A comprehensive study on the shape properties of Kantorovich type Schurer operators equipped with shape parameter λ

This study explores the shape-preserving characteristics of the Kantorovich variant of λ−Schurer operators which are a modified version of the classical Kantorovich-type Schurer operators enhanced by the introduction of a shape parameter λ∈−1,1. The underlying objective of this study is to analyze h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 270; S. 126500
Hauptverfasser: Turhan, Nezihe, Özger, Faruk, Ödemiş Özger, Zeynep
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 25.04.2025
Schlagworte:
ISSN:0957-4174
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study explores the shape-preserving characteristics of the Kantorovich variant of λ−Schurer operators which are a modified version of the classical Kantorovich-type Schurer operators enhanced by the introduction of a shape parameter λ∈−1,1. The underlying objective of this study is to analyze how these operators retain the intrinsic geometric characteristics of the functions they approximate, a quality essential in applications such as computer graphics, signal processing, geometric modeling, robotics, and so forth. To accomplish this task, we begin by representing the operators in question as a sum of the classical Kantorovich-type Schurer operators and an additional term involving the integral of first-order divided differences of the function ℓ, where this additional term is scaled by the shape parameter λ. Using this formulation and the fundamental properties of divided differences, we then investigate the shape-preserving characteristics of these operators, including linearity, positivity, and, in particular, their ability to maintain monotonicity and convexity in relation to the function ℓ. The outcomes of this study show that the operators fully preserve monotonicity over the interval 0,1 for all λ∈−1,1, but fail to consistently preserve convexity for certain values of λ within the same range. We support this conclusion with counterexamples and provide an adjusted result on convexity preservation for a particular class of functions when λ is chosen from the interval 0,1. We conclude our analysis with a section focusing on the convexity-preserving comparison of operators characterized by the shape parameter λ. •Integration of shape parameter λ into Kantorovich type Schurer operators for enhanced adaptability.•Operators preserve monotonicity across all λ values and partially preserve convexity.•Relevant for geometric modeling, computer graphics, and signal processing.
AbstractList This study explores the shape-preserving characteristics of the Kantorovich variant of λ−Schurer operators which are a modified version of the classical Kantorovich-type Schurer operators enhanced by the introduction of a shape parameter λ∈−1,1. The underlying objective of this study is to analyze how these operators retain the intrinsic geometric characteristics of the functions they approximate, a quality essential in applications such as computer graphics, signal processing, geometric modeling, robotics, and so forth. To accomplish this task, we begin by representing the operators in question as a sum of the classical Kantorovich-type Schurer operators and an additional term involving the integral of first-order divided differences of the function ℓ, where this additional term is scaled by the shape parameter λ. Using this formulation and the fundamental properties of divided differences, we then investigate the shape-preserving characteristics of these operators, including linearity, positivity, and, in particular, their ability to maintain monotonicity and convexity in relation to the function ℓ. The outcomes of this study show that the operators fully preserve monotonicity over the interval 0,1 for all λ∈−1,1, but fail to consistently preserve convexity for certain values of λ within the same range. We support this conclusion with counterexamples and provide an adjusted result on convexity preservation for a particular class of functions when λ is chosen from the interval 0,1. We conclude our analysis with a section focusing on the convexity-preserving comparison of operators characterized by the shape parameter λ. •Integration of shape parameter λ into Kantorovich type Schurer operators for enhanced adaptability.•Operators preserve monotonicity across all λ values and partially preserve convexity.•Relevant for geometric modeling, computer graphics, and signal processing.
ArticleNumber 126500
Author Ödemiş Özger, Zeynep
Özger, Faruk
Turhan, Nezihe
Author_xml – sequence: 1
  givenname: Nezihe
  orcidid: 0000-0002-9012-4386
  surname: Turhan
  fullname: Turhan, Nezihe
  email: nezihe.turhan.turan@ikcu.edu.tr
  organization: Department of Engineering Sciences, Izmir Katip Celebi University, 35620 Izmir, Turkey
– sequence: 2
  givenname: Faruk
  orcidid: 0000-0002-4135-2091
  surname: Özger
  fullname: Özger, Faruk
  email: farukozger@gmail.com
  organization: Department of Computer Engineering, Iğdır University, 76000, Iğdır, Turkey
– sequence: 3
  givenname: Zeynep
  orcidid: 0000-0002-3941-1726
  surname: Ödemiş Özger
  fullname: Ödemiş Özger, Zeynep
  email: zeynep.odemis.ozger@igdir.edu.tr
  organization: Department of Software Engineering, Iğdır University, 76000, Iğdır, Turkey
BookMark eNp9kE1OwzAQhb0oEm3hAqx8gQTbieNGYlNV_IlKLIC15TpjxVVrB9tt1bNxB85EosKGRVej0Xvf08yboJHzDhC6oSSnhFa36xziQeWMMJ5TVnFCRmhMai6ykoryEk1iXBNCBSFijNIca7_tArTgot0DjmnXHLF3OLX90qoOcBd8ByFZiNgb_KJc8sHvrW5xOvbym253AQIeTKqXIobPne06aPDBpvYvRAW1hdT7vr-u0IVRmwjXv3OKPh7u3xdP2fL18XkxX2a6YLOU1aY_UlFhgDENQLghRldKcKMJF7QkBmZQiEZxsdKCAjOsKDhUq7oWtdFlMUWzU64OPsYARmqbVLLepaDsRlIih8bkWg6NyaExeWqsR9k_tAt2q8LxPHR3gqB_am8hyKgtOA2NDaCTbLw9h_8AuIWNKA
CitedBy_id crossref_primary_10_1007_s11075_025_02134_5
crossref_primary_10_1515_dema_2025_0121
crossref_primary_10_1007_s13370_025_01368_9
crossref_primary_10_2298_FIL2502423Y
crossref_primary_10_1080_01630563_2025_2474161
Cites_doi 10.1016/j.amc.2020.125046
10.1002/mma.8649
10.2298/FIL1815433Y
10.3934/math.2024217
10.1002/mma.10375
10.1016/j.kjs.2023.12.007
10.1007/s13398-020-00903-6
10.7153/mia-2023-26-56
10.1016/j.aej.2024.07.015
10.31801/cfsuasmas.1537498
10.2298/FIL1804251R
10.1002/mma.5242
10.1155/2023/5245806
10.1155/2023/7457223
10.1007/s40314-024-02946-6
10.1109/TRO.2022.3187296
10.1002/mma.9636
10.3390/math9172141
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2025.126500
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2025_126500
S0957417425001228
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSH
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AAYWO
AAYXX
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c328t-9f170a17fe22cee05f0fc6a75fc057140fe8e37da57bc71e2f2335e6b9979fc43
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001404827500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 06:56:34 EST 2025
Tue Nov 18 20:49:22 EST 2025
Sat Apr 26 15:42:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Geometric modeling
Shape parameter optimization
Shape-preserving approximation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-9f170a17fe22cee05f0fc6a75fc057140fe8e37da57bc71e2f2335e6b9979fc43
ORCID 0000-0002-9012-4386
0000-0002-3941-1726
0000-0002-4135-2091
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2025_126500
crossref_primary_10_1016_j_eswa_2025_126500
elsevier_sciencedirect_doi_10_1016_j_eswa_2025_126500
PublicationCentury 2000
PublicationDate 2025-04-25
PublicationDateYYYYMMDD 2025-04-25
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-25
  day: 25
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Albayari (b4) 2023
Zain, Misro, Miura (b27) 2021; 9
Hu, Cao, Qin (b12) 2018; 41
Aslan (b7) 2024; 51
Marinescu, Niculescu (b14) 2023; 26
Aktuğlu, Kara, Baytunç (b3) 2025; 48
Özger, Demirci, Yıldız (b18) 2021
Rao, Wafi (b21) 2018; 32
Schurer (b22) 1962
Özger, Srivastava, Mohiuddine (b19) 2020; 114
Turhan Turan, Ödemiş Özger (b24) 2024; 73
Ayman-Mursaleen, Nasiruzzaman, Rao, Dilshad, Nisar (b8) 2024; 9
Rao, Ayman-Mursaleen, Aslan (b20) 2024; 43
Nasiruzzaman, Aljohani (b16) 2022; 46
Su, Mutlu, Çekim (b23) 2022; 2022
Arslan, Tiemessen (b5) 2022; 38
Ye, Long, Zeng (b25) 2010
Mohiuddine, Ödemiş Özger, Özger, Alotaibi (b15) 2024; 25
Ayman-Mursaleen, Rao, Rani, Kılıcman, Al-Abied, Malik (b9) 2023
Acu, Mutlu, Çekim, Yazıcı (b2) 2024; 47
Cai, Aslan, Özger, Srivastava (b10) 2024; 107
Izadbakhsh, Nazari, Talaei (b13) 2022; 29
Acu, Manav, Sofonea (b1) 2018; 2018
Costarelli, Seracini, Vinti (b11) 2020; 374
Özger (b17) 2020; 69
Yılmaz, Bodur, Aral (b26) 2018; 32
Ascher, Greif (b6) 2011
Albayari (10.1016/j.eswa.2025.126500_b4) 2023
Acu (10.1016/j.eswa.2025.126500_b2) 2024; 47
Zain (10.1016/j.eswa.2025.126500_b27) 2021; 9
Ye (10.1016/j.eswa.2025.126500_b25) 2010
Marinescu (10.1016/j.eswa.2025.126500_b14) 2023; 26
Arslan (10.1016/j.eswa.2025.126500_b5) 2022; 38
Hu (10.1016/j.eswa.2025.126500_b12) 2018; 41
Ayman-Mursaleen (10.1016/j.eswa.2025.126500_b8) 2024; 9
Izadbakhsh (10.1016/j.eswa.2025.126500_b13) 2022; 29
Özger (10.1016/j.eswa.2025.126500_b19) 2020; 114
Aktuğlu (10.1016/j.eswa.2025.126500_b3) 2025; 48
Turhan Turan (10.1016/j.eswa.2025.126500_b24) 2024; 73
Cai (10.1016/j.eswa.2025.126500_b10) 2024; 107
Yılmaz (10.1016/j.eswa.2025.126500_b26) 2018; 32
Schurer (10.1016/j.eswa.2025.126500_b22) 1962
Mohiuddine (10.1016/j.eswa.2025.126500_b15) 2024; 25
Özger (10.1016/j.eswa.2025.126500_b18) 2021
Rao (10.1016/j.eswa.2025.126500_b20) 2024; 43
Acu (10.1016/j.eswa.2025.126500_b1) 2018; 2018
Ayman-Mursaleen (10.1016/j.eswa.2025.126500_b9) 2023
Ascher (10.1016/j.eswa.2025.126500_b6) 2011
Aslan (10.1016/j.eswa.2025.126500_b7) 2024; 51
Su (10.1016/j.eswa.2025.126500_b23) 2022; 2022
Costarelli (10.1016/j.eswa.2025.126500_b11) 2020; 374
Özger (10.1016/j.eswa.2025.126500_b17) 2020; 69
Nasiruzzaman (10.1016/j.eswa.2025.126500_b16) 2022; 46
Rao (10.1016/j.eswa.2025.126500_b21) 2018; 32
References_xml – year: 1962
  ident: b22
  article-title: On linear positive operators in approximation theory
– start-page: 1
  year: 2023
  end-page: 18
  ident: b4
  article-title: The approximation of generalized log-aesthetic curves with
  publication-title: Journal of Mathematics
– volume: 9
  start-page: 2141
  year: 2021
  ident: b27
  article-title: Generalized fractional Bézier curve with shape parameters
  publication-title: Mathematics
– start-page: 1
  year: 2023
  end-page: 13
  ident: b9
  article-title: A note on approximation of Blending type Bernstein–Schurer–Kantorovich operators with shape parameter
  publication-title: Journal of Mathematics
– start-page: 1712
  year: 2010
  end-page: 1716
  ident: b25
  article-title: Adjustment algorithms for Bézier curve and surface
  publication-title: The 5. international conference on computer science and education
– volume: 41
  start-page: 7804
  year: 2018
  end-page: 7829
  ident: b12
  article-title: Construction of generalized developable Bézier surfaces with shape parameters
  publication-title: Mathematical Methods in the Applied Sciences
– volume: 38
  start-page: 3655
  year: 2022
  end-page: 3674
  ident: b5
  article-title: Adaptive Bézier degree reduction and splitting for computationally efficient motion planning
  publication-title: IEEE Transactions on Robotics
– volume: 51
  year: 2024
  ident: b7
  article-title: Rate of approximation of blending type modified univariate and bivariate
  publication-title: Kuwait Journal of Science
– volume: 47
  start-page: 5
  year: 2024
  end-page: 14
  ident: b2
  article-title: A new representation and shape-preserving properties of perturbed Bernstein operators
  publication-title: Mathematical Methods in the Applied Sciences
– volume: 26
  start-page: 911
  year: 2023
  end-page: 933
  ident: b14
  article-title: Old and new on the 3-convex functions
  publication-title: Mathematical Inequalities & Applications
– volume: 25
  start-page: 2059
  year: 2024
  end-page: 2082
  ident: b15
  article-title: Construction of a new family of modified Bernstein-Schurer operators of different order for better approximation
  publication-title: Journal of Nonlinear and Convex Analysis
– volume: 9
  start-page: 4409
  year: 2024
  end-page: 4426
  ident: b8
  article-title: Approximation by the modified
  publication-title: AIMS Series on Applied Mathematics
– volume: 48
  start-page: 1124
  year: 2025
  end-page: 1141
  ident: b3
  article-title: -Bernstein–Kantorovich operators
  publication-title: Mathematical Methods in the Applied Sciences
– volume: 107
  start-page: 205
  year: 2024
  end-page: 214
  ident: b10
  article-title: Approximation by a new stancu variant of generalized
  publication-title: Alexandria Engineering Journal
– volume: 73
  start-page: 1153
  year: 2024
  end-page: 1170
  ident: b24
  article-title: An analysis on the shape-preserving characteristics of
  publication-title: Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics
– volume: 46
  start-page: 2354
  year: 2022
  end-page: 2372
  ident: b16
  article-title: Approximation by
  publication-title: Mathematical Methods in the Applied Sciences
– volume: 43
  start-page: 428
  year: 2024
  ident: b20
  article-title: A note on a general sequence of
  publication-title: Computational & Applied Mathematics
– volume: 32
  start-page: 5433
  year: 2018
  end-page: 5440
  ident: b26
  article-title: On approximation properties of Baskakov-Schurer-Szász operators preserving exponential functions
  publication-title: Filomat
– volume: 32
  start-page: 1251
  year: 2018
  end-page: 1258
  ident: b21
  article-title: Bivariate-Schurer-stancu operators based on
  publication-title: Filomat
– volume: 69
  start-page: 376
  year: 2020
  end-page: 393
  ident: b17
  article-title: On new Bézier bases with Schurer polynomials and corresponding results in approximation theory
  publication-title: Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics
– volume: 29
  start-page: 5035
  year: 2022
  end-page: 5052
  ident: b13
  article-title: Robust cooperative multiple flexible-joint arms control using the
  publication-title: Journal of Vibration and Control
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 11
  ident: b23
  article-title: On the shape-preserving properties of
  publication-title: Journal of Inequalities and Applications
– start-page: 77
  year: 2021
  end-page: 94
  ident: b18
  article-title: Approximation by kantorovich variant of
  publication-title: Topics in contemporary mathematical analysis and applications
– volume: 114
  start-page: 173
  year: 2020
  ident: b19
  article-title: Approximation of functions by a new class of generalized Bernstein–Schurer operators
  publication-title: Revista de la Real Academia de Ciencias Exactas, Físicas Y Naturales. Serie A. Matemáticas
– year: 2011
  ident: b6
  article-title: A first course in numerical methods
– volume: 374
  year: 2020
  ident: b11
  article-title: A comparison between the sampling kantorovich algorithm for digital image processing with some interpolation and quasi-interpolation methods
  publication-title: Applied Mathematics and Computation
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 12
  ident: b1
  article-title: Approximation properties of
  publication-title: Journal of Inequalities and Applications
– volume: 374
  year: 2020
  ident: 10.1016/j.eswa.2025.126500_b11
  article-title: A comparison between the sampling kantorovich algorithm for digital image processing with some interpolation and quasi-interpolation methods
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2020.125046
– start-page: 77
  year: 2021
  ident: 10.1016/j.eswa.2025.126500_b18
  article-title: Approximation by kantorovich variant of λ−Schurer operators and related numerical results
– volume: 46
  start-page: 2354
  issue: 2
  year: 2022
  ident: 10.1016/j.eswa.2025.126500_b16
  article-title: Approximation by α-Bernstein–Schurer operators and shape preserving properties via q-analogue
  publication-title: Mathematical Methods in the Applied Sciences
  doi: 10.1002/mma.8649
– volume: 32
  start-page: 5433
  issue: 15
  year: 2018
  ident: 10.1016/j.eswa.2025.126500_b26
  article-title: On approximation properties of Baskakov-Schurer-Szász operators preserving exponential functions
  publication-title: Filomat
  doi: 10.2298/FIL1815433Y
– start-page: 1712
  year: 2010
  ident: 10.1016/j.eswa.2025.126500_b25
  article-title: Adjustment algorithms for Bézier curve and surface
– volume: 9
  start-page: 4409
  year: 2024
  ident: 10.1016/j.eswa.2025.126500_b8
  article-title: Approximation by the modified λ-Bernstein-polynomial in terms of basis function
  publication-title: AIMS Series on Applied Mathematics
  doi: 10.3934/math.2024217
– volume: 48
  start-page: 1124
  year: 2025
  ident: 10.1016/j.eswa.2025.126500_b3
  article-title: ψ-Bernstein–Kantorovich operators
  publication-title: Mathematical Methods in the Applied Sciences
  doi: 10.1002/mma.10375
– volume: 51
  year: 2024
  ident: 10.1016/j.eswa.2025.126500_b7
  article-title: Rate of approximation of blending type modified univariate and bivariate λ-Schurer-Kantorovich operators
  publication-title: Kuwait Journal of Science
  doi: 10.1016/j.kjs.2023.12.007
– volume: 114
  start-page: 173
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2025.126500_b19
  article-title: Approximation of functions by a new class of generalized Bernstein–Schurer operators
  publication-title: Revista de la Real Academia de Ciencias Exactas, Físicas Y Naturales. Serie A. Matemáticas
  doi: 10.1007/s13398-020-00903-6
– year: 1962
  ident: 10.1016/j.eswa.2025.126500_b22
– year: 2011
  ident: 10.1016/j.eswa.2025.126500_b6
– volume: 29
  start-page: 5035
  issue: 21–22
  year: 2022
  ident: 10.1016/j.eswa.2025.126500_b13
  article-title: Robust cooperative multiple flexible-joint arms control using the q-Bernstein-Schurer operators as the uncertainty approximator: a singular perturbation approach
  publication-title: Journal of Vibration and Control
– volume: 26
  start-page: 911
  issue: 4
  year: 2023
  ident: 10.1016/j.eswa.2025.126500_b14
  article-title: Old and new on the 3-convex functions
  publication-title: Mathematical Inequalities & Applications
  doi: 10.7153/mia-2023-26-56
– volume: 69
  start-page: 376
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2025.126500_b17
  article-title: On new Bézier bases with Schurer polynomials and corresponding results in approximation theory
  publication-title: Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics
– volume: 2022
  start-page: 1
  issue: 151
  year: 2022
  ident: 10.1016/j.eswa.2025.126500_b23
  article-title: On the shape-preserving properties of λ-Bernstein operators
  publication-title: Journal of Inequalities and Applications
– volume: 107
  start-page: 205
  year: 2024
  ident: 10.1016/j.eswa.2025.126500_b10
  article-title: Approximation by a new stancu variant of generalized (λ,μ)-Bernstein operators
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2024.07.015
– volume: 73
  start-page: 1153
  issue: 4
  year: 2024
  ident: 10.1016/j.eswa.2025.126500_b24
  article-title: An analysis on the shape-preserving characteristics of λ−Schurer operators
  publication-title: Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics
  doi: 10.31801/cfsuasmas.1537498
– volume: 32
  start-page: 1251
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2025.126500_b21
  article-title: Bivariate-Schurer-stancu operators based on (p,q)−integers
  publication-title: Filomat
  doi: 10.2298/FIL1804251R
– volume: 41
  start-page: 7804
  issue: 17
  year: 2018
  ident: 10.1016/j.eswa.2025.126500_b12
  article-title: Construction of generalized developable Bézier surfaces with shape parameters
  publication-title: Mathematical Methods in the Applied Sciences
  doi: 10.1002/mma.5242
– volume: 25
  start-page: 2059
  year: 2024
  ident: 10.1016/j.eswa.2025.126500_b15
  article-title: Construction of a new family of modified Bernstein-Schurer operators of different order for better approximation
  publication-title: Journal of Nonlinear and Convex Analysis
– start-page: 1
  year: 2023
  ident: 10.1016/j.eswa.2025.126500_b9
  article-title: A note on approximation of Blending type Bernstein–Schurer–Kantorovich operators with shape parameter α
  publication-title: Journal of Mathematics
  doi: 10.1155/2023/5245806
– start-page: 1
  year: 2023
  ident: 10.1016/j.eswa.2025.126500_b4
  article-title: The approximation of generalized log-aesthetic curves with G2 cubic trigonometric Bézier function
  publication-title: Journal of Mathematics
  doi: 10.1155/2023/7457223
– volume: 43
  start-page: 428
  issue: 8
  year: 2024
  ident: 10.1016/j.eswa.2025.126500_b20
  article-title: A note on a general sequence of λ-Szász Kantorovich type operators
  publication-title: Computational & Applied Mathematics
  doi: 10.1007/s40314-024-02946-6
– volume: 38
  start-page: 3655
  issue: 6
  year: 2022
  ident: 10.1016/j.eswa.2025.126500_b5
  article-title: Adaptive Bézier degree reduction and splitting for computationally efficient motion planning
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2022.3187296
– volume: 47
  start-page: 5
  issue: 1
  year: 2024
  ident: 10.1016/j.eswa.2025.126500_b2
  article-title: A new representation and shape-preserving properties of perturbed Bernstein operators
  publication-title: Mathematical Methods in the Applied Sciences
  doi: 10.1002/mma.9636
– volume: 9
  start-page: 2141
  issue: 17
  year: 2021
  ident: 10.1016/j.eswa.2025.126500_b27
  article-title: Generalized fractional Bézier curve with shape parameters
  publication-title: Mathematics
  doi: 10.3390/math9172141
– volume: 2018
  start-page: 1
  issue: 202
  year: 2018
  ident: 10.1016/j.eswa.2025.126500_b1
  article-title: Approximation properties of λ-Kantorovich operators
  publication-title: Journal of Inequalities and Applications
SSID ssj0017007
Score 2.4980004
Snippet This study explores the shape-preserving characteristics of the Kantorovich variant of λ−Schurer operators which are a modified version of the classical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126500
SubjectTerms Geometric modeling
Shape parameter optimization
Shape-preserving approximation
Title A comprehensive study on the shape properties of Kantorovich type Schurer operators equipped with shape parameter λ
URI https://dx.doi.org/10.1016/j.eswa.2025.126500
Volume 270
WOSCitedRecordID wos001404827500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbptAEF65SQ-99L9q-qc91CeLCC8syx4dy1b_ZFVqKlm9ICBDcRJhinGa5mn6Hn2HPlNn2V1sojRqDr0gCy9jxHweZma_mSHkdeZmrgd-6CQA4PgiiJ3YTzhimas3GpcubwqFP4jZLJzP5cde76ethTk7FUURnp_L8r-qGs-hslXp7A3U3QrFE_gZlY5HVDse_0nxo4YmXkFuqOkr3TZa0xlXeVyq0qhlqfjUuuHsezVHWGUWUpOR_ZTm6wqqgVoUN9N44Nt6UZaWqW6ExIrXpXos9seT_sFBJ8evGijXpk20LaDb2irfsDqqXGdgZ3CxyFuQqe17GVx81XiaxtX6pPuV4vT3x7wvp4Pu2i_wo4ByO5fBuNqW0XXPbVJSOP5Qz-2x9pnpySLGwg4Z-pTulcZf5yGO92H1XXWUYnx_s7jbafvSG7DlJVrK23GkZERKRqRl3CK7THCJdnN39HYyf9fuVAlXl-TbOzeFWZpDePlOrnZ-thyaw_vkrolE6Egj6AHpQfGQ3LNTPqgx-o9IPaIdQNEGUHRZUAQUbbBAN4Ciy4xuAYoqQFEDKNoCilpAUQUNK8QCiv7-9Zh8nk4Ox28cM6vDST0W1o7M8EnEQ5EBY-h3uRyNQBrEgmcpRgQYxWcQgieOYi6SVAyBZczzOASJlEJmqe89ITvFsoCnhGIAE2MYL4Elrp8EHF8MIDzA0No_QllijwztQ4xS08hezVM5jf6uvj0yaK8pdRuXa1dzq5vIOKLawYwQatdc9-xGv_Kc3Nn8B16Qnbpaw0tyOz2rF6vqlcHZH6FPq_g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+study+on+the+shape+properties+of+Kantorovich+type+Schurer+operators+equipped+with+shape+parameter+%CE%BB&rft.jtitle=Expert+systems+with+applications&rft.au=Turhan%2C+Nezihe&rft.au=%C3%96zger%2C+Faruk&rft.au=%C3%96demi%C5%9F+%C3%96zger%2C+Zeynep&rft.date=2025-04-25&rft.issn=0957-4174&rft.volume=270&rft.spage=126500&rft_id=info:doi/10.1016%2Fj.eswa.2025.126500&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2025_126500
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon