Self-adaptive MRPBIL-DE for 6D robot multiobjective trajectory planning
•Efficient self-adaptive multiobjective meta-heuristic (MOMH) algorithm.•Use of success-history based parameter adaptation for optimisation parameters.•Comparative results of a robot path planning problem with well-established MOMHs.•New design results set as the baseline for further studies. This w...
Saved in:
| Published in: | Expert systems with applications Vol. 136; pp. 133 - 144 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Elsevier Ltd
01.12.2019
Elsevier BV |
| Subjects: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Efficient self-adaptive multiobjective meta-heuristic (MOMH) algorithm.•Use of success-history based parameter adaptation for optimisation parameters.•Comparative results of a robot path planning problem with well-established MOMHs.•New design results set as the baseline for further studies.
This work presents self-adaptive multiobjective real-code population-based incremental learning hybridised with differential evolution (MRPBIL-DE) for solving a 6D robot trajectory planning multiobjective optimisation problem. The objective functions are assigned to minimise travelling time and minimise maximum jerk taking place during motion while the constraints are velocity, acceleration and jerk constraints. A five order polynomial function is used to represent a motion equation while the motion path is divided into two sub-paths; from initial to intermediate positions and from intermediate to final positions. The optimiser is used to find a set of design variables including joint positions, velocities and accelerations at intermediate positions, moving time from the initial to intermediate positions, and that from the intermediate to final positions. Several multiobjective meta-heuristics (MOMHs) along with the proposed algorithm are used to solve the trajectory optimisation problem of robot manipulators while their performances are investigated. The results indicated that the proposed algorithm is effective and efficient for multiobjective robot trajectory planning optimisation problem. The results obtained from such a method are set as the baseline for further study of robot trajectory planning optimisation. |
|---|---|
| AbstractList | This work presents self-adaptive multiobjective real-code population-based incremental learning hybridised with differential evolution (MRPBIL-DE) for solving a 6D robot trajectory planning multiobjective optimisation problem. The objective functions are assigned to minimise travelling time and minimise maximum jerk taking place during motion while the constraints are velocity, acceleration and jerk constraints. A five order polynomial function is used to represent a motion equation while the motion path is divided into two sub-paths; from initial to intermediate positions and from intermediate to final positions. The optimiser is used to find a set of design variables including joint positions, velocities and accelerations at intermediate positions, moving time from the initial to intermediate positions, and that from the intermediate to final positions. Several multiobjective meta-heuristics (MOMHs) along with the proposed algorithm are used to solve the trajectory optimisation problem of robot manipulators while their performances are investigated. The results indicated that the proposed algorithm is effective and efficient for multiobjective robot trajectory planning optimisation problem. The results obtained from such a method are set as the baseline for further study of robot trajectory planning optimisation. •Efficient self-adaptive multiobjective meta-heuristic (MOMH) algorithm.•Use of success-history based parameter adaptation for optimisation parameters.•Comparative results of a robot path planning problem with well-established MOMHs.•New design results set as the baseline for further studies. This work presents self-adaptive multiobjective real-code population-based incremental learning hybridised with differential evolution (MRPBIL-DE) for solving a 6D robot trajectory planning multiobjective optimisation problem. The objective functions are assigned to minimise travelling time and minimise maximum jerk taking place during motion while the constraints are velocity, acceleration and jerk constraints. A five order polynomial function is used to represent a motion equation while the motion path is divided into two sub-paths; from initial to intermediate positions and from intermediate to final positions. The optimiser is used to find a set of design variables including joint positions, velocities and accelerations at intermediate positions, moving time from the initial to intermediate positions, and that from the intermediate to final positions. Several multiobjective meta-heuristics (MOMHs) along with the proposed algorithm are used to solve the trajectory optimisation problem of robot manipulators while their performances are investigated. The results indicated that the proposed algorithm is effective and efficient for multiobjective robot trajectory planning optimisation problem. The results obtained from such a method are set as the baseline for further study of robot trajectory planning optimisation. |
| Author | Jaroenapibal, Papot Bureerat, Sujin Pholdee, Nantiwat Radpukdee, Thana |
| Author_xml | – sequence: 1 givenname: Sujin orcidid: 0000-0002-6332-1202 surname: Bureerat fullname: Bureerat, Sujin email: sujbur@kku.ac.th organization: Sustainable and Infrastructure Research and Development Center, Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University, 40002, Thailand – sequence: 2 givenname: Nantiwat orcidid: 0000-0002-4370-5241 surname: Pholdee fullname: Pholdee, Nantiwat email: nantiwat@kku.ac.th organization: Sustainable and Infrastructure Research and Development Center, Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University, 40002, Thailand – sequence: 3 givenname: Thana surname: Radpukdee fullname: Radpukdee, Thana organization: Department of Industrial Engineering, Faculty of Engineering, Khon Kaen University, 40002, Thailand – sequence: 4 givenname: Papot surname: Jaroenapibal fullname: Jaroenapibal, Papot email: papoja@kku.ac.th organization: Department of Industrial Engineering, Faculty of Engineering, Khon Kaen University, 40002, Thailand |
| BookMark | eNp9kEtPwzAQhC1UJNrCH-AUiXOC344lLtCWglQE4nG2nMRBjlK7OGlR_z0O5cShp93DfLszMwEj550B4BLBDEHEr5vMdN86wxDJDPIMEnICxigXJOVCkhEYQ8lESpGgZ2DSdQ2ESEAoxmD5Zto61ZXe9HZnkqfXl7vHVTpfJLUPCZ8nwRe-T9bbtre-aEz5q-qDHlYf9smm1c5Z93kOTmvddubib07Bx_3iffaQrp6Xj7PbVVoSnPepJlIKqHk0YkSRQ14RWmDJK14UUGtWMcoqIikTtEZMlphJmkNMak0px6ImU3B1uLsJ_mtrul41fhtcfKkwziXjCMXwU5AfVGXwXRdMrUrb6xjBReu2VQiqoTbVqKE2NdSmIFeRjCj-h26CXeuwPw7dHCATo--sCaorrXGlqWyIRanK22P4D_UWhqk |
| CitedBy_id | crossref_primary_10_3390_electronics9050859 crossref_primary_10_3390_app132011479 crossref_primary_10_1016_j_mechmachtheory_2020_103957 crossref_primary_10_1155_2021_4740995 crossref_primary_10_3390_app12147219 crossref_primary_10_1155_2022_6506379 crossref_primary_10_1007_s11370_022_00440_8 crossref_primary_10_3390_pr10040728 crossref_primary_10_1007_s00500_020_05249_0 crossref_primary_10_1016_j_eswa_2021_115853 crossref_primary_10_3390_pr10051014 crossref_primary_10_1016_j_knosys_2022_109533 crossref_primary_10_1088_1742_6596_2483_1_012046 crossref_primary_10_1177_16878132241262578 crossref_primary_10_1016_j_ymssp_2025_112518 crossref_primary_10_1016_j_eswa_2021_115690 crossref_primary_10_1016_j_rcim_2023_102677 crossref_primary_10_1007_s11071_025_11248_3 crossref_primary_10_3390_aerospace12060461 crossref_primary_10_1177_09544062241296591 crossref_primary_10_1016_j_jmsy_2024_10_021 crossref_primary_10_3390_app12168145 |
| Cites_doi | 10.1016/j.advengsoft.2014.04.005 10.1016/j.eswa.2018.02.035 10.1016/j.eswa.2016.06.005 10.1016/j.eswa.2018.06.047 10.1016/j.robot.2016.08.001 10.1007/978-3-540-70706-6_21 10.1023/A:1008202821328 10.1007/978-3-319-59072-1_18 10.1109/41.824136 10.1109/TEVC.2014.2378512 10.1016/S0952-1976(02)00067-2 10.1016/j.eswa.2017.06.009 10.1109/TEVC.2014.2350987 10.1109/TEVC.2009.2014613 10.1016/j.eswa.2016.03.035 10.1016/j.ins.2012.10.008 10.1109/TEVC.2007.892759 10.1109/TEVC.2012.2204264 10.1109/4235.996017 10.1016/j.mechmachtheory.2017.11.006 10.1080/00207721.2014.891664 10.1016/j.asoc.2005.06.009 10.1016/j.eswa.2017.12.008 10.1080/10556780903548265 10.1016/j.eswa.2015.03.016 10.1016/j.asoc.2017.05.012 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Dec 1, 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Dec 1, 2019 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2019.06.033 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| EndPage | 144 |
| ExternalDocumentID | 10_1016_j_eswa_2019_06_033 S0957417419304336 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c328t-a39970a6174e7b806d34b296d6bb0aa5d545d394574f159c25948023fa44627f3 |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000484871300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sun Nov 09 07:54:53 EST 2025 Sat Nov 29 07:05:10 EST 2025 Tue Nov 18 22:39:57 EST 2025 Fri Feb 23 02:24:27 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Time-jerk minimisation Multiobjective meta-heuristic algorithm Robot trajectory planning multiobjective Optimisation Self-adaptive algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-a39970a6174e7b806d34b296d6bb0aa5d545d394574f159c25948023fa44627f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6332-1202 0000-0002-4370-5241 |
| PQID | 2289561103 |
| PQPubID | 2045477 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2289561103 crossref_citationtrail_10_1016_j_eswa_2019_06_033 crossref_primary_10_1016_j_eswa_2019_06_033 elsevier_sciencedirect_doi_10_1016_j_eswa_2019_06_033 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-01 2019-12-00 20191201 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Tanabe, Fukunaga (bib0028) 2013 Hidalgo-Paniagua, Vega-Rodríguez, Ferruz (bib0008) 2016; 58 Xu, Li, Chen, Hou (bib0033) 2015 Pholdee, Bureerat, Jaroenapibal, Radpukdee (bib0020) 2017; 10261 Robič, Filipič (bib0024) 2005; 3410 Pholdee, Bureerat (bib0016) 2013 Aittokoski, Miettinen (bib0001) 2010; 25 Garg, Kumar (bib0007) 2002; 15 Savsani, Jhala, Savsani (bib0026) 2013 Nuaekaew, Artrit, Pholdee, Bureerat (bib0014) 2017; 87 Coello Coello, Lechuga (bib0004) 2002; vol. 2 Pires, de Moura Oliveira, Machado (bib0022) 2007; 7 Tangpattanakul, Artrit (bib0030) 2009 Wang, Purshouse, Fleming (bib0032) 2013; 17 Bureerat, Sriworamas (bib0003) 2007; 9 Pholdee, Bureerat (bib0018) 2014; 75 Zhang, Sanderson (bib0035) 2009; 13 Pholdee, Bureerat (bib0017) 2013; 223 Pholdee, Bureerat (bib0019) 2016; 47 Wang, Jiao, Yao (bib0031) 2015; 19 Tanabe, Fukunaga (bib0029) 2014 Zareizadeh, Helfroush, Rahideh, Kazemi (bib0034) 2018; 113 Deb, Pratap, Agarwal, Meyarivan (bib0005) 2002; 6 Huang, Hu, Wu, Zeng (bib0009) 2018; 121 Piazzi, Visioli (bib0021) 2000; 47 Onan, Korukoğlu, Bulut (bib0015) 2016; 62 Wichapong, Bureerat, Pholdee (bib0010) 2018; 220 Zhang, Tian, Jin (bib0036) 2015; 19 Bureerat (bib0002) 2011; 96 Mac, Copot, Tran, De Keyser (bib0012) 2016; 86 Mac, Copot, Tran, Keyser (bib0013) 2017; 59 Qingfu, Hui (bib0023) 2007; 11 Liu, Zhang, He, Jiang (bib0011) 2018; 102 Storn, Price (bib0027) 1997; 11 Gao, Zhou, Li, Pan, Yi (bib0006) 2015; 42 Russo, Bernardino, Barbosa (bib0025) 2018; 99 Hidalgo-Paniagua (10.1016/j.eswa.2019.06.033_bib0008) 2016; 58 Liu (10.1016/j.eswa.2019.06.033_bib0011) 2018; 102 Pholdee (10.1016/j.eswa.2019.06.033_bib0018) 2014; 75 Piazzi (10.1016/j.eswa.2019.06.033_bib0021) 2000; 47 Pholdee (10.1016/j.eswa.2019.06.033_bib0017) 2013; 223 Savsani (10.1016/j.eswa.2019.06.033_bib0026) 2013 Robič (10.1016/j.eswa.2019.06.033_bib0024) 2005; 3410 Garg (10.1016/j.eswa.2019.06.033_bib0007) 2002; 15 Tangpattanakul (10.1016/j.eswa.2019.06.033_bib0030) 2009 Storn (10.1016/j.eswa.2019.06.033_bib0027) 1997; 11 Pires (10.1016/j.eswa.2019.06.033_bib0022) 2007; 7 Tanabe (10.1016/j.eswa.2019.06.033_bib0028) 2013 Deb (10.1016/j.eswa.2019.06.033_bib0005) 2002; 6 Bureerat (10.1016/j.eswa.2019.06.033_bib0003) 2007; 9 Tanabe (10.1016/j.eswa.2019.06.033_bib0029) 2014 Mac (10.1016/j.eswa.2019.06.033_bib0013) 2017; 59 Pholdee (10.1016/j.eswa.2019.06.033_bib0020) 2017; 10261 Russo (10.1016/j.eswa.2019.06.033_bib0025) 2018; 99 Wichapong (10.1016/j.eswa.2019.06.033_bib0010) 2018; 220 Wang (10.1016/j.eswa.2019.06.033_bib0031) 2015; 19 Nuaekaew (10.1016/j.eswa.2019.06.033_bib0014) 2017; 87 Wang (10.1016/j.eswa.2019.06.033_bib0032) 2013; 17 Qingfu (10.1016/j.eswa.2019.06.033_bib0023) 2007; 11 Xu (10.1016/j.eswa.2019.06.033_bib0033) 2015 Coello Coello (10.1016/j.eswa.2019.06.033_bib0004) 2002; vol. 2 Aittokoski (10.1016/j.eswa.2019.06.033_bib0001) 2010; 25 Onan (10.1016/j.eswa.2019.06.033_bib0015) 2016; 62 Bureerat (10.1016/j.eswa.2019.06.033_bib0002) 2011; 96 Pholdee (10.1016/j.eswa.2019.06.033_bib0016) 2013 Huang (10.1016/j.eswa.2019.06.033_bib0009) 2018; 121 Zhang (10.1016/j.eswa.2019.06.033_bib0035) 2009; 13 Zhang (10.1016/j.eswa.2019.06.033_bib0036) 2015; 19 Zareizadeh (10.1016/j.eswa.2019.06.033_bib0034) 2018; 113 Pholdee (10.1016/j.eswa.2019.06.033_bib0019) 2016; 47 Mac (10.1016/j.eswa.2019.06.033_bib0012) 2016; 86 Gao (10.1016/j.eswa.2019.06.033_bib0006) 2015; 42 |
| References_xml | – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib0005 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation – volume: 102 start-page: 179 year: 2018 end-page: 192 ident: bib0011 article-title: Multi-objective particle swarm optimization algorithm based on objective space division for the unequal-area facility layout problem publication-title: Expert Systems with Applications – volume: 96 start-page: 77 year: 2011 end-page: 86 ident: bib0002 article-title: Improved population-based incremental learning in continuous spaces publication-title: Soft computing in industrial applications – volume: 13 start-page: 945 year: 2009 end-page: 958 ident: bib0035 article-title: JADE: Adaptive differential evolution with optional external archive publication-title: IEEE Transactions on Evolutionary Computation – volume: 62 start-page: 1 year: 2016 end-page: 16 ident: bib0015 article-title: A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification publication-title: Expert Systems with Applications – volume: 99 start-page: 93 year: 2018 end-page: 102 ident: bib0025 article-title: Knowledge discovery in multiobjective optimization problems in engineering via Genetic Programming publication-title: Expert Systems with Applications – year: 2015 ident: bib0033 article-title: MOPSO based multi-objective trajectory planning for robot manipulators publication-title: Paper presented at the 2015 2nd International Conference on Information Science and Control Engineering, 24-26 April 2015 – volume: 10261 start-page: 143 year: 2017 end-page: 152 ident: bib0020 article-title: Many-objective optimisation of trusses through meta-heuristics publication-title: Lecture Notes in Computer Science – volume: 25 start-page: 841 year: 2010 end-page: 858 ident: bib0001 article-title: Efficient evolutionary approach to approximate the Pareto-optimal set in multiobjective optimization, UPS-EMOA publication-title: Optimization Method and Software – volume: 58 start-page: 20 year: 2016 end-page: 35 ident: bib0008 article-title: Applying the MOVNS (multi-objective variable neighborhood search) algorithm to solve the path planning problem in mobile robotics publication-title: Expert Systems with Applications – year: 2009 ident: bib0030 article-title: Minimum-time trajectory of robot manipulator using Harmony Search algorithm publication-title: the Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2009. ECTI-CON 2009. 6th International Conference on – volume: 19 start-page: 761 year: 2015 end-page: 776 ident: bib0036 article-title: A knee point-driven evolutionary algorithm for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 86 start-page: 13 year: 2016 end-page: 28 ident: bib0012 article-title: Heuristic approaches in robot path planning: A survey publication-title: Robotics and Autonomous Systems – volume: 75 start-page: 1 year: 2014 end-page: 13 ident: bib0018 article-title: Comparative performance of meta-heuristic algorithms for mass minimisation of trusses with dynamic constraints publication-title: Advances in Engineering Software – volume: 220 start-page: 06004 year: 2018 ident: bib0010 article-title: Trajectory planning of a 6D robot based on Meta Heuristic algorithms publication-title: MATEC web of conference – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib0027 article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization – volume: 17 start-page: 474 year: 2013 end-page: 494 ident: bib0032 article-title: Preference-inspired coevolutionary algorithms for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 113 start-page: 301 year: 2018 end-page: 314 ident: bib0034 article-title: A robust gene clustering algorithm based on clonal selection in multiobjective optimization framework publication-title: Expert Systems with Applications – start-page: 1 year: 2013 end-page: 20 ident: bib0016 article-title: Hybrid real-code population-based incremental learning and approximate gradients for multi-objective truss design publication-title: Engineering Optimization – volume: 47 start-page: 140 year: 2000 end-page: 149 ident: bib0021 article-title: Global minimum-jerk trajectory planning of robot manipulators – volume: 15 start-page: 241 year: 2002 end-page: 252 ident: bib0007 article-title: Optimization techniques applied to multiple manipulators for path planning and torque minimization publication-title: Engineering Applications of Artificial Intelligence – volume: 42 start-page: 5976 year: 2015 end-page: 5987 ident: bib0006 article-title: Multi-objective optimization based reverse strategy with differential evolution algorithm for constrained optimization problems publication-title: Expert Systems with Applications – volume: 3410 start-page: 520 year: 2005 end-page: 533 ident: bib0024 article-title: DEMO: differential evolution for multiobjective optimization publication-title: Evolutionary multi-criterion optimization – volume: 7 start-page: 659 year: 2007 end-page: 667 ident: bib0022 article-title: Manipulator trajectory planning using a MOEA publication-title: Applied Soft Computing – year: 2013 ident: bib0026 article-title: Optimized trajectory planning of a robotic arm using teaching learning based optimization (TLBO) and artificial bee colony (ABC) optimization techniques publication-title: Paper presented at the Systems Conference (SysCon) – volume: 87 start-page: 79 year: 2017 end-page: 89 ident: bib0014 article-title: Optimal reactive power dispatch problem using a two-archive multi-objective grey wolf optimizer publication-title: Expert Systems with Applications – volume: 47 start-page: 474 year: 2016 end-page: 491 ident: bib0019 article-title: Hybrid real-code ant colony optimisation for constrained mechanical design publication-title: International Journal of Systems Science – volume: 59 start-page: 68 year: 2017 end-page: 76 ident: bib0013 article-title: A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization publication-title: Applied Soft Computing – volume: 223 start-page: 136 year: 2013 end-page: 152 ident: bib0017 article-title: Hybridisation of real-code population-based incremental learning and differential evolution for multiobjective design of trusses publication-title: Information Sciences – volume: 9 start-page: 223 year: 2007 end-page: 231 ident: bib0003 article-title: Population-based incremental learning for multiobjective optimisation publication-title: Advance in Soft Computing – year: 2013 ident: bib0028 article-title: Evaluating the performance of SHADE on CEC 2013 benchmark problems publication-title: the Evolutionary Computation (CEC), 20-23 June 2013 2013 IEEE Congress on – volume: 19 start-page: 524 year: 2015 end-page: 541 ident: bib0031 article-title: Two_Arch2: An improved two-archive algorithm for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation – year: 2014 ident: bib0029 article-title: Improving the search performance of SHADE using linear population size reduction publication-title: Paper presented at the IEEE Congress on Evolutionary Computation (CEC), 2014, 6-11 July 2014 – volume: 121 start-page: 530 year: 2018 end-page: 544 ident: bib0009 article-title: Optimal time-jerk trajectory planning for industrial robots publication-title: Mechanism and Machine Theory – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: bib0023 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Transactions on Evolutionary Computation – volume: vol. 2 start-page: 1051 year: 2002 end-page: 1056 ident: bib0004 article-title: MOPSO: A proposal for multiple objective particle swarm optimization publication-title: Proceedings of the 2002 Congress on evolutionary computation – volume: 75 start-page: 1 year: 2014 ident: 10.1016/j.eswa.2019.06.033_bib0018 article-title: Comparative performance of meta-heuristic algorithms for mass minimisation of trusses with dynamic constraints publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2014.04.005 – volume: 102 start-page: 179 year: 2018 ident: 10.1016/j.eswa.2019.06.033_bib0011 article-title: Multi-objective particle swarm optimization algorithm based on objective space division for the unequal-area facility layout problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.02.035 – volume: 62 start-page: 1 year: 2016 ident: 10.1016/j.eswa.2019.06.033_bib0015 article-title: A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.06.005 – volume: 3410 start-page: 520 year: 2005 ident: 10.1016/j.eswa.2019.06.033_bib0024 article-title: DEMO: differential evolution for multiobjective optimization – volume: 113 start-page: 301 year: 2018 ident: 10.1016/j.eswa.2019.06.033_bib0034 article-title: A robust gene clustering algorithm based on clonal selection in multiobjective optimization framework publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.06.047 – volume: 86 start-page: 13 year: 2016 ident: 10.1016/j.eswa.2019.06.033_bib0012 article-title: Heuristic approaches in robot path planning: A survey publication-title: Robotics and Autonomous Systems doi: 10.1016/j.robot.2016.08.001 – volume: 96 start-page: 77 year: 2011 ident: 10.1016/j.eswa.2019.06.033_bib0002 article-title: Improved population-based incremental learning in continuous spaces – year: 2013 ident: 10.1016/j.eswa.2019.06.033_bib0026 article-title: Optimized trajectory planning of a robotic arm using teaching learning based optimization (TLBO) and artificial bee colony (ABC) optimization techniques – volume: 9 start-page: 223 year: 2007 ident: 10.1016/j.eswa.2019.06.033_bib0003 article-title: Population-based incremental learning for multiobjective optimisation publication-title: Advance in Soft Computing doi: 10.1007/978-3-540-70706-6_21 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.eswa.2019.06.033_bib0027 article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – year: 2014 ident: 10.1016/j.eswa.2019.06.033_bib0029 article-title: Improving the search performance of SHADE using linear population size reduction – start-page: 1 year: 2013 ident: 10.1016/j.eswa.2019.06.033_bib0016 article-title: Hybrid real-code population-based incremental learning and approximate gradients for multi-objective truss design publication-title: Engineering Optimization – year: 2013 ident: 10.1016/j.eswa.2019.06.033_bib0028 article-title: Evaluating the performance of SHADE on CEC 2013 benchmark problems – volume: 10261 start-page: 143 year: 2017 ident: 10.1016/j.eswa.2019.06.033_bib0020 article-title: Many-objective optimisation of trusses through meta-heuristics publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-319-59072-1_18 – volume: 47 start-page: 140 issue: 1 year: 2000 ident: 10.1016/j.eswa.2019.06.033_bib0021 article-title: Global minimum-jerk trajectory planning of robot manipulators publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/41.824136 – volume: 19 start-page: 761 issue: 6 year: 2015 ident: 10.1016/j.eswa.2019.06.033_bib0036 article-title: A knee point-driven evolutionary algorithm for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2014.2378512 – volume: 15 start-page: 241 issue: 3-4 year: 2002 ident: 10.1016/j.eswa.2019.06.033_bib0007 article-title: Optimization techniques applied to multiple manipulators for path planning and torque minimization publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/S0952-1976(02)00067-2 – volume: 87 start-page: 79 issue: Supplement C year: 2017 ident: 10.1016/j.eswa.2019.06.033_bib0014 article-title: Optimal reactive power dispatch problem using a two-archive multi-objective grey wolf optimizer publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.06.009 – volume: 19 start-page: 524 issue: 4 year: 2015 ident: 10.1016/j.eswa.2019.06.033_bib0031 article-title: Two_Arch2: An improved two-archive algorithm for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2014.2350987 – volume: 13 start-page: 945 issue: 5 year: 2009 ident: 10.1016/j.eswa.2019.06.033_bib0035 article-title: JADE: Adaptive differential evolution with optional external archive publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2009.2014613 – volume: vol. 2 start-page: 1051 year: 2002 ident: 10.1016/j.eswa.2019.06.033_bib0004 article-title: MOPSO: A proposal for multiple objective particle swarm optimization – volume: 58 start-page: 20 year: 2016 ident: 10.1016/j.eswa.2019.06.033_bib0008 article-title: Applying the MOVNS (multi-objective variable neighborhood search) algorithm to solve the path planning problem in mobile robotics publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.03.035 – volume: 223 start-page: 136 year: 2013 ident: 10.1016/j.eswa.2019.06.033_bib0017 article-title: Hybridisation of real-code population-based incremental learning and differential evolution for multiobjective design of trusses publication-title: Information Sciences doi: 10.1016/j.ins.2012.10.008 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.eswa.2019.06.033_bib0023 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2007.892759 – volume: 17 start-page: 474 issue: 4 year: 2013 ident: 10.1016/j.eswa.2019.06.033_bib0032 article-title: Preference-inspired coevolutionary algorithms for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2012.2204264 – volume: 220 start-page: 06004 year: 2018 ident: 10.1016/j.eswa.2019.06.033_bib0010 article-title: Trajectory planning of a 6D robot based on Meta Heuristic algorithms – year: 2015 ident: 10.1016/j.eswa.2019.06.033_bib0033 article-title: MOPSO based multi-objective trajectory planning for robot manipulators – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.eswa.2019.06.033_bib0005 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – volume: 121 start-page: 530 year: 2018 ident: 10.1016/j.eswa.2019.06.033_bib0009 article-title: Optimal time-jerk trajectory planning for industrial robots publication-title: Mechanism and Machine Theory doi: 10.1016/j.mechmachtheory.2017.11.006 – volume: 47 start-page: 474 issue: 2 year: 2016 ident: 10.1016/j.eswa.2019.06.033_bib0019 article-title: Hybrid real-code ant colony optimisation for constrained mechanical design publication-title: International Journal of Systems Science doi: 10.1080/00207721.2014.891664 – volume: 7 start-page: 659 issue: 3 year: 2007 ident: 10.1016/j.eswa.2019.06.033_bib0022 article-title: Manipulator trajectory planning using a MOEA publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2005.06.009 – volume: 99 start-page: 93 year: 2018 ident: 10.1016/j.eswa.2019.06.033_bib0025 article-title: Knowledge discovery in multiobjective optimization problems in engineering via Genetic Programming publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.12.008 – volume: 25 start-page: 841 issue: 6 year: 2010 ident: 10.1016/j.eswa.2019.06.033_bib0001 article-title: Efficient evolutionary approach to approximate the Pareto-optimal set in multiobjective optimization, UPS-EMOA publication-title: Optimization Method and Software doi: 10.1080/10556780903548265 – volume: 42 start-page: 5976 issue: 14 year: 2015 ident: 10.1016/j.eswa.2019.06.033_bib0006 article-title: Multi-objective optimization based reverse strategy with differential evolution algorithm for constrained optimization problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.03.016 – year: 2009 ident: 10.1016/j.eswa.2019.06.033_bib0030 article-title: Minimum-time trajectory of robot manipulator using Harmony Search algorithm – volume: 59 start-page: 68 year: 2017 ident: 10.1016/j.eswa.2019.06.033_bib0013 article-title: A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.05.012 |
| SSID | ssj0017007 |
| Score | 2.4167292 |
| Snippet | •Efficient self-adaptive multiobjective meta-heuristic (MOMH) algorithm.•Use of success-history based parameter adaptation for optimisation... This work presents self-adaptive multiobjective real-code population-based incremental learning hybridised with differential evolution (MRPBIL-DE) for solving... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 133 |
| SubjectTerms | Acceleration Algorithms Equations of motion Evolutionary computation Mathematical analysis Multiobjective meta-heuristic algorithm Multiple objective analysis Optimisation Pneumatics Polynomials Robot arms Robot trajectory planning multiobjective Robots Self-adaptive algorithm Time-jerk minimisation Trajectory optimization Trajectory planning Travel time |
| Title | Self-adaptive MRPBIL-DE for 6D robot multiobjective trajectory planning |
| URI | https://dx.doi.org/10.1016/j.eswa.2019.06.033 https://www.proquest.com/docview/2289561103 |
| Volume | 136 |
| WOSCitedRecordID | wos000484871300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgMv3BGDgfKAeJk85eLE8eOgHWwqpRrd1DfLThzRUiWhTbfxH_jRHMdOekFU8MBLVOXSVj5fjj_7XD6E3gCjTdw4ibHKSIgJLJmxTKXAwvVUCBOySOtC2qs-HQzi8ZgNO52fTS3M9YzmeXx7y8r_amo4B8bWpbP_YO72S-EEfAajwxHMDse_MvwXNcuwSEVZJwV9uhi-O-vjbq_OJ4y6R_NCFpXJIyzk1Lg7LRQxrbfvf2hZ6VrFaGPLXvdDrmzX56Yebi3y3a7pl3OlmzSbdJ_ppAXeUAe5TMoPuPNqciPabJsLkZbLb_bi6KvI23niXMwLlYtyYkQJgOyWRbW-S-GxrYyPVfnM1cYWJMXEMyo9x8o44JgGOKJGNbH10MG6j_VM54zffL_Zhpgeq8WNbijlsboxq7l5s9H24DM_vez3-ag3Hr0tv2OtQaZj9VaQ5Q7a92nIwEfun5z1xudtVIq6pvy--d-2CMvkC27_7J-IztaUX_OY0UN03y5AnBMDnEeoo_LH6EEj7uFYX_8EfdjAkdPiyAEcOVHXqXHkbOLIWeHIaXD0FF2e9kbvP2KruoGTwI8rLICyUlcAsyWKytiN0oBIn0VpJKUrRJgC504DRkJKMuDCia8b_gDzywQhkU-z4Bnay4tcPUcOkzLRcVqf-R7JhC8YlRlhCfEF8H4pDpDXDBFPbEt6rYwy403u4ZTrYeV6WLlOwAyCA3TUPlOahiw77w6bkeeWUhqqyAE1O587bMzE7bu94L4f6zJwzw1e7L78Et1bvQOHaK-aL9UrdDe5riaL-WuLql_LAJ6U |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-adaptive+MRPBIL-DE+for+6D+robot+multiobjective+trajectory+planning&rft.jtitle=Expert+systems+with+applications&rft.au=Bureerat%2C+Sujin&rft.au=Pholdee%2C+Nantiwat&rft.au=Radpukdee%2C+Thana&rft.au=Jaroenapibal%2C+Papot&rft.date=2019-12-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=136&rft.spage=133&rft_id=info:doi/10.1016%2Fj.eswa.2019.06.033&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |