswa.2019.06.033_bib0022) 2007; 7
Tanabe (10.1016/j.eswa.2019.06.033_bib0028) 2013
Deb (10.1016/j.eswa.2019.06.033_bib0005) 2002; 6
Bureerat (10.1016/j.eswa.2019.06.033_bib0003) 2007; 9
Tanabe (10.1016/j.eswa.2019.06.033_bib0029) 2014
Mac (10.1016/j.eswa.2019.06.033_bib0013) 2017; 59
Pholdee (10.1016/j.eswa.2019.06.033_bib0020) 2017; 10261
Russo (10.1016/j.eswa.2019.06.033_bib0025) 2018; 99
Wichapong (10.1016/j.eswa.2019.06.033_bib0010) 2018; 220
Wang (10.1016/j.eswa.2019.06.033_bib0031) 2015; 19
Nuaekaew (10.1016/j.eswa.2019.06.033_bib0014) 2017; 87
Wang (10.1016/j.eswa.2019.06.033_bib0032) 2013; 17
Qingfu (10.1016/j.eswa.2019.06.033_bib0023) 2007; 11
Xu (10.1016/j.eswa.2019.06.033_bib0033) 2015
Coello Coello (10.1016/j.eswa.2019.06.033_bib0004) 2002; vol. 2
Aittokoski (10.1016/j.eswa.2019.06.033_bib0001) 2010; 25
Onan (10.1016/j.eswa.2019.06.033_bib0015) 2016; 62
Bureerat (10.1016/j.eswa.2019.06.033_bib0002) 2011; 96
Pholdee (10.1016/j.eswa.2019.06.033_bib0016) 2013
Huang (10.1016/j.eswa.2019.06.033_bib0009) 2018; 121
Zhang (10.1016/j.eswa.2019.06.033_bib0035) 2009; 13
Zhang (10.1016/j.eswa.2019.06.033_bib0036) 2015; 19
Zareizadeh (10.1016/j.eswa.2019.06.033_bib0034) 2018; 113
Pholdee (10.1016/j.eswa.2019.06.033_bib0019) 2016; 47
Mac (10.1016/j.eswa.2019.06.033_bib0012) 2016; 86
Gao (10.1016/j.eswa.2019.06.033_bib0006) 2015; 42
References_xml – volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0005
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 102
  start-page: 179
  year: 2018
  end-page: 192
  ident: bib0011
  article-title: Multi-objective particle swarm optimization algorithm based on objective space division for the unequal-area facility layout problem
  publication-title: Expert Systems with Applications
– volume: 96
  start-page: 77
  year: 2011
  end-page: 86
  ident: bib0002
  article-title: Improved population-based incremental learning in continuous spaces
  publication-title: Soft computing in industrial applications
– volume: 13
  start-page: 945
  year: 2009
  end-page: 958
  ident: bib0035
  article-title: JADE: Adaptive differential evolution with optional external archive
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 62
  start-page: 1
  year: 2016
  end-page: 16
  ident: bib0015
  article-title: A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification
  publication-title: Expert Systems with Applications
– volume: 99
  start-page: 93
  year: 2018
  end-page: 102
  ident: bib0025
  article-title: Knowledge discovery in multiobjective optimization problems in engineering via Genetic Programming
  publication-title: Expert Systems with Applications
– year: 2015
  ident: bib0033
  article-title: MOPSO based multi-objective trajectory planning for robot manipulators
  publication-title: Paper presented at the 2015 2nd International Conference on Information Science and Control Engineering, 24-26 April 2015
– volume: 10261
  start-page: 143
  year: 2017
  end-page: 152
  ident: bib0020
  article-title: Many-objective optimisation of trusses through meta-heuristics
  publication-title: Lecture Notes in Computer Science
– volume: 25
  start-page: 841
  year: 2010
  end-page: 858
  ident: bib0001
  article-title: Efficient evolutionary approach to approximate the Pareto-optimal set in multiobjective optimization, UPS-EMOA
  publication-title: Optimization Method and Software
– volume: 58
  start-page: 20
  year: 2016
  end-page: 35
  ident: bib0008
  article-title: Applying the MOVNS (multi-objective variable neighborhood search) algorithm to solve the path planning problem in mobile robotics
  publication-title: Expert Systems with Applications
– year: 2009
  ident: bib0030
  article-title: Minimum-time trajectory of robot manipulator using Harmony Search algorithm
  publication-title: the Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2009. ECTI-CON 2009. 6th International Conference on
– volume: 19
  start-page: 761
  year: 2015
  end-page: 776
  ident: bib0036
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 86
  start-page: 13
  year: 2016
  end-page: 28
  ident: bib0012
  article-title: Heuristic approaches in robot path planning: A survey
  publication-title: Robotics and Autonomous Systems
– volume: 75
  start-page: 1
  year: 2014
  end-page: 13
  ident: bib0018
  article-title: Comparative performance of meta-heuristic algorithms for mass minimisation of trusses with dynamic constraints
  publication-title: Advances in Engineering Software
– volume: 220
  start-page: 06004
  year: 2018
  ident: bib0010
  article-title: Trajectory planning of a 6D robot based on Meta Heuristic algorithms
  publication-title: MATEC web of conference
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib0027
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– volume: 17
  start-page: 474
  year: 2013
  end-page: 494
  ident: bib0032
  article-title: Preference-inspired coevolutionary algorithms for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 113
  start-page: 301
  year: 2018
  end-page: 314
  ident: bib0034
  article-title: A robust gene clustering algorithm based on clonal selection in multiobjective optimization framework
  publication-title: Expert Systems with Applications
– start-page: 1
  year: 2013
  end-page: 20
  ident: bib0016
  article-title: Hybrid real-code population-based incremental learning and approximate gradients for multi-objective truss design
  publication-title: Engineering Optimization
– volume: 47
  start-page: 140
  year: 2000
  end-page: 149
  ident: bib0021
  article-title: Global minimum-jerk trajectory planning of robot manipulators
– volume: 15
  start-page: 241
  year: 2002
  end-page: 252
  ident: bib0007
  article-title: Optimization techniques applied to multiple manipulators for path planning and torque minimization
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 42
  start-page: 5976
  year: 2015
  end-page: 5987
  ident: bib0006
  article-title: Multi-objective optimization based reverse strategy with differential evolution algorithm for constrained optimization problems
  publication-title: Expert Systems with Applications
– volume: 3410
  start-page: 520
  year: 2005
  end-page: 533
  ident: bib0024
  article-title: DEMO: differential evolution for multiobjective optimization
  publication-title: Evolutionary multi-criterion optimization
– volume: 7
  start-page: 659
  year: 2007
  end-page: 667
  ident: bib0022
  article-title: Manipulator trajectory planning using a MOEA
  publication-title: Applied Soft Computing
– year: 2013
  ident: bib0026
  article-title: Optimized trajectory planning of a robotic arm using teaching learning based optimization (TLBO) and artificial bee colony (ABC) optimization techniques
  publication-title: Paper presented at the Systems Conference (SysCon)
– volume: 87
  start-page: 79
  year: 2017
  end-page: 89
  ident: bib0014
  article-title: Optimal reactive power dispatch problem using a two-archive multi-objective grey wolf optimizer
  publication-title: Expert Systems with Applications
– volume: 47
  start-page: 474
  year: 2016
  end-page: 491
  ident: bib0019
  article-title: Hybrid real-code ant colony optimisation for constrained mechanical design
  publication-title: International Journal of Systems Science
– volume: 59
  start-page: 68
  year: 2017
  end-page: 76
  ident: bib0013
  article-title: A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization
  publication-title: Applied Soft Computing
– volume: 223
  start-page: 136
  year: 2013
  end-page: 152
  ident: bib0017
  article-title: Hybridisation of real-code population-based incremental learning and differential evolution for multiobjective design of trusses
  publication-title: Information Sciences
– volume: 9
  start-page: 223
  year: 2007
  end-page: 231
  ident: bib0003
  article-title: Population-based incremental learning for multiobjective optimisation
  publication-title: Advance in Soft Computing
– year: 2013
  ident: bib0028
  article-title: Evaluating the performance of SHADE on CEC 2013 benchmark problems
  publication-title: the Evolutionary Computation (CEC), 20-23 June 2013 2013 IEEE Congress on
– volume: 19
  start-page: 524
  year: 2015
  end-page: 541
  ident: bib0031
  article-title: Two_Arch2: An improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2014
  ident: bib0029
  article-title: Improving the search performance of SHADE using linear population size reduction
  publication-title: Paper presented at the IEEE Congress on Evolutionary Computation (CEC), 2014, 6-11 July 2014
– volume: 121
  start-page: 530
  year: 2018
  end-page: 544
  ident: bib0009
  article-title: Optimal time-jerk trajectory planning for industrial robots
  publication-title: Mechanism and Machine Theory
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib0023
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: vol. 2
  start-page: 1051
  year: 2002
  end-page: 1056
  ident: bib0004
  article-title: MOPSO: A proposal for multiple objective particle swarm optimization
  publication-title: Proceedings of the 2002 Congress on evolutionary computation
– volume: 75
  start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2019.06.033_bib0018
  article-title: Comparative performance of meta-heuristic algorithms for mass minimisation of trusses with dynamic constraints
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2014.04.005
– volume: 102
  start-page: 179
  year: 2018
  ident: 10.1016/j.eswa.2019.06.033_bib0011
  article-title: Multi-objective particle swarm optimization algorithm based on objective space division for the unequal-area facility layout problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.02.035
– volume: 62
  start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2019.06.033_bib0015
  article-title: A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.06.005
– volume: 3410
  start-page: 520
  year: 2005
  ident: 10.1016/j.eswa.2019.06.033_bib0024
  article-title: DEMO: differential evolution for multiobjective optimization
– volume: 113
  start-page: 301
  year: 2018
  ident: 10.1016/j.eswa.2019.06.033_bib0034
  article-title: A robust gene clustering algorithm based on clonal selection in multiobjective optimization framework
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.06.047
– volume: 86
  start-page: 13
  year: 2016
  ident: 10.1016/j.eswa.2019.06.033_bib0012
  article-title: Heuristic approaches in robot path planning: A survey
  publication-title: Robotics and Autonomous Systems
  doi: 10.1016/j.robot.2016.08.001
– volume: 96
  start-page: 77
  year: 2011
  ident: 10.1016/j.eswa.2019.06.033_bib0002
  article-title: Improved population-based incremental learning in continuous spaces
– year: 2013
  ident: 10.1016/j.eswa.2019.06.033_bib0026
  article-title: Optimized trajectory planning of a robotic arm using teaching learning based optimization (TLBO) and artificial bee colony (ABC) optimization techniques
– volume: 9
  start-page: 223
  year: 2007
  ident: 10.1016/j.eswa.2019.06.033_bib0003
  article-title: Population-based incremental learning for multiobjective optimisation
  publication-title: Advance in Soft Computing
  doi: 10.1007/978-3-540-70706-6_21
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.eswa.2019.06.033_bib0027
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– year: 2014
  ident: 10.1016/j.eswa.2019.06.033_bib0029
  article-title: Improving the search performance of SHADE using linear population size reduction
– start-page: 1
  year: 2013
  ident: 10.1016/j.eswa.2019.06.033_bib0016
  article-title: Hybrid real-code population-based incremental learning and approximate gradients for multi-objective truss design
  publication-title: Engineering Optimization
– year: 2013
  ident: 10.1016/j.eswa.2019.06.033_bib0028
  article-title: Evaluating the performance of SHADE on CEC 2013 benchmark problems
– volume: 10261
  start-page: 143
  year: 2017
  ident: 10.1016/j.eswa.2019.06.033_bib0020
  article-title: Many-objective optimisation of trusses through meta-heuristics
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-319-59072-1_18
– volume: 47
  start-page: 140
  issue: 1
  year: 2000
  ident: 10.1016/j.eswa.2019.06.033_bib0021
  article-title: Global minimum-jerk trajectory planning of robot manipulators
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/41.824136
– volume: 19
  start-page: 761
  issue: 6
  year: 2015
  ident: 10.1016/j.eswa.2019.06.033_bib0036
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2014.2378512
– volume: 15
  start-page: 241
  issue: 3-4
  year: 2002
  ident: 10.1016/j.eswa.2019.06.033_bib0007
  article-title: Optimization techniques applied to multiple manipulators for path planning and torque minimization
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/S0952-1976(02)00067-2
– volume: 87
  start-page: 79
  issue: Supplement C
  year: 2017
  ident: 10.1016/j.eswa.2019.06.033_bib0014
  article-title: Optimal reactive power dispatch problem using a two-archive multi-objective grey wolf optimizer
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.06.009
– volume: 19
  start-page: 524
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2019.06.033_bib0031
  article-title: Two_Arch2: An improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2014.2350987
– volume: 13
  start-page: 945
  issue: 5
  year: 2009
  ident: 10.1016/j.eswa.2019.06.033_bib0035
  article-title: JADE: Adaptive differential evolution with optional external archive
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2009.2014613
– volume: vol. 2
  start-page: 1051
  year: 2002
  ident: 10.1016/j.eswa.2019.06.033_bib0004
  article-title: MOPSO: A proposal for multiple objective particle swarm optimization
– volume: 58
  start-page: 20
  year: 2016
  ident: 10.1016/j.eswa.2019.06.033_bib0008
  article-title: Applying the MOVNS (multi-objective variable neighborhood search) algorithm to solve the path planning problem in mobile robotics
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.03.035
– volume: 223
  start-page: 136
  year: 2013
  ident: 10.1016/j.eswa.2019.06.033_bib0017
  article-title: Hybridisation of real-code population-based incremental learning and differential evolution for multiobjective design of trusses
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2012.10.008
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.eswa.2019.06.033_bib0023
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.892759
– volume: 17
  start-page: 474
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2019.06.033_bib0032
  article-title: Preference-inspired coevolutionary algorithms for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2012.2204264
– volume: 220
  start-page: 06004
  year: 2018
  ident: 10.1016/j.eswa.2019.06.033_bib0010
  article-title: Trajectory planning of a 6D robot based on Meta Heuristic algorithms
– year: 2015
  ident: 10.1016/j.eswa.2019.06.033_bib0033
  article-title: MOPSO based multi-objective trajectory planning for robot manipulators
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.eswa.2019.06.033_bib0005
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 121
  start-page: 530
  year: 2018
  ident: 10.1016/j.eswa.2019.06.033_bib0009
  article-title: Optimal time-jerk trajectory planning for industrial robots
  publication-title: Mechanism and Machine Theory
  doi: 10.1016/j.mechmachtheory.2017.11.006
– volume: 47
  start-page: 474
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2019.06.033_bib0019
  article-title: Hybrid real-code ant colony optimisation for constrained mechanical design
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207721.2014.891664
– volume: 7
  start-page: 659
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2019.06.033_bib0022
  article-title: Manipulator trajectory planning using a MOEA
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2005.06.009
– volume: 99
  start-page: 93
  year: 2018
  ident: 10.1016/j.eswa.2019.06.033_bib0025
  article-title: Knowledge discovery in multiobjective optimization problems in engineering via Genetic Programming
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.12.008
– volume: 25
  start-page: 841
  issue: 6
  year: 2010
  ident: 10.1016/j.eswa.2019.06.033_bib0001
  article-title: Efficient evolutionary approach to approximate the Pareto-optimal set in multiobjective optimization, UPS-EMOA
  publication-title: Optimization Method and Software
  doi: 10.1080/10556780903548265
– volume: 42
  start-page: 5976
  issue: 14
  year: 2015
  ident: 10.1016/j.eswa.2019.06.033_bib0006
  article-title: Multi-objective optimization based reverse strategy with differential evolution algorithm for constrained optimization problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.03.016
– year: 2009
  ident: 10.1016/j.eswa.2019.06.033_bib0030
  article-title: Minimum-time trajectory of robot manipulator using Harmony Search algorithm
– volume: 59
  start-page: 68
  year: 2017
  ident: 10.1016/j.eswa.2019.06.033_bib0013
  article-title: A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.05.012
SSID ssj0017007
Score 2.4167292
Snippet •Efficient self-adaptive multiobjective meta-heuristic (MOMH) algorithm.•Use of success-history based parameter adaptation for optimisation...
This work presents self-adaptive multiobjective real-code population-based incremental learning hybridised with differential evolution (MRPBIL-DE) for solving...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 133
SubjectTerms Acceleration
Algorithms
Equations of motion
Evolutionary computation
Mathematical analysis
Multiobjective meta-heuristic algorithm
Multiple objective analysis
Optimisation
Pneumatics
Polynomials
Robot arms
Robot trajectory planning multiobjective
Robots
Self-adaptive algorithm
Time-jerk minimisation
Trajectory optimization
Trajectory planning
Travel time
Title Self-adaptive MRPBIL-DE for 6D robot multiobjective trajectory planning
URI https://dx.doi.org/10.1016/j.eswa.2019.06.033
https://www.proquest.com/docview/2289561103
Volume 136
WOSCitedRecordID wos000484871300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgMv3BGDgfKAeJk85eLE8eOgHWwqpRrd1DfLThzRUiWhTbfxH_jRHMdOekFU8MBLVOXSVj5fjj_7XD6E3gCjTdw4ibHKSIgJLJmxTKXAwvVUCBOySOtC2qs-HQzi8ZgNO52fTS3M9YzmeXx7y8r_amo4B8bWpbP_YO72S-EEfAajwxHMDse_MvwXNcuwSEVZJwV9uhi-O-vjbq_OJ4y6R_NCFpXJIyzk1Lg7LRQxrbfvf2hZ6VrFaGPLXvdDrmzX56Yebi3y3a7pl3OlmzSbdJ_ppAXeUAe5TMoPuPNqciPabJsLkZbLb_bi6KvI23niXMwLlYtyYkQJgOyWRbW-S-GxrYyPVfnM1cYWJMXEMyo9x8o44JgGOKJGNbH10MG6j_VM54zffL_Zhpgeq8WNbijlsboxq7l5s9H24DM_vez3-ag3Hr0tv2OtQaZj9VaQ5Q7a92nIwEfun5z1xudtVIq6pvy--d-2CMvkC27_7J-IztaUX_OY0UN03y5AnBMDnEeoo_LH6EEj7uFYX_8EfdjAkdPiyAEcOVHXqXHkbOLIWeHIaXD0FF2e9kbvP2KruoGTwI8rLICyUlcAsyWKytiN0oBIn0VpJKUrRJgC504DRkJKMuDCia8b_gDzywQhkU-z4Bnay4tcPUcOkzLRcVqf-R7JhC8YlRlhCfEF8H4pDpDXDBFPbEt6rYwy403u4ZTrYeV6WLlOwAyCA3TUPlOahiw77w6bkeeWUhqqyAE1O587bMzE7bu94L4f6zJwzw1e7L78Et1bvQOHaK-aL9UrdDe5riaL-WuLql_LAJ6U
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-adaptive+MRPBIL-DE+for+6D+robot+multiobjective+trajectory+planning&rft.jtitle=Expert+systems+with+applications&rft.au=Bureerat%2C+Sujin&rft.au=Pholdee%2C+Nantiwat&rft.au=Radpukdee%2C+Thana&rft.au=Jaroenapibal%2C+Papot&rft.date=2019-12-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=136&rft.spage=133&rft_id=info:doi/10.1016%2Fj.eswa.2019.06.033&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon