A new efficient hybrid algorithm for large scale multiple traveling salesman problems

•A new hybrid algorithm AC-PGA is designed for solving large scale MTSPs.•AC-PGA has better performance than some existing algorithms.•AC-PGA has weak dependence on the initial value.•A path matrix representation method is introduced for dealing with MTSPs. Multiple traveling salesmen problem (MTSP)...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 139; p. 112867
Main Authors: Jiang, Chao, Wan, Zhongping, Peng, Zhenhua
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01.01.2020
Elsevier BV
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A new hybrid algorithm AC-PGA is designed for solving large scale MTSPs.•AC-PGA has better performance than some existing algorithms.•AC-PGA has weak dependence on the initial value.•A path matrix representation method is introduced for dealing with MTSPs. Multiple traveling salesmen problem (MTSP) is not only a generalization of the traveling salesman problem (TSP), but also more suitable for modeling practical problems in the real life than TSP. For solving the MTSP with multiple depots, the requirement of minimum and maximum number of cities that each salesman should visit, a hybrid algorithm called ant colony-partheno genetic algorithms (AC-PGA) is provided by combining partheno genetic algorithms (PGA) and ant colony algorithms (ACO). The main idea in this paper is to divide the variables into two parts. In detail, it exploits PGA to comprehensively search the best value of the first part variables and then utilizes ACO to accurately determine the second part variables value. For comparative analysis, PGA, improved PGA (IPGA), two-part wolf pack search (TWPS), artificial bee colony (ABC) and invasive weed optimization (IWO) algorithms are adopted to solve MTSP and validated with publicly available TSPLIB benchmarks. The results of comparative experiments show that AC-PGA is sufficiently effective in solving large scale MTSP and has better performance than the existing algorithms.
AbstractList Multiple traveling salesmen problem (MTSP) is not only a generalization of the traveling salesman problem (TSP), but also more suitable for modeling practical problems in the real life than TSP. For solving the MTSP with multiple depots, the requirement of minimum and maximum number of cities that each salesman should visit, a hybrid algorithm called ant colony-partheno genetic algorithms (AC-PGA) is provided by combining partheno genetic algorithms (PGA) and ant colony algorithms (ACO). The main idea in this paper is to divide the variables into two parts. In detail, it exploits PGA to comprehensively search the best value of the first part variables and then utilizes ACO to accurately determine the second part variables value. For comparative analysis, PGA, improved PGA (IPGA), two-part wolf pack search (TWPS), artificial bee colony (ABC) and invasive weed optimization (IWO) algorithms are adopted to solve MTSP and validated with publicly available TSPLIB benchmarks. The results of comparative experiments show that AC-PGA is sufficiently effective in solving large scale MTSP and has better performance than the existing algorithms.
•A new hybrid algorithm AC-PGA is designed for solving large scale MTSPs.•AC-PGA has better performance than some existing algorithms.•AC-PGA has weak dependence on the initial value.•A path matrix representation method is introduced for dealing with MTSPs. Multiple traveling salesmen problem (MTSP) is not only a generalization of the traveling salesman problem (TSP), but also more suitable for modeling practical problems in the real life than TSP. For solving the MTSP with multiple depots, the requirement of minimum and maximum number of cities that each salesman should visit, a hybrid algorithm called ant colony-partheno genetic algorithms (AC-PGA) is provided by combining partheno genetic algorithms (PGA) and ant colony algorithms (ACO). The main idea in this paper is to divide the variables into two parts. In detail, it exploits PGA to comprehensively search the best value of the first part variables and then utilizes ACO to accurately determine the second part variables value. For comparative analysis, PGA, improved PGA (IPGA), two-part wolf pack search (TWPS), artificial bee colony (ABC) and invasive weed optimization (IWO) algorithms are adopted to solve MTSP and validated with publicly available TSPLIB benchmarks. The results of comparative experiments show that AC-PGA is sufficiently effective in solving large scale MTSP and has better performance than the existing algorithms.
ArticleNumber 112867
Author Wan, Zhongping
Jiang, Chao
Peng, Zhenhua
Author_xml – sequence: 1
  givenname: Chao
  surname: Jiang
  fullname: Jiang, Chao
– sequence: 2
  givenname: Zhongping
  surname: Wan
  fullname: Wan, Zhongping
  email: mathwanzhp@whu.edu.cn
– sequence: 3
  givenname: Zhenhua
  orcidid: 0000-0002-0139-2988
  surname: Peng
  fullname: Peng, Zhenhua
  email: zhenhuapeng@whu.edu.cn
BookMark eNp9kMtqwzAQRUVJoUnaH-hK0LVdPRzLhm5C6AsC3TRrIcujRMGPVFIS8veVcVddZKWRuEczc2Zo0vUdIPRISUoJzZ_3KfizShmhZUopK3Jxg6a0EDzJRcknaErKhUgyKrI7NPN-TwgVhIgp2ixxB2cMxlhtoQt4d6mcrbFqtr2zYddi0zvcKLcF7LVqALfHJthDLIJTJ2hst8U-vvtWdfjg-qqB1t-jW6MaDw9_5xxt3l6_Vx_J-uv9c7VcJ5qzIiRlCYxUOq94mWlRUiWKmhZGZYVisaxMHFoIbkpiuKirasHjNY660AAxnfM5ehr_jY1_juCD3PdH18WWknHK2CCCxBQbU9r13jsw8uBsq9xFUiIHfXIvB31y0CdHfREq_kHaBhVs38W9bXMdfRlRiKufLDjpB7caautAB1n39hr-C8FZji8
CitedBy_id crossref_primary_10_1007_s00500_021_05675_8
crossref_primary_10_3390_electronics10182298
crossref_primary_10_1016_j_ins_2023_118996
crossref_primary_10_1016_j_asej_2025_103637
crossref_primary_10_1088_1742_6596_2246_1_012081
crossref_primary_10_3233_JIFS_213121
crossref_primary_10_3390_s23020751
crossref_primary_10_1007_s12530_023_09524_x
crossref_primary_10_1109_ACCESS_2024_3486686
crossref_primary_10_1155_2021_5590758
crossref_primary_10_1016_j_cosrev_2021_100369
crossref_primary_10_1016_j_oceaneng_2025_121556
crossref_primary_10_1016_j_cor_2023_106455
crossref_primary_10_1007_s12190_023_01935_y
crossref_primary_10_32604_cmes_2023_024172
crossref_primary_10_3390_drones9020090
crossref_primary_10_1109_TVT_2023_3341878
crossref_primary_10_3390_biomimetics8010096
crossref_primary_10_1016_j_eswa_2022_118333
crossref_primary_10_1109_ACCESS_2020_3000501
crossref_primary_10_1109_ACCESS_2020_3001435
crossref_primary_10_1016_j_eswa_2022_119424
crossref_primary_10_1007_s10462_022_10190_9
crossref_primary_10_1016_j_engappai_2025_112013
crossref_primary_10_1016_j_eswa_2023_121244
crossref_primary_10_3390_s23208601
crossref_primary_10_1007_s10489_020_02099_z
crossref_primary_10_1088_1742_6596_1848_1_012002
crossref_primary_10_1007_s00521_022_07816_y
crossref_primary_10_1016_j_eswa_2020_113229
crossref_primary_10_1109_ACCESS_2020_3045765
crossref_primary_10_3390_math11133014
crossref_primary_10_1007_s10586_021_03304_5
crossref_primary_10_1016_j_cor_2024_106750
crossref_primary_10_1007_s00521_023_08950_x
crossref_primary_10_1016_j_oceaneng_2024_119614
crossref_primary_10_1016_j_eswa_2025_129534
crossref_primary_10_1002_int_22342
crossref_primary_10_1016_j_eswa_2024_125446
crossref_primary_10_1109_TNNLS_2022_3185611
crossref_primary_10_1007_s10489_024_05596_7
crossref_primary_10_1016_j_eswa_2021_114664
crossref_primary_10_1007_s12555_023_0745_4
crossref_primary_10_1007_s41066_023_00424_8
crossref_primary_10_1016_j_eswa_2022_116895
crossref_primary_10_3389_fphy_2022_955499
crossref_primary_10_1109_ACCESS_2020_2998539
crossref_primary_10_3390_sym16091229
crossref_primary_10_1007_s11370_025_00615_z
crossref_primary_10_3390_a17050177
crossref_primary_10_1007_s10489_021_02839_9
crossref_primary_10_1016_j_cor_2020_105192
crossref_primary_10_1109_TITS_2022_3145375
Cites_doi 10.1016/j.eswa.2014.07.054
10.1007/s00500-014-1322-9
10.1016/j.eswa.2015.07.051
10.1016/j.omega.2004.10.004
10.1016/j.asoc.2017.12.031
10.1016/j.asoc.2010.03.002
10.1016/j.eswa.2012.02.029
10.1016/j.ins.2017.12.011
10.1016/S0377-2217(99)00380-X
10.1016/j.ejor.2017.11.017
10.1016/j.asoc.2014.09.029
10.1016/j.neucom.2016.11.098
10.1016/j.ejor.2017.04.061
10.1016/j.ejor.2005.04.027
10.1016/j.swevo.2018.08.004
10.1371/journal.pone.0165804
10.1016/j.ejor.2013.01.043
10.1016/j.ejor.2012.12.023
10.1016/j.eswa.2015.10.019
10.1287/opre.34.5.698
10.1007/s00500-017-2760-y
10.1007/s00500-016-2075-4
10.1016/j.engappai.2015.10.006
10.1016/j.apm.2014.11.043
10.1016/j.jclepro.2015.05.036
10.1016/j.swevo.2018.05.006
10.1016/j.asoc.2018.06.047
10.1016/j.swevo.2011.02.002
10.1147/rd.284.0476
10.1016/j.cor.2015.12.014
10.1016/j.ejor.2017.02.017
10.1016/j.eswa.2017.01.053
10.1109/TSMC.2016.2591267
10.2991/ijcis.11.1.53
10.1016/j.ins.2017.08.067
10.1016/j.asoc.2017.08.041
10.1287/opre.2017.1603
10.1016/j.swevo.2018.02.017
10.1016/j.eswa.2010.09.048
10.1142/S0218213019500040
10.1016/j.ijpe.2016.03.005
10.1016/j.ejor.2015.07.048
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Jan 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2019.112867
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2019_112867
S0957417419305779
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-99e20bc6b394c791a78d18fa48a278dbf957773f90f37dbb53777eff5cee91a63
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000493221200031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Jul 13 04:40:35 EDT 2025
Sat Nov 29 07:03:51 EST 2025
Tue Nov 18 22:36:16 EST 2025
Fri Feb 23 02:24:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Genetic algorithm
Hybrid algorithm
Ant colony algorithm
Partheno genetic algorithm
Multiple traveling salesmen problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-99e20bc6b394c791a78d18fa48a278dbf957773f90f37dbb53777eff5cee91a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0139-2988
PQID 2312228670
PQPubID 2045477
ParticipantIDs proquest_journals_2312228670
crossref_primary_10_1016_j_eswa_2019_112867
crossref_citationtrail_10_1016_j_eswa_2019_112867
elsevier_sciencedirect_doi_10_1016_j_eswa_2019_112867
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Taş, Gendreau, Jabali, Laporte (bib0044) 2016; 248
Chen, Chien (bib0006) 2011; 38
Oberlin, Rathinam, Darbha (bib0036) 2009
Venkatesh, Singh (bib0046) 2015; 26
Chen, Jia, Ai, Yang, Yu (bib0007) 2017; 61
Choong, Wong, Lim (bib0008) 2019; 44
Ouaarab, Ahiod, Yang (bib0040) 2015; 19
Dorigo (bib0012) 1992
Ghafurian, Javadian (bib0018) 2011; 11
Whitley, Starkweather, Fuquay (bib0048) 1989; 1989
Hatamlou (bib0020) 2018; 22
Lo, Yi, Wong, Leung, Leung, Mak (bib0028) 2018; 11
Zhou, Song, Pedrycz (bib0053) 2018; 64
Kinable, Smeulders, Delcour, Spieksma (bib0025) 2017; 261
Király, Christidou, Chován, Karlopoulos, Abonyi (bib0026) 2016; 111
Changdar, Pal, Mahapatra (bib0005) 2017; 21
Mohsen, Al-Sorori (bib0033) 2017
Dorigo, Maniezzo, Colorni (bib0013) 1996; vol. 26
Alves, Lopes (bib0001) 2015
Colorni, Dorigo, Maniezzo (bib0009) 1991
Venkatesh, Singh (bib0047) 2018; 463–464
Xu, Xu, Xu (bib0049) 2013; 227
Meng, Li, Zhou, Dai, Dou (bib0031) 2018; 48
Nagata, Soler (bib0034) 2012; 39
Zhong, Lin, Wang, Zhang (bib0052) 2018; 42
Escario, Jimenez, Giron-Sierra (bib0015) 2015; 42
Mitchell (bib0032) 1996
Asadpour, Goemans, Madry, Gharan, Saberi (bib0002) 2017; 65
De Santis, Montanari, Vignali, Bottani (bib0010) 2018; 267
Sundar, Rathinam (bib0043) 2016; 70
Ezugwu, Adewumi, FrÎncu (bib0016) 2017; 77
Bektas (bib0003) 2006; 34
Karaboga, Gorkemli (bib0023) 2019; 28
Gavish, Srikanth (bib0017) 1986; 34
Shiri, Huynh (bib0042) 2016; 176
Derrac, García, Molina, Herrera (bib0011) 2011; 1
Kota, Jarmai (bib0027) 2015; 39
Osaba, Del Ser, Sadollah, Bilbao, Camacho (bib0038) 2018; 71
Tang, Liu, Rong, Yang (bib0045) 2000; 124
Matai, Singh, Mittal (bib0030) 2010
Jiang, Yang (bib0022) 2016; 11
Carter, Ragsdale (bib0004) 2006; 175
Held, Hoffman, Johnson, Wolfe (bib0021) 1984; 28
Osaba, Yang, Diaz, Lopez-Garcia, Carballedo (bib0039) 2016; 48
Zhong, Lin, Wang, Zhang (bib0051) 2017; 421
Psychas, Delimpasi, Marinakis (bib0041) 2015; 42
Gouveia, Leitner, Ruthmair (bib0019) 2017; 262
El Yafrani, Ahiod (bib0014) 2018; 432
Necula, Breaban, Raschip (bib0035) 2015
Khan, Maiti (bib0024) 2019; 44
Yuan, Skinner, Huang, Liu (bib0050) 2013; 228
Maity, Roy, Maiti (bib0029) 2016; 46
Osaba, Carballedo, Diaz, Onieva, Masegosa, Perallos (bib0037) 2018; 271
Asadpour (10.1016/j.eswa.2019.112867_bib0002) 2017; 65
Gouveia (10.1016/j.eswa.2019.112867_bib0019) 2017; 262
Xu (10.1016/j.eswa.2019.112867_bib0049) 2013; 227
Derrac (10.1016/j.eswa.2019.112867_bib0011) 2011; 1
Osaba (10.1016/j.eswa.2019.112867_bib0037) 2018; 271
Kinable (10.1016/j.eswa.2019.112867_bib0025) 2017; 261
Taş (10.1016/j.eswa.2019.112867_bib0044) 2016; 248
Venkatesh (10.1016/j.eswa.2019.112867_bib0047) 2018; 463–464
Choong (10.1016/j.eswa.2019.112867_bib0008) 2019; 44
Osaba (10.1016/j.eswa.2019.112867_bib0038) 2018; 71
Zhong (10.1016/j.eswa.2019.112867_bib0051) 2017; 421
Khan (10.1016/j.eswa.2019.112867_bib0024) 2019; 44
Ouaarab (10.1016/j.eswa.2019.112867_bib0040) 2015; 19
Zhong (10.1016/j.eswa.2019.112867_bib0052) 2018; 42
Dorigo (10.1016/j.eswa.2019.112867_bib0013) 1996; vol. 26
Gavish (10.1016/j.eswa.2019.112867_bib0017) 1986; 34
Alves (10.1016/j.eswa.2019.112867_bib0001) 2015
Mohsen (10.1016/j.eswa.2019.112867_sbref0033) 2017
Psychas (10.1016/j.eswa.2019.112867_bib0041) 2015; 42
Nagata (10.1016/j.eswa.2019.112867_bib0034) 2012; 39
Meng (10.1016/j.eswa.2019.112867_bib0031) 2018; 48
Escario (10.1016/j.eswa.2019.112867_bib0015) 2015; 42
Ghafurian (10.1016/j.eswa.2019.112867_bib0018) 2011; 11
Colorni (10.1016/j.eswa.2019.112867_sbref0009) 1991
Whitley (10.1016/j.eswa.2019.112867_bib0048) 1989; 1989
Held (10.1016/j.eswa.2019.112867_bib0021) 1984; 28
Dorigo (10.1016/j.eswa.2019.112867_bib0012) 1992
Zhou (10.1016/j.eswa.2019.112867_bib0053) 2018; 64
Lo (10.1016/j.eswa.2019.112867_bib0028) 2018; 11
Venkatesh (10.1016/j.eswa.2019.112867_bib0046) 2015; 26
Carter (10.1016/j.eswa.2019.112867_bib0004) 2006; 175
Chen (10.1016/j.eswa.2019.112867_bib0006) 2011; 38
Mitchell (10.1016/j.eswa.2019.112867_bib0032) 1996
Osaba (10.1016/j.eswa.2019.112867_bib0039) 2016; 48
Tang (10.1016/j.eswa.2019.112867_bib0045) 2000; 124
Kota (10.1016/j.eswa.2019.112867_bib0027) 2015; 39
Bektas (10.1016/j.eswa.2019.112867_bib0003) 2006; 34
Király (10.1016/j.eswa.2019.112867_bib0026) 2016; 111
Sundar (10.1016/j.eswa.2019.112867_bib0043) 2016; 70
Hatamlou (10.1016/j.eswa.2019.112867_bib0020) 2018; 22
Shiri (10.1016/j.eswa.2019.112867_bib0042) 2016; 176
Changdar (10.1016/j.eswa.2019.112867_bib0005) 2017; 21
Matai (10.1016/j.eswa.2019.112867_bib0030) 2010
El Yafrani (10.1016/j.eswa.2019.112867_bib0014) 2018; 432
Oberlin (10.1016/j.eswa.2019.112867_bib0036) 2009
Necula (10.1016/j.eswa.2019.112867_bib0035) 2015
Jiang (10.1016/j.eswa.2019.112867_bib0022) 2016; 11
Maity (10.1016/j.eswa.2019.112867_bib0029) 2016; 46
Yuan (10.1016/j.eswa.2019.112867_bib0050) 2013; 228
De Santis (10.1016/j.eswa.2019.112867_bib0010) 2018; 267
Chen (10.1016/j.eswa.2019.112867_bib0007) 2017; 61
Ezugwu (10.1016/j.eswa.2019.112867_bib0016) 2017; 77
Karaboga (10.1016/j.eswa.2019.112867_bib0023) 2019; 28
References_xml – volume: 22
  start-page: 8167
  year: 2018
  end-page: 8175
  ident: bib0020
  article-title: Solving travelling salesman problem using black hole algorithm
  publication-title: Soft Computing
– year: 1992
  ident: bib0012
  publication-title: Optimization, learning and natural algorithms
– volume: 39
  start-page: 8947
  year: 2012
  end-page: 8953
  ident: bib0034
  article-title: A new genetic algorithm for the asymmetric traveling salesman problem
  publication-title: Expert Systems with Applications
– volume: 48
  start-page: 277
  year: 2018
  end-page: 288
  ident: bib0031
  article-title: Population-based incremental learning algorithm for a serial colored traveling salesman problem
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– start-page: 1292
  year: 2009
  end-page: 1297
  ident: bib0036
  article-title: A transformation for a heterogeneous, multiple depot, multiple traveling salesman problem
  publication-title: 2009 American control conference
– volume: 42
  start-page: 8956
  year: 2015
  end-page: 8970
  ident: bib0041
  article-title: Hybrid evolutionary algorithms for the multiobjective traveling salesman problem
  publication-title: Expert Systems with Applications
– volume: 271
  start-page: 2
  year: 2018
  end-page: 8
  ident: bib0037
  article-title: Good practice proposal for the implementation, presentation, and comparison of metaheuristics for solving routing problems
  publication-title: Neurocomputing
– volume: 21
  start-page: 4661
  year: 2017
  end-page: 4675
  ident: bib0005
  article-title: A genetic ant colony optimization based algorithm for solid multiple travelling salesmen problem in fuzzy rough environment
  publication-title: Soft Computing
– volume: 48
  start-page: 59
  year: 2016
  end-page: 71
  ident: bib0039
  article-title: An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 42
  start-page: 390
  year: 2015
  end-page: 410
  ident: bib0015
  article-title: Ant colony extended: Experiments on the travelling salesman problem
  publication-title: Expert Systems with Applications
– year: 1996
  ident: bib0032
  publication-title: An introduction to genetic algorithms
– volume: 71
  start-page: 277
  year: 2018
  end-page: 290
  ident: bib0038
  article-title: A discrete water cycle algorithm for solving the symmetric and asymmetric traveling salesman problem
  publication-title: Applied Soft Computing
– volume: 44
  start-page: 622
  year: 2019
  end-page: 635
  ident: bib0008
  article-title: An artificial bee colony algorithm with a modified choice function for the traveling salesman problem
  publication-title: Swarm and Evolutionary Computation
– volume: 19
  start-page: 1099
  year: 2015
  end-page: 1106
  ident: bib0040
  article-title: Random-key cuckoo search for the travelling salesman problem
  publication-title: Soft Computing
– volume: 228
  start-page: 72
  year: 2013
  end-page: 82
  ident: bib0050
  article-title: A new crossover approach for solving the multiple travelling salesmen problem using genetic algorithms
  publication-title: European Journal of Operational Research
– volume: 111
  start-page: 253
  year: 2016
  end-page: 261
  ident: bib0026
  article-title: Minimization of off-grade production in multi-site multi-product plants by solving multiple traveling salesman problem
  publication-title: Journal of Cleaner Production
– volume: 38
  start-page: 3873
  year: 2011
  end-page: 3883
  ident: bib0006
  article-title: Parallelized genetic ant colony systems for solving the traveling salesman problem
  publication-title: Expert Systems with Applications
– volume: 28
  start-page: 476
  year: 1984
  end-page: 486
  ident: bib0021
  article-title: Aspects of the traveling salesman problem
  publication-title: IBM Journal of Research and Development
– volume: 46
  start-page: 196
  year: 2016
  end-page: 223
  ident: bib0029
  article-title: An imprecise multi-objective genetic algorithm for uncertain constrained multi-objective solid travelling salesman problem
  publication-title: Expert Systems With Applications
– volume: 175
  start-page: 246
  year: 2006
  end-page: 257
  ident: bib0004
  article-title: A new approach to solving the multiple traveling salesperson problem using genetic algorithms
  publication-title: European Journal of Operational Research
– volume: 432
  start-page: 231
  year: 2018
  end-page: 244
  ident: bib0014
  article-title: Efficiently solving the traveling thief problem using hill climbing and simulated annealing
  publication-title: Information Sciences
– volume: 65
  start-page: 1043
  year: 2017
  end-page: 1061
  ident: bib0002
  article-title: An
  publication-title: Operations Research
– volume: 11
  start-page: 692
  year: 2018
  end-page: 705
  ident: bib0028
  article-title: A genetic algorithm with new local operators for multiple traveling salesman problems
  publication-title: International Journal of Computational Intelligence Systems
– volume: 34
  start-page: 698
  year: 1986
  end-page: 717
  ident: bib0017
  article-title: An optimal solution method for large-scale multiple traveling salesmen problems
  publication-title: Operations Research
– year: 2017
  ident: bib0033
  article-title: A new hybrid discrete firefly algorithm for solving the traveling salesman problem
  publication-title: In applied computing and information technology (pp. 169–180)
– volume: 421
  start-page: 70
  year: 2017
  end-page: 84
  ident: bib0051
  article-title: Hybrid discrete artificial bee colony algorithm with threshold acceptance criterion for traveling salesman problem
  publication-title: Information Sciences
– volume: 39
  start-page: 3410
  year: 2015
  end-page: 3433
  ident: bib0027
  article-title: Mathematical modeling of multiple tour multiple traveling salesman problem using evolutionary programming
  publication-title: Applied Mathematical Modelling
– start-page: 873
  year: 2015
  end-page: 880
  ident: bib0035
  article-title: Tackling the bi-criteria facet of multipletraveling salesman problem with ant colony systems
  publication-title: 2015 IEEE 27th international conference on tools with artificial intelligence (ICTAI)
– volume: 248
  start-page: 372
  year: 2016
  end-page: 383
  ident: bib0044
  article-title: The traveling salesman problem with time-dependent service times
  publication-title: European Journal of Operational Research
– volume: 70
  start-page: 39
  year: 2016
  end-page: 55
  ident: bib0043
  article-title: Generalized multiple depot traveling salesmen problem–polyhedral study and exact algorithm
  publication-title: Computers & Operations Research
– volume: 11
  start-page: 1256
  year: 2011
  end-page: 1262
  ident: bib0018
  article-title: An ant colony algorithm for solving fixed destination multi-depot multiple traveling salesmen problems
  publication-title: Applied Soft Computing
– volume: 227
  start-page: 284
  year: 2013
  end-page: 292
  ident: bib0049
  article-title: Exact and approximation algorithms for the min-max
  publication-title: European Journal of Operational Research
– volume: 262
  start-page: 908
  year: 2017
  end-page: 928
  ident: bib0019
  article-title: Extended formulations and branch-and-cut algorithms for the black-and-white traveling salesman problem
  publication-title: European Journal of Operational Research
– volume: 176
  start-page: 7
  year: 2016
  end-page: 20
  ident: bib0042
  article-title: Optimization of drayage operations with time-window constraints
  publication-title: International Journal of Production Economics
– start-page: 3171
  year: 2015
  end-page: 3178
  ident: bib0001
  article-title: Using genetic algorithms to minimize the distance and balance the routes for the multiple traveling salesman problem
  publication-title: 2015 IEEE congress on evolutionary computation (CEC)
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: bib0011
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
– volume: 77
  start-page: 189
  year: 2017
  end-page: 210
  ident: bib0016
  article-title: Simulated annealing based symbiotic organisms search optimization algorithm for traveling salesman problem
  publication-title: Expert Systems with Applications
– volume: 1989
  start-page: 133
  year: 1989
  end-page: 140
  ident: bib0048
  article-title: Scheduling problems and traveling salesmen: The genetic edge recombination operator
  publication-title: Proceedings of the third international conference on genetic algorithms
– volume: 61
  start-page: 714
  year: 2017
  end-page: 725
  ident: bib0007
  article-title: A modified two-part wolf pack search algorithm for the multiple traveling salesmen problem
  publication-title: Applied Soft Computing
– volume: 34
  start-page: 209
  year: 2006
  end-page: 219
  ident: bib0003
  article-title: The multiple traveling salesman problem: An overview of formulations and solution procedures
  publication-title: Omega
– start-page: 134
  year: 1991
  end-page: 142
  ident: bib0009
  article-title: Distributed optimization by ant colonies
  publication-title: Proceedings of the 1991 European conference on artificial life
– volume: 26
  start-page: 74
  year: 2015
  end-page: 89
  ident: bib0046
  article-title: Two metaheuristic approaches for the multiple traveling salesperson problem
  publication-title: Applied Soft Computing
– volume: 64
  start-page: 564
  year: 2018
  end-page: 580
  ident: bib0053
  article-title: A comparative study of improved GA and PSO in solving multiple traveling salesmen problem
  publication-title: Applied Soft Computing
– volume: 44
  start-page: 428
  year: 2019
  end-page: 438
  ident: bib0024
  article-title: A swap sequence based artificial bee colony algorithm for traveling salesman problem
  publication-title: Swarm and Evolutionary Computation
– volume: 267
  start-page: 120
  year: 2018
  end-page: 137
  ident: bib0010
  article-title: An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses
  publication-title: European Journal of Operational Research
– volume: 124
  start-page: 267
  year: 2000
  end-page: 282
  ident: bib0045
  article-title: A multiple traveling salesman problem model for hot rolling scheduling in shanghai baoshan iron & steel complex
  publication-title: European Journal of Operational Research
– volume: 11
  start-page: e0165804
  year: 2016
  ident: bib0022
  article-title: A discrete fruit fly optimization algorithm for the traveling salesman problem
  publication-title: PLoS One
– volume: 42
  start-page: 77
  year: 2018
  end-page: 88
  ident: bib0052
  article-title: Discrete comprehensive learning particle swarm optimization algorithm with metropolis acceptance criterion for traveling salesman problem
  publication-title: Swarm and Evolutionary Computation
– volume: 28
  start-page: 1950004
  year: 2019
  ident: bib0023
  article-title: Solving traveling salesman problem by using combinatorial artificial bee colony algorithms
  publication-title: International Journal on Artificial Intelligence Tools
– volume: 463–464
  start-page: 261
  year: 2018
  end-page: 281
  ident: bib0047
  article-title: A hyper-heuristic based artificial bee colony algorithm for
  publication-title: Information Sciences
– start-page: 1
  year: 2010
  end-page: 24
  ident: bib0030
  article-title: Traveling salesman problem: An overview of applications, formulations, and solution approaches
  publication-title: Traveling Salesman Problem, Theory and Applications
– volume: vol. 26
  start-page: 29
  year: 1996
  end-page: 41
  ident: bib0013
  article-title: Ant system: Optimization by a colony of cooperating agents
  publication-title: IEEE transactions on systems, man, and cybernetics, part b
– volume: 261
  start-page: 475
  year: 2017
  end-page: 485
  ident: bib0025
  article-title: Exact algorithms for the equitable traveling salesman problem
  publication-title: European Journal of Operational Research
– volume: 42
  start-page: 390
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2019.112867_bib0015
  article-title: Ant colony extended: Experiments on the travelling salesman problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.07.054
– volume: 19
  start-page: 1099
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2019.112867_bib0040
  article-title: Random-key cuckoo search for the travelling salesman problem
  publication-title: Soft Computing
  doi: 10.1007/s00500-014-1322-9
– volume: 42
  start-page: 8956
  issue: 22
  year: 2015
  ident: 10.1016/j.eswa.2019.112867_bib0041
  article-title: Hybrid evolutionary algorithms for the multiobjective traveling salesman problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.07.051
– volume: 34
  start-page: 209
  issue: 3
  year: 2006
  ident: 10.1016/j.eswa.2019.112867_bib0003
  article-title: The multiple traveling salesman problem: An overview of formulations and solution procedures
  publication-title: Omega
  doi: 10.1016/j.omega.2004.10.004
– volume: 64
  start-page: 564
  year: 2018
  ident: 10.1016/j.eswa.2019.112867_bib0053
  article-title: A comparative study of improved GA and PSO in solving multiple traveling salesmen problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.12.031
– volume: 11
  start-page: 1256
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2019.112867_bib0018
  article-title: An ant colony algorithm for solving fixed destination multi-depot multiple traveling salesmen problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2010.03.002
– volume: vol. 26
  start-page: 29
  year: 1996
  ident: 10.1016/j.eswa.2019.112867_bib0013
  article-title: Ant system: Optimization by a colony of cooperating agents
– volume: 39
  start-page: 8947
  issue: 10
  year: 2012
  ident: 10.1016/j.eswa.2019.112867_bib0034
  article-title: A new genetic algorithm for the asymmetric traveling salesman problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.02.029
– volume: 432
  start-page: 231
  year: 2018
  ident: 10.1016/j.eswa.2019.112867_bib0014
  article-title: Efficiently solving the traveling thief problem using hill climbing and simulated annealing
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.12.011
– volume: 124
  start-page: 267
  issue: 2
  year: 2000
  ident: 10.1016/j.eswa.2019.112867_bib0045
  article-title: A multiple traveling salesman problem model for hot rolling scheduling in shanghai baoshan iron & steel complex
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(99)00380-X
– volume: 267
  start-page: 120
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2019.112867_bib0010
  article-title: An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.11.017
– volume: 26
  start-page: 74
  year: 2015
  ident: 10.1016/j.eswa.2019.112867_bib0046
  article-title: Two metaheuristic approaches for the multiple traveling salesperson problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.09.029
– volume: 271
  start-page: 2
  year: 2018
  ident: 10.1016/j.eswa.2019.112867_bib0037
  article-title: Good practice proposal for the implementation, presentation, and comparison of metaheuristics for solving routing problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.11.098
– volume: 262
  start-page: 908
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2019.112867_bib0019
  article-title: Extended formulations and branch-and-cut algorithms for the black-and-white traveling salesman problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.04.061
– volume: 175
  start-page: 246
  issue: 1
  year: 2006
  ident: 10.1016/j.eswa.2019.112867_bib0004
  article-title: A new approach to solving the multiple traveling salesperson problem using genetic algorithms
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.04.027
– volume: 44
  start-page: 622
  year: 2019
  ident: 10.1016/j.eswa.2019.112867_bib0008
  article-title: An artificial bee colony algorithm with a modified choice function for the traveling salesman problem
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.08.004
– volume: 11
  start-page: e0165804
  issue: 11
  year: 2016
  ident: 10.1016/j.eswa.2019.112867_bib0022
  article-title: A discrete fruit fly optimization algorithm for the traveling salesman problem
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0165804
– volume: 228
  start-page: 72
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2019.112867_bib0050
  article-title: A new crossover approach for solving the multiple travelling salesmen problem using genetic algorithms
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2013.01.043
– volume: 227
  start-page: 284
  issue: 2
  year: 2013
  ident: 10.1016/j.eswa.2019.112867_bib0049
  article-title: Exact and approximation algorithms for the min-max k-traveling salesmen problem on a tree
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2012.12.023
– volume: 46
  start-page: 196
  year: 2016
  ident: 10.1016/j.eswa.2019.112867_bib0029
  article-title: An imprecise multi-objective genetic algorithm for uncertain constrained multi-objective solid travelling salesman problem
  publication-title: Expert Systems With Applications
  doi: 10.1016/j.eswa.2015.10.019
– volume: 34
  start-page: 698
  issue: 5
  year: 1986
  ident: 10.1016/j.eswa.2019.112867_bib0017
  article-title: An optimal solution method for large-scale multiple traveling salesmen problems
  publication-title: Operations Research
  doi: 10.1287/opre.34.5.698
– volume: 22
  start-page: 8167
  issue: 24
  year: 2018
  ident: 10.1016/j.eswa.2019.112867_bib0020
  article-title: Solving travelling salesman problem using black hole algorithm
  publication-title: Soft Computing
  doi: 10.1007/s00500-017-2760-y
– volume: 21
  start-page: 4661
  issue: 16
  year: 2017
  ident: 10.1016/j.eswa.2019.112867_bib0005
  article-title: A genetic ant colony optimization based algorithm for solid multiple travelling salesmen problem in fuzzy rough environment
  publication-title: Soft Computing
  doi: 10.1007/s00500-016-2075-4
– volume: 48
  start-page: 59
  year: 2016
  ident: 10.1016/j.eswa.2019.112867_bib0039
  article-title: An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2015.10.006
– volume: 39
  start-page: 3410
  issue: 12
  year: 2015
  ident: 10.1016/j.eswa.2019.112867_bib0027
  article-title: Mathematical modeling of multiple tour multiple traveling salesman problem using evolutionary programming
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2014.11.043
– volume: 111
  start-page: 253
  year: 2016
  ident: 10.1016/j.eswa.2019.112867_bib0026
  article-title: Minimization of off-grade production in multi-site multi-product plants by solving multiple traveling salesman problem
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2015.05.036
– start-page: 134
  year: 1991
  ident: 10.1016/j.eswa.2019.112867_sbref0009
  article-title: Distributed optimization by ant colonies
– volume: 44
  start-page: 428
  year: 2019
  ident: 10.1016/j.eswa.2019.112867_bib0024
  article-title: A swap sequence based artificial bee colony algorithm for traveling salesman problem
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.05.006
– volume: 71
  start-page: 277
  year: 2018
  ident: 10.1016/j.eswa.2019.112867_bib0038
  article-title: A discrete water cycle algorithm for solving the symmetric and asymmetric traveling salesman problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.06.047
– volume: 1
  start-page: 3
  year: 2011
  ident: 10.1016/j.eswa.2019.112867_bib0011
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.02.002
– volume: 28
  start-page: 476
  issue: 4
  year: 1984
  ident: 10.1016/j.eswa.2019.112867_bib0021
  article-title: Aspects of the traveling salesman problem
  publication-title: IBM Journal of Research and Development
  doi: 10.1147/rd.284.0476
– volume: 70
  start-page: 39
  year: 2016
  ident: 10.1016/j.eswa.2019.112867_bib0043
  article-title: Generalized multiple depot traveling salesmen problem–polyhedral study and exact algorithm
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2015.12.014
– start-page: 3171
  year: 2015
  ident: 10.1016/j.eswa.2019.112867_bib0001
  article-title: Using genetic algorithms to minimize the distance and balance the routes for the multiple traveling salesman problem
– volume: 1989
  start-page: 133
  year: 1989
  ident: 10.1016/j.eswa.2019.112867_bib0048
  article-title: Scheduling problems and traveling salesmen: The genetic edge recombination operator
– volume: 261
  start-page: 475
  issue: 2
  year: 2017
  ident: 10.1016/j.eswa.2019.112867_bib0025
  article-title: Exact algorithms for the equitable traveling salesman problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.02.017
– start-page: 1292
  year: 2009
  ident: 10.1016/j.eswa.2019.112867_bib0036
  article-title: A transformation for a heterogeneous, multiple depot, multiple traveling salesman problem
– volume: 77
  start-page: 189
  year: 2017
  ident: 10.1016/j.eswa.2019.112867_bib0016
  article-title: Simulated annealing based symbiotic organisms search optimization algorithm for traveling salesman problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.01.053
– year: 1996
  ident: 10.1016/j.eswa.2019.112867_bib0032
– volume: 48
  start-page: 277
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2019.112867_bib0031
  article-title: Population-based incremental learning algorithm for a serial colored traveling salesman problem
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2016.2591267
– volume: 11
  start-page: 692
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2019.112867_bib0028
  article-title: A genetic algorithm with new local operators for multiple traveling salesman problems
  publication-title: International Journal of Computational Intelligence Systems
  doi: 10.2991/ijcis.11.1.53
– start-page: 873
  year: 2015
  ident: 10.1016/j.eswa.2019.112867_bib0035
  article-title: Tackling the bi-criteria facet of multipletraveling salesman problem with ant colony systems
– volume: 421
  start-page: 70
  year: 2017
  ident: 10.1016/j.eswa.2019.112867_bib0051
  article-title: Hybrid discrete artificial bee colony algorithm with threshold acceptance criterion for traveling salesman problem
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.08.067
– year: 1992
  ident: 10.1016/j.eswa.2019.112867_bib0012
– volume: 61
  start-page: 714
  year: 2017
  ident: 10.1016/j.eswa.2019.112867_bib0007
  article-title: A modified two-part wolf pack search algorithm for the multiple traveling salesmen problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.08.041
– volume: 65
  start-page: 1043
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2019.112867_bib0002
  article-title: An o(log n/log log n)-approximation algorithm for the asymmetric traveling salesman problem
  publication-title: Operations Research
  doi: 10.1287/opre.2017.1603
– year: 2017
  ident: 10.1016/j.eswa.2019.112867_sbref0033
  article-title: A new hybrid discrete firefly algorithm for solving the traveling salesman problem
– volume: 42
  start-page: 77
  year: 2018
  ident: 10.1016/j.eswa.2019.112867_bib0052
  article-title: Discrete comprehensive learning particle swarm optimization algorithm with metropolis acceptance criterion for traveling salesman problem
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.02.017
– start-page: 1
  year: 2010
  ident: 10.1016/j.eswa.2019.112867_bib0030
  article-title: Traveling salesman problem: An overview of applications, formulations, and solution approaches
  publication-title: Traveling Salesman Problem, Theory and Applications
– volume: 463–464
  start-page: 261
  year: 2018
  ident: 10.1016/j.eswa.2019.112867_bib0047
  article-title: A hyper-heuristic based artificial bee colony algorithm for k-interconnected multi-depot multi-traveling salesman problem
  publication-title: Information Sciences
– volume: 38
  start-page: 3873
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2019.112867_bib0006
  article-title: Parallelized genetic ant colony systems for solving the traveling salesman problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.09.048
– volume: 28
  start-page: 1950004
  issue: 01
  year: 2019
  ident: 10.1016/j.eswa.2019.112867_bib0023
  article-title: Solving traveling salesman problem by using combinatorial artificial bee colony algorithms
  publication-title: International Journal on Artificial Intelligence Tools
  doi: 10.1142/S0218213019500040
– volume: 176
  start-page: 7
  year: 2016
  ident: 10.1016/j.eswa.2019.112867_bib0042
  article-title: Optimization of drayage operations with time-window constraints
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2016.03.005
– volume: 248
  start-page: 372
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2019.112867_bib0044
  article-title: The traveling salesman problem with time-dependent service times
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.07.048
SSID ssj0017007
Score 2.5405343
Snippet •A new hybrid algorithm AC-PGA is designed for solving large scale MTSPs.•AC-PGA has better performance than some existing algorithms.•AC-PGA has weak...
Multiple traveling salesmen problem (MTSP) is not only a generalization of the traveling salesman problem (TSP), but also more suitable for modeling practical...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112867
SubjectTerms Ant colony algorithm
Ant colony optimization
Genetic algorithm
Genetic algorithms
Hybrid algorithm
Multiple traveling salesmen problem
Partheno genetic algorithm
Simulation
Swarm intelligence
Traveling salesman problem
Title A new efficient hybrid algorithm for large scale multiple traveling salesman problems
URI https://dx.doi.org/10.1016/j.eswa.2019.112867
https://www.proquest.com/docview/2312228670
Volume 139
WOSCitedRecordID wos000493221200031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5cCFN6JQkA_cVqmSOInt46oqAoQqDq206sWKs3az1ZJdbVLa_nvGz90uakUPXKLEciwr35fJzGQeCH3WstJc0ixRJTMGik4TnkuW6JpMmTTJ18wmCv-gx8dsMuE_fbhtb9sJ0K5j19d8-V-hhjEA26TOPgDuuCgMwDmADkeAHY7_BPzYdAk3cRozm-s4am9MUtaonp8vVrOh_WUDC-cmAHzUA0BqHVM4mFZENj29h_HeePd9v5n-lgPfVEcefA3okB238R88BuXMvC_6sK0Xa8e9FXNn7aI7X4bPphXNbu5Zq7r2st50RuTphjMieBVpUmSu8U4UsK5ckReRoOAx14HjL-ntHAkXB6q_MiWhMn6wnny7VPbWJywGFoaYtQth1hBmDeHWeIx2c1pyEHy7429Hk-_xVxNNXU592LnPrHJBgNs7uUt72fqOW-Xk5AV65q0KPHZseIkeqe4Veh46dmAvwF-j0zEGcuBIDuzIgSM5MJADW3JgSw4cyIEjOXAgBw7keINOvxydHH5NfGONpCE5GxLOVZ7KppKEFw3lWU3ZNGO6Llidw6nU8CwoJZqnmtCplCWBS9haCRoVzK7IW7TTLTr1DmFdUU0aY2ewpgBTmKmS5oUkVIFdXbNmD2XhgYnGV503zU_m4m6o9tAo3rN0NVfunV0GHITXGp02KIBW9963H0AT_vXtBVg7xiVa0fT9gzbxAT1dvw77aGdYXaqP6Enze5j1q0-ecn8AHIKaFA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+efficient+hybrid+algorithm+for+large+scale+multiple+traveling+salesman+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Jiang%2C+Chao&rft.au=Wan%2C+Zhongping&rft.au=Peng%2C+Zhenhua&rft.date=2020-01-01&rft.issn=0957-4174&rft.volume=139&rft.spage=112867&rft_id=info:doi/10.1016%2Fj.eswa.2019.112867&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2019_112867
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon