Optimal selection of heterogeneous ensemble strategies of time series forecasting with multi-objective programming

•A heterogeneous ensemble forecasting model of nonlinear time series is proposed.•Both forecasting error and model divergence are considered.•Dynamic heterogeneous mutation operator is introduced to improve MOPSO.•The proposed model has excellent prediction performance and robustness. The excellent...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 166; s. 114091
Hlavní autori: Li, Jianping, Hao, Jun, Feng, QianQian, Sun, Xiaolei, Liu, Mingxi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 15.03.2021
Elsevier BV
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A heterogeneous ensemble forecasting model of nonlinear time series is proposed.•Both forecasting error and model divergence are considered.•Dynamic heterogeneous mutation operator is introduced to improve MOPSO.•The proposed model has excellent prediction performance and robustness. The excellent generalization performance of time series ensemble forecasting depends on the accuracy and diversity of the individual models. In this paper, a heterogeneous ensemble forecasting model with multi-objective programming for nonlinear time series is proposed. Accordingly, an improved multi-objective particle swarm optimization (MOPSO) algorithm integrated with a dynamic heterogeneous mutation operator is designed. The nonlinear time series of the Baltic Dry Index (BDI) is selected as the forecasting object to train, validate and test the ensemble forecasting model established in this paper. To verify the superior forecasting performance of the proposed model, 20 forecasting models including statistical models, machine learning models, and optimization algorithm–based ensemble models are utilized and compared. The experimental results under different lead times revealed that: 1) the forecasting approach with multi-objective programming has excellent robustness and can effectively exert out-of-sample prediction under different lead times for nonlinear time series; 2) with the increase of lead time, the out-of-sample forecasting performance would gradually decrease for all models, and the precision of the ensemble forecasting model is better than that of the individual forecasting model; 3) the forecasting performance of the MOPSO with crowding distance (MOPSOCD)-based ensemble forecasting model is better than that of benchmark machine learning models and other optimal ensemble forecasting models in terms of the prediction accuracy and statistical test results.
AbstractList The excellent generalization performance of time series ensemble forecasting depends on the accuracy and diversity of the individual models. In this paper, a heterogeneous ensemble forecasting model with multi-objective programming for nonlinear time series is proposed. Accordingly, an improved multi-objective particle swarm optimization (MOPSO) algorithm integrated with a dynamic heterogeneous mutation operator is designed. The nonlinear time series of the Baltic Dry Index (BDI) is selected as the forecasting object to train, validate and test the ensemble forecasting model established in this paper. To verify the superior forecasting performance of the proposed model, 20 forecasting models including statistical models, machine learning models, and optimization algorithm–based ensemble models are utilized and compared. The experimental results under different lead times revealed that: 1) the forecasting approach with multi-objective programming has excellent robustness and can effectively exert out-of-sample prediction under different lead times for nonlinear time series; 2) with the increase of lead time, the out-of-sample forecasting performance would gradually decrease for all models, and the precision of the ensemble forecasting model is better than that of the individual forecasting model; 3) the forecasting performance of the MOPSO with crowding distance (MOPSOCD)-based ensemble forecasting model is better than that of benchmark machine learning models and other optimal ensemble forecasting models in terms of the prediction accuracy and statistical test results.
•A heterogeneous ensemble forecasting model of nonlinear time series is proposed.•Both forecasting error and model divergence are considered.•Dynamic heterogeneous mutation operator is introduced to improve MOPSO.•The proposed model has excellent prediction performance and robustness. The excellent generalization performance of time series ensemble forecasting depends on the accuracy and diversity of the individual models. In this paper, a heterogeneous ensemble forecasting model with multi-objective programming for nonlinear time series is proposed. Accordingly, an improved multi-objective particle swarm optimization (MOPSO) algorithm integrated with a dynamic heterogeneous mutation operator is designed. The nonlinear time series of the Baltic Dry Index (BDI) is selected as the forecasting object to train, validate and test the ensemble forecasting model established in this paper. To verify the superior forecasting performance of the proposed model, 20 forecasting models including statistical models, machine learning models, and optimization algorithm–based ensemble models are utilized and compared. The experimental results under different lead times revealed that: 1) the forecasting approach with multi-objective programming has excellent robustness and can effectively exert out-of-sample prediction under different lead times for nonlinear time series; 2) with the increase of lead time, the out-of-sample forecasting performance would gradually decrease for all models, and the precision of the ensemble forecasting model is better than that of the individual forecasting model; 3) the forecasting performance of the MOPSO with crowding distance (MOPSOCD)-based ensemble forecasting model is better than that of benchmark machine learning models and other optimal ensemble forecasting models in terms of the prediction accuracy and statistical test results.
ArticleNumber 114091
Author Sun, Xiaolei
Li, Jianping
Feng, QianQian
Liu, Mingxi
Hao, Jun
Author_xml – sequence: 1
  givenname: Jianping
  surname: Li
  fullname: Li, Jianping
  email: ljp@casisd.cn
  organization: Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 2
  givenname: Jun
  surname: Hao
  fullname: Hao, Jun
  email: haojun181@mails.ucas.ac.cn
  organization: Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 3
  givenname: QianQian
  surname: Feng
  fullname: Feng, QianQian
  email: fengqianqian18@mails.ucas.ac.cn
  organization: Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 4
  givenname: Xiaolei
  orcidid: 0000-0001-5640-5240
  surname: Sun
  fullname: Sun, Xiaolei
  email: xlsun@casisd.cn
  organization: Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 5
  givenname: Mingxi
  surname: Liu
  fullname: Liu, Mingxi
  email: liumingxi@casipm.ac.cn
  organization: Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China
BookMark eNp9kMtqwzAQRUVJoUnaH-jK0LXTkfyGbkroCwLZtGuhSONExrZSSU7o31fGXXWRldBwzwz3LMisNz0Sck9hRYHmj80K3VmsGLAwoClU9IrMaVkkcV5UyYzMocqKOKVFekMWzjUAtAAo5sRuj153oo0ctii9Nn1k6uiAHq3ZY49mcBH2Drtdi5HzVnjca3RjKHBhhHb81saiFM7rfh-dtT9E3dB6HZtdMy49YXQM66zouhC4Jde1aB3e_b1L8vX68rl-jzfbt4_18yaWCSt9LGjFVC6kwKysUSVKYFpktAaWQA5sV8u8yqWSFBWTqHIQJUtSmbFKMqBCJUvyMO0Nt78HdJ43ZrB9OMlZWgJAljAaUuWUktY4Z7HmUnsxighldcsp8NEwb_homI-G-WQ4oOwferTBpf25DD1NEIbqJ42WO6mxDw10UOi5MvoS_gtVG5pP
CitedBy_id crossref_primary_10_1016_j_procs_2022_01_110
crossref_primary_10_1016_j_jclepro_2023_137791
crossref_primary_10_1016_j_resourpol_2022_102956
crossref_primary_10_1016_j_irfa_2023_102875
crossref_primary_10_3390_math10040566
crossref_primary_10_1002_for_2971
crossref_primary_10_1016_j_seta_2022_102068
crossref_primary_10_1007_s44176_025_00045_2
crossref_primary_10_1016_j_asoc_2022_109809
crossref_primary_10_1016_j_engappai_2023_106408
crossref_primary_10_1007_s12559_023_10203_x
crossref_primary_10_1007_s10489_022_04229_1
crossref_primary_10_1016_j_asoc_2021_107291
crossref_primary_10_1016_j_eswa_2023_121117
crossref_primary_10_1016_j_gfj_2022_100773
crossref_primary_10_1016_j_ins_2022_01_010
crossref_primary_10_1007_s11869_023_01380_7
crossref_primary_10_1080_10408347_2023_2207652
crossref_primary_10_1016_j_asoc_2022_109653
crossref_primary_10_1016_j_neucom_2025_130878
crossref_primary_10_1080_01441647_2025_2519486
crossref_primary_10_1007_s10479_022_04858_2
crossref_primary_10_1016_j_ribaf_2024_102447
crossref_primary_10_1016_j_procs_2023_08_055
crossref_primary_10_1007_s10489_025_06720_x
crossref_primary_10_1007_s10668_022_02299_2
crossref_primary_10_1007_s11269_025_04210_w
crossref_primary_10_1016_j_ijepes_2024_109876
crossref_primary_10_1016_j_chaos_2022_112098
crossref_primary_10_1007_s00477_022_02202_5
crossref_primary_10_1016_j_apenergy_2021_116908
crossref_primary_10_1057_s41278_025_00321_8
crossref_primary_10_1016_j_aei_2023_101954
crossref_primary_10_1016_j_dsp_2022_103643
crossref_primary_10_1002_for_3174
crossref_primary_10_1016_j_ins_2024_121082
crossref_primary_10_1016_j_jclepro_2021_128024
crossref_primary_10_1109_ACCESS_2023_3237992
crossref_primary_10_1016_j_inffus_2022_12_024
crossref_primary_10_1016_j_eswa_2022_117427
crossref_primary_10_1016_j_omega_2023_102922
crossref_primary_10_1007_s11063_021_10616_5
crossref_primary_10_1016_j_procs_2022_11_295
crossref_primary_10_1016_j_jhydrol_2025_134150
crossref_primary_10_1080_17517575_2023_2185816
crossref_primary_10_1016_j_resourpol_2022_102762
Cites_doi 10.1016/j.ejor.2018.04.034
10.1016/j.omega.2018.05.004
10.1016/j.eneco.2019.07.026
10.1016/j.ajsl.2017.03.005
10.1016/j.asoc.2018.03.042
10.1016/j.frl.2018.12.032
10.1016/j.ejor.2016.10.041
10.1016/j.omega.2014.01.002
10.1016/j.omega.2011.08.008
10.1016/j.ejor.2019.08.015
10.1016/j.ijpe.2020.107803
10.1016/j.energy.2020.118831
10.1016/j.ijforecast.2014.08.001
10.1016/j.eswa.2020.113464
10.1016/j.eswa.2015.01.026
10.1109/MCI.2017.2742868
10.1057/mel.2015.2
10.1016/j.omega.2019.02.002
10.1016/j.omega.2010.03.004
10.1016/j.knosys.2017.06.022
10.1016/j.knosys.2018.10.009
10.1016/j.eswa.2011.09.108
10.1016/j.ijforecast.2019.03.025
10.1016/j.omega.2011.07.008
10.1016/j.ijforecast.2017.11.005
10.1016/j.asoc.2016.07.036
10.1002/for.2613
10.1109/TKDE.2010.26
10.1016/j.ejor.2019.08.040
10.1016/j.omega.2012.06.005
10.1109/4235.996017
10.1016/j.eswa.2010.01.019
10.1016/j.ejor.2019.06.011
10.1016/j.ijforecast.2018.05.007
10.3390/en13030550
10.1016/j.ijpe.2019.01.032
10.1016/j.asoc.2018.01.038
10.1016/j.cor.2014.02.013
10.1016/j.neucom.2005.12.126
10.1016/j.asoc.2020.106294
10.1016/j.cie.2020.106338
10.1016/j.ijforecast.2018.08.004
10.1016/j.tre.2019.05.013
10.1016/j.asoc.2020.106181
10.1016/j.neucom.2015.08.118
10.1016/j.ijforecast.2005.08.002
10.1016/j.omega.2004.07.024
10.1016/j.ijforecast.2018.01.005
10.1016/j.eneco.2017.05.023
10.1002/for.2418
10.1016/j.enconman.2017.10.099
10.1287/mnsc.2015.2389
10.1016/j.ijforecast.2018.03.009
10.1080/20464177.2018.1495886
10.1016/j.eswa.2011.09.123
10.1007/3-540-44719-9_19
10.1016/S2092-5212(09)80002-3
10.1016/j.eswa.2016.02.025
10.1016/j.ijpe.2018.06.010
10.1016/j.apenergy.2019.113686
10.1016/j.apenergy.2014.07.104
10.1016/j.ejor.2018.12.013
10.1016/j.amc.2019.05.043
10.1109/MCAS.2006.1688199
10.1016/j.ijforecast.2015.12.010
10.1016/j.ejor.2016.11.018
10.1016/j.irfa.2020.101453
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Mar 15, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 15, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.114091
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_114091
S0957417420308472
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-a192d6acae58fed3dae4751f0230602bfc696cdc1ed2ced60a8234c529c201ad3
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000598519700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Jul 13 04:21:04 EDT 2025
Tue Nov 18 20:49:22 EST 2025
Sat Nov 29 07:07:18 EST 2025
Fri Feb 23 02:47:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective optimization
Ensemble forecasting
Baltic Dry Index
Evolutionary algorithm
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-a192d6acae58fed3dae4751f0230602bfc696cdc1ed2ced60a8234c529c201ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5640-5240
PQID 2480005321
PQPubID 2045477
ParticipantIDs proquest_journals_2480005321
crossref_citationtrail_10_1016_j_eswa_2020_114091
crossref_primary_10_1016_j_eswa_2020_114091
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_114091
PublicationCentury 2000
PublicationDate 2021-03-15
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Lahmiri (b0120) 2016; 55
Montgomery, Hollenbach, Ward (b0165) 2015; 31
Qu, Zhang, Mao, Wang, Liu, Zhang (b0195) 2017; 154
Lohrmann, Luukka (b0140) 2019; 35
Zhu, Zhou, Xie, Wang, Nguyen (b0350) 2019; 211
Duru (b0050) 2012; 39
Trapero, Cardós, Kourentzes (b0255) 2019; 84
Pai, Lin (b0170) 2005; 33
Grushka-Cockayne, Jose, Lichtendahl (b0070) 2017; 63
Lin, Chang, Hsiao (b0130) 2019; 127
Makridakis, Merikas, Merika, Tsionas, Izzeldin (b0145) 2019; 39
Li, Li, Liu, Zhu, Wei (b0125) 2020
Zhang, Chen, Wang, Ge, Stanley (b0330) 2019; 361
Zhang, Jiao, Bai, Wang, Hou (b0325) 2018; 65
Baran, Lerch (b0010) 2018; 34
Galicia, Talavera-Llames, Troncoso, Koprinska, Martinez-Alvarez (b0065) 2019; 163
Wang, Wang, Zhang, Guo (b0270) 2012; 40
Yu, Liang, Chen, Lai (b0305) 2019
Duru, Yoshida (b0055) 2009; 25
Rendon-Sanchez, de Menezes (b0205) 2019; 275
Cheng, Wang (b0030) 2020; 92
Michna, Disney, Nielsen (b0155) 2020; 93
Polikar (b0180) 2006; 6
Zhao, Li, Yu (b0340) 2017; 66
Huang, Fildes, Soopramanien (b0095) 2019; 279
Knowles, J. D., Watson, R. A., & Corne, D. W. (2001). Reducing local optima in single-objective problems by multi-objectivization. In E. Zitzlet, K. Deb, L. Thiele, C. A. C. Coello & D. Corne, editors. Evolutionary multi-criterion optimization, proceedings (Vol. 1993, pp. 269–283).
Puchalsky, Ribeiro, da Veiga, Freire, Santos Coelho (b0185) 2018; 203
Chen, Yao (b0025) 2010; 22
Billah, King, Snyder, Koehler (b0015) 2006; 22
Wauters, Vanhoucke (b0285) 2017; 259
Feng, Sun, Hao, Li (bib351) 2021; 214
Wang, Athanasopoulos, Hyndman, Wang (b0275) 2018; 34
Zeng, Qu, Ng, Zhao (b0320) 2015; 18
Xu, Hao, Deng, Wang (b0290) 2017; 56
Bustos, Pomares-Quimbaya (b0020) 2020; 156
Sezer, Gudelek, Ozbayoglu (b0215) 2020; 90
Zhu, Wei (b0345) 2013; 41
Martínez, Schmuck, Pereverzyev, Pirker, Haltmeier (b0150) 2020; 281
Sun, Liu, Wang, Li (b0230) 2020; 68
He, Lai, Yen (b0085) 2012; 39
Chou, Lin (b0035) 2018; 18
Engau, Sigler (b0060) 2020; 281
Duru (b0045) 2010; 37
Huang, Zhu, Siew (b0090) 2006; 70
Sun, Hao, Li (b0220) 2020
Yu, Zhao, Tang (b0310) 2017; 36
Jun, Lingyu, Yuyan, Peng (b0110) 2017; 132
Peimankar, Weddell, Jalal, Lapthorn (b0175) 2018; 68
Tian, Cheng, Zhang, Jin (b0250) 2017; 12
Liu, Chen (b0135) 2019; 254
Sun, Liu, Sima (b0225) 2020; 32
Taylor, Snyder (b0240) 2012; 40
Hao, Li, Wu, Sun (b0075) 2020; 230
Yu, Xu (b0300) 2014; 134
Saxena, Aponte, McConky (b0210) 2019; 35
Hao, Sun, Feng (b0080) 2020; 13
Tsioumas, Papadimitriou, Smirlis, Zahran (b0260) 2017; 33
Wang, Wang, Li, Zhou (b0280) 2019
Zhao, Wang, Lu (b0335) 2014; 45
Qin, Xie, He, Li, Chu, Wei, Wu (b0190) 2019; 83
Joo, Kim (b0105) 2015; 42
Taylor (b0235) 2017; 259
Deb, Pratap, Agarwal, Meyarivan (b0040) 2002; 6
Jiang, Chen (b0100) 2016; 198
Mohammadipour, Boylan (b0160) 2012; 40
Van Nguyen, Zhou, Chong, Li, Pu (b0265) 2020; 281
Redondo, J. L., Fernández, J., Domingo Álvarez Hervás, J., Gila Arrondo, A., & Ortigosa, P. M. (2015). Approximating the Pareto-front of a planar bi-objective competitive facility location and design problem. Computers & Operations Research, 62, 337–349.
Xu, Hao, Zheng (b0295) 2020; 142
Yu, Zhao, Tang, Yang (b0315) 2019; 35
Alvarado-Valencia, Barrero, Önkal, Dennerlein (b0005) 2017; 33
Thorey, Chaussin, Mallet (b0245) 2018; 34
Galicia (10.1016/j.eswa.2020.114091_b0065) 2019; 163
Liu (10.1016/j.eswa.2020.114091_b0135) 2019; 254
10.1016/j.eswa.2020.114091_b0200
He (10.1016/j.eswa.2020.114091_b0085) 2012; 39
Huang (10.1016/j.eswa.2020.114091_b0090) 2006; 70
Yu (10.1016/j.eswa.2020.114091_b0315) 2019; 35
Hao (10.1016/j.eswa.2020.114091_b0080) 2020; 13
Wang (10.1016/j.eswa.2020.114091_b0270) 2012; 40
Zhu (10.1016/j.eswa.2020.114091_b0350) 2019; 211
Michna (10.1016/j.eswa.2020.114091_b0155) 2020; 93
Sun (10.1016/j.eswa.2020.114091_b0230) 2020; 68
Bustos (10.1016/j.eswa.2020.114091_b0020) 2020; 156
Lin (10.1016/j.eswa.2020.114091_b0130) 2019; 127
Qin (10.1016/j.eswa.2020.114091_b0190) 2019; 83
Yu (10.1016/j.eswa.2020.114091_b0300) 2014; 134
Zeng (10.1016/j.eswa.2020.114091_b0320) 2015; 18
Feng (10.1016/j.eswa.2020.114091_bib351) 2021; 214
Tian (10.1016/j.eswa.2020.114091_b0250) 2017; 12
Sun (10.1016/j.eswa.2020.114091_b0220) 2020
Jun (10.1016/j.eswa.2020.114091_b0110) 2017; 132
Mohammadipour (10.1016/j.eswa.2020.114091_b0160) 2012; 40
Puchalsky (10.1016/j.eswa.2020.114091_b0185) 2018; 203
Baran (10.1016/j.eswa.2020.114091_b0010) 2018; 34
10.1016/j.eswa.2020.114091_b0115
Zhang (10.1016/j.eswa.2020.114091_b0330) 2019; 361
Zhao (10.1016/j.eswa.2020.114091_b0340) 2017; 66
Pai (10.1016/j.eswa.2020.114091_b0170) 2005; 33
Taylor (10.1016/j.eswa.2020.114091_b0240) 2012; 40
Trapero (10.1016/j.eswa.2020.114091_b0255) 2019; 84
Chou (10.1016/j.eswa.2020.114091_b0035) 2018; 18
Lohrmann (10.1016/j.eswa.2020.114091_b0140) 2019; 35
Thorey (10.1016/j.eswa.2020.114091_b0245) 2018; 34
Li (10.1016/j.eswa.2020.114091_b0125) 2020
Polikar (10.1016/j.eswa.2020.114091_b0180) 2006; 6
Qu (10.1016/j.eswa.2020.114091_b0195) 2017; 154
Sezer (10.1016/j.eswa.2020.114091_b0215) 2020; 90
Peimankar (10.1016/j.eswa.2020.114091_b0175) 2018; 68
Taylor (10.1016/j.eswa.2020.114091_b0235) 2017; 259
Yu (10.1016/j.eswa.2020.114091_b0310) 2017; 36
Martínez (10.1016/j.eswa.2020.114091_b0150) 2020; 281
Lahmiri (10.1016/j.eswa.2020.114091_b0120) 2016; 55
Montgomery (10.1016/j.eswa.2020.114091_b0165) 2015; 31
Joo (10.1016/j.eswa.2020.114091_b0105) 2015; 42
Duru (10.1016/j.eswa.2020.114091_b0055) 2009; 25
Xu (10.1016/j.eswa.2020.114091_b0295) 2020; 142
Saxena (10.1016/j.eswa.2020.114091_b0210) 2019; 35
Sun (10.1016/j.eswa.2020.114091_b0225) 2020; 32
Makridakis (10.1016/j.eswa.2020.114091_b0145) 2019; 39
Xu (10.1016/j.eswa.2020.114091_b0290) 2017; 56
Deb (10.1016/j.eswa.2020.114091_b0040) 2002; 6
Zhao (10.1016/j.eswa.2020.114091_b0335) 2014; 45
Wang (10.1016/j.eswa.2020.114091_b0280) 2019
Hao (10.1016/j.eswa.2020.114091_b0075) 2020; 230
Zhu (10.1016/j.eswa.2020.114091_b0345) 2013; 41
Alvarado-Valencia (10.1016/j.eswa.2020.114091_b0005) 2017; 33
Duru (10.1016/j.eswa.2020.114091_b0045) 2010; 37
Grushka-Cockayne (10.1016/j.eswa.2020.114091_b0070) 2017; 63
Van Nguyen (10.1016/j.eswa.2020.114091_b0265) 2020; 281
Wauters (10.1016/j.eswa.2020.114091_b0285) 2017; 259
Zhang (10.1016/j.eswa.2020.114091_b0325) 2018; 65
Billah (10.1016/j.eswa.2020.114091_b0015) 2006; 22
Duru (10.1016/j.eswa.2020.114091_b0050) 2012; 39
Wang (10.1016/j.eswa.2020.114091_b0275) 2018; 34
Huang (10.1016/j.eswa.2020.114091_b0095) 2019; 279
Engau (10.1016/j.eswa.2020.114091_b0060) 2020; 281
Cheng (10.1016/j.eswa.2020.114091_b0030) 2020; 92
Tsioumas (10.1016/j.eswa.2020.114091_b0260) 2017; 33
Jiang (10.1016/j.eswa.2020.114091_b0100) 2016; 198
Chen (10.1016/j.eswa.2020.114091_b0025) 2010; 22
Rendon-Sanchez (10.1016/j.eswa.2020.114091_b0205) 2019; 275
Yu (10.1016/j.eswa.2020.114091_b0305) 2019
References_xml – volume: 37
  start-page: 5372
  year: 2010
  end-page: 5380
  ident: b0045
  article-title: A fuzzy integrated logical forecasting model for dry bulk shipping index forecasting: An improved fuzzy time series approach
  publication-title: Expert Systems with Applications
– year: 2020
  ident: b0220
  article-title: Multi-objective optimization of crude oil-supply portfolio based on interval prediction data
  publication-title: Annals of Operations Research
– volume: 142
  year: 2020
  ident: b0295
  article-title: Multi-objective artificial bee colony algorithm for multi-stage resource leveling problem in sharing logistics network
  publication-title: Computers & Industrial Engineering
– volume: 134
  start-page: 102
  year: 2014
  end-page: 113
  ident: b0300
  article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network
  publication-title: Applied Energy
– volume: 281
  start-page: 588
  year: 2020
  end-page: 596
  ident: b0150
  article-title: A machine learning framework for customer purchase prediction in the non-contractual setting
  publication-title: European Journal of Operational Research
– volume: 68
  year: 2020
  ident: b0230
  article-title: Assessing the extreme risk spillovers of international commodities on maritime markets: A GARCH-Copula-CoVaR approach
  publication-title: International Review of Financial Analysis
– volume: 34
  start-page: 665
  year: 2018
  end-page: 677
  ident: b0275
  article-title: Crude oil price forecasting based on internet concern using an extreme learning machine
  publication-title: International Journal of Forecasting
– volume: 34
  start-page: 477
  year: 2018
  end-page: 496
  ident: b0010
  article-title: Combining predictive distributions for the statistical post-processing of ensemble forecasts
  publication-title: International Journal of Forecasting
– volume: 39
  start-page: 4258
  year: 2012
  end-page: 4267
  ident: b0085
  article-title: Ensemble forecasting of value at risk via multi resolution analysis based methodology in metals markets
  publication-title: Expert Systems with Applications
– volume: 33
  start-page: 497
  year: 2005
  end-page: 505
  ident: b0170
  article-title: A hybrid ARIMA and support vector machines model in stock price forecasting
  publication-title: Omega
– volume: 203
  start-page: 174
  year: 2018
  end-page: 189
  ident: b0185
  article-title: Agribusiness time series forecasting using Wavelet neural networks and metaheuristic optimization: An analysis of the soybean sack price and perishable products demand
  publication-title: International Journal of Production Economics
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: b0250
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization
  publication-title: Ieee Computational Intelligence Magazine
– volume: 25
  start-page: 189
  year: 2009
  end-page: 217
  ident: b0055
  article-title: Judgmental forecasting in the dry bulk shipping business: Statistical vs. judgmental approach
  publication-title: The Asian Journal of Shipping and Logistics
– volume: 163
  start-page: 830
  year: 2019
  end-page: 841
  ident: b0065
  article-title: Multi-step forecasting for big data time series based on ensemble learning
  publication-title: Knowledge-Based Systems
– volume: 198
  start-page: 40
  year: 2016
  end-page: 47
  ident: b0100
  article-title: Displacement prediction of landslide based on generalized regression neural networks with K-fold cross-validation
  publication-title: Neurocomputing
– volume: 55
  start-page: 268
  year: 2016
  end-page: 273
  ident: b0120
  article-title: A variational mode decompoisition approach for analysis and forecasting of economic and financial time series
  publication-title: Expert Systems with Applications
– volume: 33
  start-page: 298
  year: 2017
  end-page: 313
  ident: b0005
  article-title: Expertise, credibility of system forecasts and integration methods in judgmental demand forecasting
  publication-title: International Journal of Forecasting
– volume: 90
  year: 2020
  ident: b0215
  article-title: Financial time series forecasting with deep learning : A systematic literature review: 2005–2019
  publication-title: Applied Soft Computing
– volume: 40
  start-page: 703
  year: 2012
  end-page: 712
  ident: b0160
  article-title: Forecast horizon aggregation in integer autoregressive moving average (INARMA) models
  publication-title: Omega
– volume: 65
  start-page: 632
  year: 2018
  end-page: 643
  ident: b0325
  article-title: A robust semi-supervised SVM via ensemble learning
  publication-title: Applied Soft Computing
– volume: 281
  start-page: 357
  year: 2020
  end-page: 368
  ident: b0060
  article-title: Pareto solutions in multicriteria optimization under uncertainty
  publication-title: European Journal of Operational Research
– volume: 259
  start-page: 1097
  year: 2017
  end-page: 1111
  ident: b0285
  article-title: Nearest Neighbour extension to project duration forecasting with Artificial Intelligence
  publication-title: European Journal of Operational Research
– year: 2020
  ident: b0125
  article-title: A novel text-based framework for forecasting agricultural futures using massive online news headlines
  publication-title: International Journal of Forecasting
– volume: 39
  start-page: 56
  year: 2019
  end-page: 68
  ident: b0145
  article-title: A novel forecasting model for the Baltic dry index utilizing optimal squeezing
  publication-title: Journal of Forecasting
– volume: 281
  start-page: 543
  year: 2020
  end-page: 558
  ident: b0265
  article-title: Predicting customer demand for remanufactured products: A data-mining approach
  publication-title: European Journal of Operational Research
– volume: 230
  year: 2020
  ident: b0075
  article-title: Portfolio optimisation of material purchase considering supply risk – A multi-objective programming model
  publication-title: International Journal of Production Economics
– volume: 35
  start-page: 1288
  year: 2019
  end-page: 1303
  ident: b0210
  article-title: A hybrid machine learning model for forecasting a billing period’s peak electric load days
  publication-title: International Journal of Forecasting
– volume: 36
  start-page: 122
  year: 2017
  end-page: 138
  ident: b0310
  article-title: Ensemble forecasting for complex time series using sparse representation and neural networks
  publication-title: Journal of Forecasting
– volume: 32
  year: 2020
  ident: b0225
  article-title: A novel cryptocurrency price trend forecasting model based on LightGBM
  publication-title: Finance Research Letters
– volume: 40
  start-page: 748
  year: 2012
  end-page: 757
  ident: b0240
  article-title: Forecasting intraday time series with multiple seasonal cycles using parsimonious seasonal exponential smoothing
  publication-title: Omega
– volume: 42
  start-page: 3868
  year: 2015
  end-page: 3874
  ident: b0105
  article-title: Time series forecasting based on wavelet filtering
  publication-title: Expert Systems with Applications
– volume: 56
  start-page: 684
  year: 2017
  end-page: 691
  ident: b0290
  article-title: Design optimization of resource combination for collaborative logistics network under uncertainty
  publication-title: Applied Soft Computing
– volume: 93
  year: 2020
  ident: b0155
  article-title: The impact of stochastic lead times on the bullwhip effect under correlated demand and moving average forecasts
  publication-title: Omega
– reference: Redondo, J. L., Fernández, J., Domingo Álvarez Hervás, J., Gila Arrondo, A., & Ortigosa, P. M. (2015). Approximating the Pareto-front of a planar bi-objective competitive facility location and design problem. Computers & Operations Research, 62, 337–349.
– volume: 66
  start-page: 9
  year: 2017
  end-page: 16
  ident: b0340
  article-title: A deep learning ensemble approach for crude oil price forecasting
  publication-title: Energy Economics
– reference: Knowles, J. D., Watson, R. A., & Corne, D. W. (2001). Reducing local optima in single-objective problems by multi-objectivization. In E. Zitzlet, K. Deb, L. Thiele, C. A. C. Coello & D. Corne, editors. Evolutionary multi-criterion optimization, proceedings (Vol. 1993, pp. 269–283).
– volume: 68
  start-page: 233
  year: 2018
  end-page: 248
  ident: b0175
  article-title: Multi-objective ensemble forecasting with an application to power transformers
  publication-title: Applied Soft Computing
– year: 2019
  ident: b0305
  article-title: Predicting monthly biofuel production using a hybrid ensemble forecasting methodology
  publication-title: International Journal of Forecasting
– volume: 6
  start-page: 21
  year: 2006
  end-page: 45
  ident: b0180
  article-title: Ensemble based systems in decision making
  publication-title: IEEE Circuits and Systems Magazine
– volume: 45
  start-page: 80
  year: 2014
  end-page: 91
  ident: b0335
  article-title: Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model
  publication-title: Omega
– volume: 92
  year: 2020
  ident: b0030
  article-title: A new combined model based on multi-objective salp swarm optimization for wind speed forecasting
  publication-title: Applied Soft Computing
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0040
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: Ieee Transactions on Evolutionary Computation
– volume: 35
  start-page: 213
  year: 2019
  end-page: 223
  ident: b0315
  article-title: Online big data-driven oil consumption forecasting with Google trends
  publication-title: International Journal of Forecasting
– volume: 83
  start-page: 402
  year: 2019
  end-page: 414
  ident: b0190
  article-title: An effective and robust decomposition-ensemble energy price forecasting paradigm with local linear prediction
  publication-title: Energy Economics
– volume: 40
  start-page: 758
  year: 2012
  end-page: 766
  ident: b0270
  article-title: Stock index forecasting based on a hybrid model
  publication-title: Omega
– volume: 18
  start-page: 192
  year: 2015
  end-page: 210
  ident: b0320
  article-title: A new approach for Baltic Dry Index forecasting based on empirical mode decomposition and neural networks
  publication-title: Maritime Economics & Logistics
– year: 2019
  ident: b0280
  article-title: Artificial bee colony-based combination approach to forecasting agricultural commodity prices
  publication-title: International Journal of Forecasting
– volume: 13
  year: 2020
  ident: b0080
  article-title: A novel ensemble approach for the forecasting of energy demand based on the artificial bee colony algorithm
  publication-title: Energies
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b0090
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
– volume: 34
  start-page: 762
  year: 2018
  end-page: 773
  ident: b0245
  article-title: Ensemble forecast of photovoltaic power with online CRPS learning
  publication-title: International Journal of Forecasting
– volume: 35
  start-page: 390
  year: 2019
  end-page: 407
  ident: b0140
  article-title: Classification of intraday S&P500 returns with a Random Forest
  publication-title: International Journal of Forecasting
– volume: 22
  start-page: 239
  year: 2006
  end-page: 247
  ident: b0015
  article-title: Exponential smoothing model selection for forecasting
  publication-title: International Journal of Forecasting
– volume: 22
  start-page: 1738
  year: 2010
  end-page: 1751
  ident: b0025
  article-title: Multiobjective neural network ensembles based on regularized negative correlation learning
  publication-title: Ieee Transactions on Knowledge and Data Engineering
– volume: 156
  year: 2020
  ident: b0020
  article-title: Stock market movement forecast: A systematic review
  publication-title: Expert Systems with Applications
– volume: 18
  start-page: 82
  year: 2018
  end-page: 91
  ident: b0035
  article-title: A fuzzy neural network combined with technical indicators and its application to Baltic Dry Index forecasting
  publication-title: Journal of Marine Engineering & Technology
– volume: 41
  start-page: 517
  year: 2013
  end-page: 524
  ident: b0345
  article-title: Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology
  publication-title: Omega
– volume: 279
  start-page: 459
  year: 2019
  end-page: 470
  ident: b0095
  article-title: Forecasting retailer product sales in the presence of structural change
  publication-title: European Journal of Operational Research
– volume: 254
  year: 2019
  ident: b0135
  article-title: Multi-objective data-ensemble wind speed forecasting model with stacked sparse autoencoder and adaptive decomposition-based error correction
  publication-title: Applied Energy
– volume: 211
  start-page: 22
  year: 2019
  end-page: 33
  ident: b0350
  article-title: Forecasting SMEs' credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach
  publication-title: International Journal of Production Economics
– volume: 361
  start-page: 499
  year: 2019
  end-page: 516
  ident: b0330
  article-title: A novel hybrid approach to Baltic Dry Index forecasting based on a combined dynamic fluctuation network and artificial intelligence method
  publication-title: Applied Mathematics and Computation
– volume: 214
  year: 2021
  ident: bib351
  article-title: Predictability dynamics of multifactor-influenced installed capacity: a perspective of country clustering
  publication-title: Energy
– volume: 275
  start-page: 916
  year: 2019
  end-page: 924
  ident: b0205
  article-title: Structural combination of seasonal exponential smoothing forecasts applied to load forecasting
  publication-title: European Journal of Operational Research
– volume: 132
  start-page: 167
  year: 2017
  end-page: 178
  ident: b0110
  article-title: A weighted EMD-based prediction model based on TOPSIS and feed forward neural network for noised time series
  publication-title: Knowledge-Based Systems
– volume: 39
  start-page: 4135
  year: 2012
  end-page: 4142
  ident: b0050
  article-title: A multivariate model of fuzzy integrated logical forecasting method (M-FILF) and multiplicative time series clustering: A model of time-varying volatility for dry cargo freight market
  publication-title: Expert Systems with Applications
– volume: 127
  start-page: 265
  year: 2019
  end-page: 283
  ident: b0130
  article-title: Does the Baltic Dry Index drive volatility spillovers in the commodities, currency, or stock markets?
  publication-title: Transportation Research Part E: Logistics and Transportation Review
– volume: 63
  start-page: 1110
  year: 2017
  end-page: 1130
  ident: b0070
  article-title: Ensembles of overfit and overconfident forecasts
  publication-title: Management Science
– volume: 31
  start-page: 930
  year: 2015
  end-page: 942
  ident: b0165
  article-title: Calibrating ensemble forecasting models with sparse data in the social sciences
  publication-title: International Journal of Forecasting
– volume: 84
  start-page: 199
  year: 2019
  end-page: 211
  ident: b0255
  article-title: Empirical safety stock estimation based on kernel and GARCH models
  publication-title: Omega
– volume: 154
  start-page: 440
  year: 2017
  end-page: 454
  ident: b0195
  article-title: Research and application of ensemble forecasting based on a novel multi-objective optimization algorithm for wind-speed forecasting
  publication-title: Energy Conversion and Management
– volume: 33
  start-page: 33
  year: 2017
  end-page: 41
  ident: b0260
  article-title: A novel approach to forecasting the bulk freight market
  publication-title: The Asian Journal of Shipping and Logistics
– volume: 259
  start-page: 703
  year: 2017
  end-page: 712
  ident: b0235
  article-title: Probabilistic forecasting of wind power ramp events using autoregressive logit models
  publication-title: European Journal of Operational Research
– volume: 281
  start-page: 588
  year: 2020
  ident: 10.1016/j.eswa.2020.114091_b0150
  article-title: A machine learning framework for customer purchase prediction in the non-contractual setting
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2018.04.034
– volume: 84
  start-page: 199
  year: 2019
  ident: 10.1016/j.eswa.2020.114091_b0255
  article-title: Empirical safety stock estimation based on kernel and GARCH models
  publication-title: Omega
  doi: 10.1016/j.omega.2018.05.004
– volume: 83
  start-page: 402
  year: 2019
  ident: 10.1016/j.eswa.2020.114091_b0190
  article-title: An effective and robust decomposition-ensemble energy price forecasting paradigm with local linear prediction
  publication-title: Energy Economics
  doi: 10.1016/j.eneco.2019.07.026
– volume: 33
  start-page: 33
  year: 2017
  ident: 10.1016/j.eswa.2020.114091_b0260
  article-title: A novel approach to forecasting the bulk freight market
  publication-title: The Asian Journal of Shipping and Logistics
  doi: 10.1016/j.ajsl.2017.03.005
– volume: 68
  start-page: 233
  year: 2018
  ident: 10.1016/j.eswa.2020.114091_b0175
  article-title: Multi-objective ensemble forecasting with an application to power transformers
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.03.042
– volume: 32
  year: 2020
  ident: 10.1016/j.eswa.2020.114091_b0225
  article-title: A novel cryptocurrency price trend forecasting model based on LightGBM
  publication-title: Finance Research Letters
  doi: 10.1016/j.frl.2018.12.032
– volume: 259
  start-page: 703
  year: 2017
  ident: 10.1016/j.eswa.2020.114091_b0235
  article-title: Probabilistic forecasting of wind power ramp events using autoregressive logit models
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.10.041
– volume: 45
  start-page: 80
  year: 2014
  ident: 10.1016/j.eswa.2020.114091_b0335
  article-title: Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model
  publication-title: Omega
  doi: 10.1016/j.omega.2014.01.002
– volume: 40
  start-page: 703
  year: 2012
  ident: 10.1016/j.eswa.2020.114091_b0160
  article-title: Forecast horizon aggregation in integer autoregressive moving average (INARMA) models
  publication-title: Omega
  doi: 10.1016/j.omega.2011.08.008
– volume: 281
  start-page: 543
  year: 2020
  ident: 10.1016/j.eswa.2020.114091_b0265
  article-title: Predicting customer demand for remanufactured products: A data-mining approach
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2019.08.015
– volume: 230
  year: 2020
  ident: 10.1016/j.eswa.2020.114091_b0075
  article-title: Portfolio optimisation of material purchase considering supply risk – A multi-objective programming model
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2020.107803
– volume: 214
  year: 2021
  ident: 10.1016/j.eswa.2020.114091_bib351
  article-title: Predictability dynamics of multifactor-influenced installed capacity: a perspective of country clustering
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118831
– volume: 31
  start-page: 930
  year: 2015
  ident: 10.1016/j.eswa.2020.114091_b0165
  article-title: Calibrating ensemble forecasting models with sparse data in the social sciences
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2014.08.001
– year: 2020
  ident: 10.1016/j.eswa.2020.114091_b0125
  article-title: A novel text-based framework for forecasting agricultural futures using massive online news headlines
  publication-title: International Journal of Forecasting
– volume: 156
  year: 2020
  ident: 10.1016/j.eswa.2020.114091_b0020
  article-title: Stock market movement forecast: A systematic review
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113464
– year: 2019
  ident: 10.1016/j.eswa.2020.114091_b0305
  article-title: Predicting monthly biofuel production using a hybrid ensemble forecasting methodology
  publication-title: International Journal of Forecasting
– volume: 42
  start-page: 3868
  year: 2015
  ident: 10.1016/j.eswa.2020.114091_b0105
  article-title: Time series forecasting based on wavelet filtering
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.01.026
– volume: 12
  start-page: 73
  year: 2017
  ident: 10.1016/j.eswa.2020.114091_b0250
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization
  publication-title: Ieee Computational Intelligence Magazine
  doi: 10.1109/MCI.2017.2742868
– volume: 18
  start-page: 192
  year: 2015
  ident: 10.1016/j.eswa.2020.114091_b0320
  article-title: A new approach for Baltic Dry Index forecasting based on empirical mode decomposition and neural networks
  publication-title: Maritime Economics & Logistics
  doi: 10.1057/mel.2015.2
– volume: 93
  year: 2020
  ident: 10.1016/j.eswa.2020.114091_b0155
  article-title: The impact of stochastic lead times on the bullwhip effect under correlated demand and moving average forecasts
  publication-title: Omega
  doi: 10.1016/j.omega.2019.02.002
– volume: 40
  start-page: 748
  year: 2012
  ident: 10.1016/j.eswa.2020.114091_b0240
  article-title: Forecasting intraday time series with multiple seasonal cycles using parsimonious seasonal exponential smoothing
  publication-title: Omega
  doi: 10.1016/j.omega.2010.03.004
– volume: 132
  start-page: 167
  year: 2017
  ident: 10.1016/j.eswa.2020.114091_b0110
  article-title: A weighted EMD-based prediction model based on TOPSIS and feed forward neural network for noised time series
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.06.022
– volume: 163
  start-page: 830
  year: 2019
  ident: 10.1016/j.eswa.2020.114091_b0065
  article-title: Multi-step forecasting for big data time series based on ensemble learning
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.10.009
– volume: 39
  start-page: 4258
  year: 2012
  ident: 10.1016/j.eswa.2020.114091_b0085
  article-title: Ensemble forecasting of value at risk via multi resolution analysis based methodology in metals markets
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.09.108
– volume: 35
  start-page: 1288
  year: 2019
  ident: 10.1016/j.eswa.2020.114091_b0210
  article-title: A hybrid machine learning model for forecasting a billing period’s peak electric load days
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2019.03.025
– volume: 40
  start-page: 758
  year: 2012
  ident: 10.1016/j.eswa.2020.114091_b0270
  article-title: Stock index forecasting based on a hybrid model
  publication-title: Omega
  doi: 10.1016/j.omega.2011.07.008
– volume: 35
  start-page: 213
  year: 2019
  ident: 10.1016/j.eswa.2020.114091_b0315
  article-title: Online big data-driven oil consumption forecasting with Google trends
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2017.11.005
– volume: 56
  start-page: 684
  year: 2017
  ident: 10.1016/j.eswa.2020.114091_b0290
  article-title: Design optimization of resource combination for collaborative logistics network under uncertainty
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.07.036
– volume: 39
  start-page: 56
  year: 2019
  ident: 10.1016/j.eswa.2020.114091_b0145
  article-title: A novel forecasting model for the Baltic dry index utilizing optimal squeezing
  publication-title: Journal of Forecasting
  doi: 10.1002/for.2613
– volume: 22
  start-page: 1738
  year: 2010
  ident: 10.1016/j.eswa.2020.114091_b0025
  article-title: Multiobjective neural network ensembles based on regularized negative correlation learning
  publication-title: Ieee Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2010.26
– volume: 281
  start-page: 357
  year: 2020
  ident: 10.1016/j.eswa.2020.114091_b0060
  article-title: Pareto solutions in multicriteria optimization under uncertainty
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2019.08.040
– volume: 41
  start-page: 517
  year: 2013
  ident: 10.1016/j.eswa.2020.114091_b0345
  article-title: Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology
  publication-title: Omega
  doi: 10.1016/j.omega.2012.06.005
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.eswa.2020.114091_b0040
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: Ieee Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 37
  start-page: 5372
  year: 2010
  ident: 10.1016/j.eswa.2020.114091_b0045
  article-title: A fuzzy integrated logical forecasting model for dry bulk shipping index forecasting: An improved fuzzy time series approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.01.019
– volume: 279
  start-page: 459
  year: 2019
  ident: 10.1016/j.eswa.2020.114091_b0095
  article-title: Forecasting retailer product sales in the presence of structural change
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2019.06.011
– volume: 34
  start-page: 762
  year: 2018
  ident: 10.1016/j.eswa.2020.114091_b0245
  article-title: Ensemble forecast of photovoltaic power with online CRPS learning
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2018.05.007
– volume: 13
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2020.114091_b0080
  article-title: A novel ensemble approach for the forecasting of energy demand based on the artificial bee colony algorithm
  publication-title: Energies
  doi: 10.3390/en13030550
– volume: 211
  start-page: 22
  year: 2019
  ident: 10.1016/j.eswa.2020.114091_b0350
  article-title: Forecasting SMEs' credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2019.01.032
– volume: 65
  start-page: 632
  year: 2018
  ident: 10.1016/j.eswa.2020.114091_b0325
  article-title: A robust semi-supervised SVM via ensemble learning
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.01.038
– ident: 10.1016/j.eswa.2020.114091_b0200
  doi: 10.1016/j.cor.2014.02.013
– volume: 70
  start-page: 489
  year: 2006
  ident: 10.1016/j.eswa.2020.114091_b0090
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 92
  year: 2020
  ident: 10.1016/j.eswa.2020.114091_b0030
  article-title: A new combined model based on multi-objective salp swarm optimization for wind speed forecasting
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106294
– volume: 142
  year: 2020
  ident: 10.1016/j.eswa.2020.114091_b0295
  article-title: Multi-objective artificial bee colony algorithm for multi-stage resource leveling problem in sharing logistics network
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106338
– year: 2019
  ident: 10.1016/j.eswa.2020.114091_b0280
  article-title: Artificial bee colony-based combination approach to forecasting agricultural commodity prices
  publication-title: International Journal of Forecasting
– volume: 35
  start-page: 390
  year: 2019
  ident: 10.1016/j.eswa.2020.114091_b0140
  article-title: Classification of intraday S&P500 returns with a Random Forest
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2018.08.004
– volume: 127
  start-page: 265
  year: 2019
  ident: 10.1016/j.eswa.2020.114091_b0130
  article-title: Does the Baltic Dry Index drive volatility spillovers in the commodities, currency, or stock markets?
  publication-title: Transportation Research Part E: Logistics and Transportation Review
  doi: 10.1016/j.tre.2019.05.013
– volume: 90
  year: 2020
  ident: 10.1016/j.eswa.2020.114091_b0215
  article-title: Financial time series forecasting with deep learning : A systematic literature review: 2005–2019
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106181
– volume: 198
  start-page: 40
  year: 2016
  ident: 10.1016/j.eswa.2020.114091_b0100
  article-title: Displacement prediction of landslide based on generalized regression neural networks with K-fold cross-validation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.118
– volume: 22
  start-page: 239
  year: 2006
  ident: 10.1016/j.eswa.2020.114091_b0015
  article-title: Exponential smoothing model selection for forecasting
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2005.08.002
– volume: 33
  start-page: 497
  year: 2005
  ident: 10.1016/j.eswa.2020.114091_b0170
  article-title: A hybrid ARIMA and support vector machines model in stock price forecasting
  publication-title: Omega
  doi: 10.1016/j.omega.2004.07.024
– volume: 34
  start-page: 477
  year: 2018
  ident: 10.1016/j.eswa.2020.114091_b0010
  article-title: Combining predictive distributions for the statistical post-processing of ensemble forecasts
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2018.01.005
– volume: 66
  start-page: 9
  year: 2017
  ident: 10.1016/j.eswa.2020.114091_b0340
  article-title: A deep learning ensemble approach for crude oil price forecasting
  publication-title: Energy Economics
  doi: 10.1016/j.eneco.2017.05.023
– volume: 36
  start-page: 122
  year: 2017
  ident: 10.1016/j.eswa.2020.114091_b0310
  article-title: Ensemble forecasting for complex time series using sparse representation and neural networks
  publication-title: Journal of Forecasting
  doi: 10.1002/for.2418
– volume: 154
  start-page: 440
  year: 2017
  ident: 10.1016/j.eswa.2020.114091_b0195
  article-title: Research and application of ensemble forecasting based on a novel multi-objective optimization algorithm for wind-speed forecasting
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2017.10.099
– volume: 63
  start-page: 1110
  year: 2017
  ident: 10.1016/j.eswa.2020.114091_b0070
  article-title: Ensembles of overfit and overconfident forecasts
  publication-title: Management Science
  doi: 10.1287/mnsc.2015.2389
– volume: 34
  start-page: 665
  year: 2018
  ident: 10.1016/j.eswa.2020.114091_b0275
  article-title: Crude oil price forecasting based on internet concern using an extreme learning machine
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2018.03.009
– volume: 18
  start-page: 82
  year: 2018
  ident: 10.1016/j.eswa.2020.114091_b0035
  article-title: A fuzzy neural network combined with technical indicators and its application to Baltic Dry Index forecasting
  publication-title: Journal of Marine Engineering & Technology
  doi: 10.1080/20464177.2018.1495886
– volume: 39
  start-page: 4135
  year: 2012
  ident: 10.1016/j.eswa.2020.114091_b0050
  article-title: A multivariate model of fuzzy integrated logical forecasting method (M-FILF) and multiplicative time series clustering: A model of time-varying volatility for dry cargo freight market
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.09.123
– ident: 10.1016/j.eswa.2020.114091_b0115
  doi: 10.1007/3-540-44719-9_19
– volume: 25
  start-page: 189
  year: 2009
  ident: 10.1016/j.eswa.2020.114091_b0055
  article-title: Judgmental forecasting in the dry bulk shipping business: Statistical vs. judgmental approach
  publication-title: The Asian Journal of Shipping and Logistics
  doi: 10.1016/S2092-5212(09)80002-3
– volume: 55
  start-page: 268
  year: 2016
  ident: 10.1016/j.eswa.2020.114091_b0120
  article-title: A variational mode decompoisition approach for analysis and forecasting of economic and financial time series
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.02.025
– volume: 203
  start-page: 174
  year: 2018
  ident: 10.1016/j.eswa.2020.114091_b0185
  article-title: Agribusiness time series forecasting using Wavelet neural networks and metaheuristic optimization: An analysis of the soybean sack price and perishable products demand
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2018.06.010
– volume: 254
  year: 2019
  ident: 10.1016/j.eswa.2020.114091_b0135
  article-title: Multi-objective data-ensemble wind speed forecasting model with stacked sparse autoencoder and adaptive decomposition-based error correction
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2019.113686
– volume: 134
  start-page: 102
  year: 2014
  ident: 10.1016/j.eswa.2020.114091_b0300
  article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2014.07.104
– volume: 275
  start-page: 916
  year: 2019
  ident: 10.1016/j.eswa.2020.114091_b0205
  article-title: Structural combination of seasonal exponential smoothing forecasts applied to load forecasting
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2018.12.013
– volume: 361
  start-page: 499
  year: 2019
  ident: 10.1016/j.eswa.2020.114091_b0330
  article-title: A novel hybrid approach to Baltic Dry Index forecasting based on a combined dynamic fluctuation network and artificial intelligence method
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2019.05.043
– volume: 6
  start-page: 21
  year: 2006
  ident: 10.1016/j.eswa.2020.114091_b0180
  article-title: Ensemble based systems in decision making
  publication-title: IEEE Circuits and Systems Magazine
  doi: 10.1109/MCAS.2006.1688199
– volume: 33
  start-page: 298
  year: 2017
  ident: 10.1016/j.eswa.2020.114091_b0005
  article-title: Expertise, credibility of system forecasts and integration methods in judgmental demand forecasting
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2015.12.010
– year: 2020
  ident: 10.1016/j.eswa.2020.114091_b0220
  article-title: Multi-objective optimization of crude oil-supply portfolio based on interval prediction data
  publication-title: Annals of Operations Research
– volume: 259
  start-page: 1097
  year: 2017
  ident: 10.1016/j.eswa.2020.114091_b0285
  article-title: Nearest Neighbour extension to project duration forecasting with Artificial Intelligence
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.11.018
– volume: 68
  year: 2020
  ident: 10.1016/j.eswa.2020.114091_b0230
  article-title: Assessing the extreme risk spillovers of international commodities on maritime markets: A GARCH-Copula-CoVaR approach
  publication-title: International Review of Financial Analysis
  doi: 10.1016/j.irfa.2020.101453
SSID ssj0017007
Score 2.5275807
Snippet •A heterogeneous ensemble forecasting model of nonlinear time series is proposed.•Both forecasting error and model divergence are considered.•Dynamic...
The excellent generalization performance of time series ensemble forecasting depends on the accuracy and diversity of the individual models. In this paper, a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114091
SubjectTerms Algorithms
Baltic Dry Index
Ensemble forecasting
Evolutionary algorithm
Forecasting
Lead time
Machine learning
Mathematical programming
Model accuracy
Multi-objective optimization
Multiple objective analysis
Mutation
Particle swarm optimization
Statistical models
Statistical tests
Time series
Title Optimal selection of heterogeneous ensemble strategies of time series forecasting with multi-objective programming
URI https://dx.doi.org/10.1016/j.eswa.2020.114091
https://www.proquest.com/docview/2480005321
Volume 166
WOSCitedRecordID wos000598519700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMv3BGDgfyAeEGZEufmPE6oE0xTx0SH8ma5jiO1atPSptt-zn4qx9elFVTwwEsUuXYa-ftyfI59Lgh94OMQlj2eB2ksZJBwsFkB5jqIi5jTWqVIy0yxiXw4pGVZfOv17lwszPUsbxp6e1ss_yvU0AZgq9DZf4DbPxQa4B5AhyvADte_Av4ChMBcRYHoCjdeH4T5W8AYqVxewXSVcxUytW5dpgjtKzCZQ5PKfKyTNEjB163fq9Weh8FiPDUS0jl2zd3SN_U-fXLV2gTRLnSuc0juHYC0F8EZkHPpnqDloDkI2njKwtRqYXQJPS87VP6-0eKynPDFTE66exdEO2-Z6E2zoeaDan5sbUzmQRKZ2j3H0ohlmsdBlptail5uZ13JG_12PTBbE9Njub5RSaaIzo0cmvpg28m3hxfs9Or8nI0G5ejj8meg6pKp83tbpOUBOiB5WtA-Ojj5OijP_ElVHpqQfPfWNjDL-BDu_u2flJ8dNUDrNqOn6LE1SvCJIdMz1JPNc_TEFfzAVv6_QCvLLey5hRc13uIWdtzC99xSnRS3sOEW7nALK4LgHW7hDrdeoqvTwejzl8AW7QhETGgbcDAZqowLLlNayyquuEzyNKq1rRuScS2yIhOViGRFhKyykFMSJyIlhQBdlFfxK9RvFo18jXBCiwReh3C1aNRJMo5pWAMJYJVJMjBNDlHkZpMJm9FeFVaZMee6OGUKAaYQYAaBQ_TJj1mafC57e6cOJGY1UqNpMiDY3nFHDlFmRcOakYTq0HcSvdn_81v06P5jOUL9drWR79BDcd1O1qv3loC_ANP6uhE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+selection+of+heterogeneous+ensemble+strategies+of+time+series+forecasting+with+multi-objective+programming&rft.jtitle=Expert+systems+with+applications&rft.au=Li%2C+Jianping&rft.au=Hao%2C+Jun&rft.au=Feng%2C+QianQian&rft.au=Sun%2C+Xiaolei&rft.date=2021-03-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=166&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2020.114091&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon