A new efficient hybrid algorithm for large scale multiple traveling salesman problems
•A new hybrid algorithm AC-PGA is designed for solving large scale MTSPs.•AC-PGA has better performance than some existing algorithms.•AC-PGA has weak dependence on the initial value.•A path matrix representation method is introduced for dealing with MTSPs. Multiple traveling salesmen problem (MTSP)...
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 139; s. 112867 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Elsevier Ltd
01.01.2020
Elsevier BV |
| Témata: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A new hybrid algorithm AC-PGA is designed for solving large scale MTSPs.•AC-PGA has better performance than some existing algorithms.•AC-PGA has weak dependence on the initial value.•A path matrix representation method is introduced for dealing with MTSPs.
Multiple traveling salesmen problem (MTSP) is not only a generalization of the traveling salesman problem (TSP), but also more suitable for modeling practical problems in the real life than TSP. For solving the MTSP with multiple depots, the requirement of minimum and maximum number of cities that each salesman should visit, a hybrid algorithm called ant colony-partheno genetic algorithms (AC-PGA) is provided by combining partheno genetic algorithms (PGA) and ant colony algorithms (ACO). The main idea in this paper is to divide the variables into two parts. In detail, it exploits PGA to comprehensively search the best value of the first part variables and then utilizes ACO to accurately determine the second part variables value. For comparative analysis, PGA, improved PGA (IPGA), two-part wolf pack search (TWPS), artificial bee colony (ABC) and invasive weed optimization (IWO) algorithms are adopted to solve MTSP and validated with publicly available TSPLIB benchmarks. The results of comparative experiments show that AC-PGA is sufficiently effective in solving large scale MTSP and has better performance than the existing algorithms. |
|---|---|
| AbstractList | Multiple traveling salesmen problem (MTSP) is not only a generalization of the traveling salesman problem (TSP), but also more suitable for modeling practical problems in the real life than TSP. For solving the MTSP with multiple depots, the requirement of minimum and maximum number of cities that each salesman should visit, a hybrid algorithm called ant colony-partheno genetic algorithms (AC-PGA) is provided by combining partheno genetic algorithms (PGA) and ant colony algorithms (ACO). The main idea in this paper is to divide the variables into two parts. In detail, it exploits PGA to comprehensively search the best value of the first part variables and then utilizes ACO to accurately determine the second part variables value. For comparative analysis, PGA, improved PGA (IPGA), two-part wolf pack search (TWPS), artificial bee colony (ABC) and invasive weed optimization (IWO) algorithms are adopted to solve MTSP and validated with publicly available TSPLIB benchmarks. The results of comparative experiments show that AC-PGA is sufficiently effective in solving large scale MTSP and has better performance than the existing algorithms. •A new hybrid algorithm AC-PGA is designed for solving large scale MTSPs.•AC-PGA has better performance than some existing algorithms.•AC-PGA has weak dependence on the initial value.•A path matrix representation method is introduced for dealing with MTSPs. Multiple traveling salesmen problem (MTSP) is not only a generalization of the traveling salesman problem (TSP), but also more suitable for modeling practical problems in the real life than TSP. For solving the MTSP with multiple depots, the requirement of minimum and maximum number of cities that each salesman should visit, a hybrid algorithm called ant colony-partheno genetic algorithms (AC-PGA) is provided by combining partheno genetic algorithms (PGA) and ant colony algorithms (ACO). The main idea in this paper is to divide the variables into two parts. In detail, it exploits PGA to comprehensively search the best value of the first part variables and then utilizes ACO to accurately determine the second part variables value. For comparative analysis, PGA, improved PGA (IPGA), two-part wolf pack search (TWPS), artificial bee colony (ABC) and invasive weed optimization (IWO) algorithms are adopted to solve MTSP and validated with publicly available TSPLIB benchmarks. The results of comparative experiments show that AC-PGA is sufficiently effective in solving large scale MTSP and has better performance than the existing algorithms. |
| ArticleNumber | 112867 |
| Author | Wan, Zhongping Jiang, Chao Peng, Zhenhua |
| Author_xml | – sequence: 1 givenname: Chao surname: Jiang fullname: Jiang, Chao – sequence: 2 givenname: Zhongping surname: Wan fullname: Wan, Zhongping email: mathwanzhp@whu.edu.cn – sequence: 3 givenname: Zhenhua orcidid: 0000-0002-0139-2988 surname: Peng fullname: Peng, Zhenhua email: zhenhuapeng@whu.edu.cn |
| BookMark | eNp9kMtqwzAQRUVJoUnaH-hK0LVdPRzLhm5C6AsC3TRrIcujRMGPVFIS8veVcVddZKWRuEczc2Zo0vUdIPRISUoJzZ_3KfizShmhZUopK3Jxg6a0EDzJRcknaErKhUgyKrI7NPN-TwgVhIgp2ixxB2cMxlhtoQt4d6mcrbFqtr2zYddi0zvcKLcF7LVqALfHJthDLIJTJ2hst8U-vvtWdfjg-qqB1t-jW6MaDw9_5xxt3l6_Vx_J-uv9c7VcJ5qzIiRlCYxUOq94mWlRUiWKmhZGZYVisaxMHFoIbkpiuKirasHjNY660AAxnfM5ehr_jY1_juCD3PdH18WWknHK2CCCxBQbU9r13jsw8uBsq9xFUiIHfXIvB31y0CdHfREq_kHaBhVs38W9bXMdfRlRiKufLDjpB7caautAB1n39hr-C8FZji8 |
| CitedBy_id | crossref_primary_10_1007_s00500_021_05675_8 crossref_primary_10_3390_electronics10182298 crossref_primary_10_1016_j_ins_2023_118996 crossref_primary_10_1016_j_asej_2025_103637 crossref_primary_10_1088_1742_6596_2246_1_012081 crossref_primary_10_3233_JIFS_213121 crossref_primary_10_3390_s23020751 crossref_primary_10_1007_s12530_023_09524_x crossref_primary_10_1109_ACCESS_2024_3486686 crossref_primary_10_1155_2021_5590758 crossref_primary_10_1016_j_cosrev_2021_100369 crossref_primary_10_1016_j_oceaneng_2025_121556 crossref_primary_10_1016_j_cor_2023_106455 crossref_primary_10_1007_s12190_023_01935_y crossref_primary_10_32604_cmes_2023_024172 crossref_primary_10_3390_drones9020090 crossref_primary_10_1109_TVT_2023_3341878 crossref_primary_10_3390_biomimetics8010096 crossref_primary_10_1016_j_eswa_2022_118333 crossref_primary_10_1109_ACCESS_2020_3000501 crossref_primary_10_1109_ACCESS_2020_3001435 crossref_primary_10_1016_j_eswa_2022_119424 crossref_primary_10_1007_s10462_022_10190_9 crossref_primary_10_1016_j_engappai_2025_112013 crossref_primary_10_1016_j_eswa_2023_121244 crossref_primary_10_3390_s23208601 crossref_primary_10_1007_s10489_020_02099_z crossref_primary_10_1088_1742_6596_1848_1_012002 crossref_primary_10_1007_s00521_022_07816_y crossref_primary_10_1016_j_eswa_2020_113229 crossref_primary_10_1109_ACCESS_2020_3045765 crossref_primary_10_3390_math11133014 crossref_primary_10_1007_s10586_021_03304_5 crossref_primary_10_1016_j_cor_2024_106750 crossref_primary_10_1007_s00521_023_08950_x crossref_primary_10_1016_j_oceaneng_2024_119614 crossref_primary_10_1016_j_eswa_2025_129534 crossref_primary_10_1002_int_22342 crossref_primary_10_1016_j_eswa_2024_125446 crossref_primary_10_1109_TNNLS_2022_3185611 crossref_primary_10_1007_s10489_024_05596_7 crossref_primary_10_1016_j_eswa_2021_114664 crossref_primary_10_1007_s12555_023_0745_4 crossref_primary_10_1007_s41066_023_00424_8 crossref_primary_10_1016_j_eswa_2022_116895 crossref_primary_10_3389_fphy_2022_955499 crossref_primary_10_1109_ACCESS_2020_2998539 crossref_primary_10_3390_sym16091229 crossref_primary_10_1007_s11370_025_00615_z crossref_primary_10_3390_a17050177 crossref_primary_10_1007_s10489_021_02839_9 crossref_primary_10_1016_j_cor_2020_105192 crossref_primary_10_1109_TITS_2022_3145375 |
| Cites_doi | 10.1016/j.eswa.2014.07.054 10.1007/s00500-014-1322-9 10.1016/j.eswa.2015.07.051 10.1016/j.omega.2004.10.004 10.1016/j.asoc.2017.12.031 10.1016/j.asoc.2010.03.002 10.1016/j.eswa.2012.02.029 10.1016/j.ins.2017.12.011 10.1016/S0377-2217(99)00380-X 10.1016/j.ejor.2017.11.017 10.1016/j.asoc.2014.09.029 10.1016/j.neucom.2016.11.098 10.1016/j.ejor.2017.04.061 10.1016/j.ejor.2005.04.027 10.1016/j.swevo.2018.08.004 10.1371/journal.pone.0165804 10.1016/j.ejor.2013.01.043 10.1016/j.ejor.2012.12.023 10.1016/j.eswa.2015.10.019 10.1287/opre.34.5.698 10.1007/s00500-017-2760-y 10.1007/s00500-016-2075-4 10.1016/j.engappai.2015.10.006 10.1016/j.apm.2014.11.043 10.1016/j.jclepro.2015.05.036 10.1016/j.swevo.2018.05.006 10.1016/j.asoc.2018.06.047 10.1016/j.swevo.2011.02.002 10.1147/rd.284.0476 10.1016/j.cor.2015.12.014 10.1016/j.ejor.2017.02.017 10.1016/j.eswa.2017.01.053 10.1109/TSMC.2016.2591267 10.2991/ijcis.11.1.53 10.1016/j.ins.2017.08.067 10.1016/j.asoc.2017.08.041 10.1287/opre.2017.1603 10.1016/j.swevo.2018.02.017 10.1016/j.eswa.2010.09.048 10.1142/S0218213019500040 10.1016/j.ijpe.2016.03.005 10.1016/j.ejor.2015.07.048 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Jan 2020 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Jan 2020 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2019.112867 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2019_112867 S0957417419305779 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c328t-99e20bc6b394c791a78d18fa48a278dbf957773f90f37dbb53777eff5cee91a63 |
| ISICitedReferencesCount | 71 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000493221200031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sun Jul 13 04:40:35 EDT 2025 Sat Nov 29 07:03:51 EST 2025 Tue Nov 18 22:36:16 EST 2025 Fri Feb 23 02:24:30 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Genetic algorithm Hybrid algorithm Ant colony algorithm Partheno genetic algorithm Multiple traveling salesmen problem |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-99e20bc6b394c791a78d18fa48a278dbf957773f90f37dbb53777eff5cee91a63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0139-2988 |
| PQID | 2312228670 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2312228670 crossref_primary_10_1016_j_eswa_2019_112867 crossref_citationtrail_10_1016_j_eswa_2019_112867 elsevier_sciencedirect_doi_10_1016_j_eswa_2019_112867 |
| PublicationCentury | 2000 |
| PublicationDate | January 2020 2020-01-00 20200101 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Taş, Gendreau, Jabali, Laporte (bib0044) 2016; 248 Chen, Chien (bib0006) 2011; 38 Oberlin, Rathinam, Darbha (bib0036) 2009 Venkatesh, Singh (bib0046) 2015; 26 Chen, Jia, Ai, Yang, Yu (bib0007) 2017; 61 Choong, Wong, Lim (bib0008) 2019; 44 Ouaarab, Ahiod, Yang (bib0040) 2015; 19 Dorigo (bib0012) 1992 Ghafurian, Javadian (bib0018) 2011; 11 Whitley, Starkweather, Fuquay (bib0048) 1989; 1989 Hatamlou (bib0020) 2018; 22 Lo, Yi, Wong, Leung, Leung, Mak (bib0028) 2018; 11 Zhou, Song, Pedrycz (bib0053) 2018; 64 Kinable, Smeulders, Delcour, Spieksma (bib0025) 2017; 261 Király, Christidou, Chován, Karlopoulos, Abonyi (bib0026) 2016; 111 Changdar, Pal, Mahapatra (bib0005) 2017; 21 Mohsen, Al-Sorori (bib0033) 2017 Dorigo, Maniezzo, Colorni (bib0013) 1996; vol. 26 Alves, Lopes (bib0001) 2015 Colorni, Dorigo, Maniezzo (bib0009) 1991 Venkatesh, Singh (bib0047) 2018; 463–464 Xu, Xu, Xu (bib0049) 2013; 227 Meng, Li, Zhou, Dai, Dou (bib0031) 2018; 48 Nagata, Soler (bib0034) 2012; 39 Zhong, Lin, Wang, Zhang (bib0052) 2018; 42 Escario, Jimenez, Giron-Sierra (bib0015) 2015; 42 Mitchell (bib0032) 1996 Asadpour, Goemans, Madry, Gharan, Saberi (bib0002) 2017; 65 De Santis, Montanari, Vignali, Bottani (bib0010) 2018; 267 Sundar, Rathinam (bib0043) 2016; 70 Ezugwu, Adewumi, FrÎncu (bib0016) 2017; 77 Bektas (bib0003) 2006; 34 Karaboga, Gorkemli (bib0023) 2019; 28 Gavish, Srikanth (bib0017) 1986; 34 Shiri, Huynh (bib0042) 2016; 176 Derrac, García, Molina, Herrera (bib0011) 2011; 1 Kota, Jarmai (bib0027) 2015; 39 Osaba, Del Ser, Sadollah, Bilbao, Camacho (bib0038) 2018; 71 Tang, Liu, Rong, Yang (bib0045) 2000; 124 Matai, Singh, Mittal (bib0030) 2010 Jiang, Yang (bib0022) 2016; 11 Carter, Ragsdale (bib0004) 2006; 175 Held, Hoffman, Johnson, Wolfe (bib0021) 1984; 28 Osaba, Yang, Diaz, Lopez-Garcia, Carballedo (bib0039) 2016; 48 Zhong, Lin, Wang, Zhang (bib0051) 2017; 421 Psychas, Delimpasi, Marinakis (bib0041) 2015; 42 Gouveia, Leitner, Ruthmair (bib0019) 2017; 262 El Yafrani, Ahiod (bib0014) 2018; 432 Necula, Breaban, Raschip (bib0035) 2015 Khan, Maiti (bib0024) 2019; 44 Yuan, Skinner, Huang, Liu (bib0050) 2013; 228 Maity, Roy, Maiti (bib0029) 2016; 46 Osaba, Carballedo, Diaz, Onieva, Masegosa, Perallos (bib0037) 2018; 271 Asadpour (10.1016/j.eswa.2019.112867_bib0002) 2017; 65 Gouveia (10.1016/j.eswa.2019.112867_bib0019) 2017; 262 Xu (10.1016/j.eswa.2019.112867_bib0049) 2013; 227 Derrac (10.1016/j.eswa.2019.112867_bib0011) 2011; 1 Osaba (10.1016/j.eswa.2019.112867_bib0037) 2018; 271 Kinable (10.1016/j.eswa.2019.112867_bib0025) 2017; 261 Taş (10.1016/j.eswa.2019.112867_bib0044) 2016; 248 Venkatesh (10.1016/j.eswa.2019.112867_bib0047) 2018; 463–464 Choong (10.1016/j.eswa.2019.112867_bib0008) 2019; 44 Osaba (10.1016/j.eswa.2019.112867_bib0038) 2018; 71 Zhong (10.1016/j.eswa.2019.112867_bib0051) 2017; 421 Khan (10.1016/j.eswa.2019.112867_bib0024) 2019; 44 Ouaarab (10.1016/j.eswa.2019.112867_bib0040) 2015; 19 Zhong (10.1016/j.eswa.2019.112867_bib0052) 2018; 42 Dorigo (10.1016/j.eswa.2019.112867_bib0013) 1996; vol. 26 Gavish (10.1016/j.eswa.2019.112867_bib0017) 1986; 34 Alves (10.1016/j.eswa.2019.112867_bib0001) 2015 Mohsen (10.1016/j.eswa.2019.112867_sbref0033) 2017 Psychas (10.1016/j.eswa.2019.112867_bib0041) 2015; 42 Nagata (10.1016/j.eswa.2019.112867_bib0034) 2012; 39 Meng (10.1016/j.eswa.2019.112867_bib0031) 2018; 48 Escario (10.1016/j.eswa.2019.112867_bib0015) 2015; 42 Ghafurian (10.1016/j.eswa.2019.112867_bib0018) 2011; 11 Colorni (10.1016/j.eswa.2019.112867_sbref0009) 1991 Whitley (10.1016/j.eswa.2019.112867_bib0048) 1989; 1989 Held (10.1016/j.eswa.2019.112867_bib0021) 1984; 28 Dorigo (10.1016/j.eswa.2019.112867_bib0012) 1992 Zhou (10.1016/j.eswa.2019.112867_bib0053) 2018; 64 Lo (10.1016/j.eswa.2019.112867_bib0028) 2018; 11 Venkatesh (10.1016/j.eswa.2019.112867_bib0046) 2015; 26 Carter (10.1016/j.eswa.2019.112867_bib0004) 2006; 175 Chen (10.1016/j.eswa.2019.112867_bib0006) 2011; 38 Mitchell (10.1016/j.eswa.2019.112867_bib0032) 1996 Osaba (10.1016/j.eswa.2019.112867_bib0039) 2016; 48 Tang (10.1016/j.eswa.2019.112867_bib0045) 2000; 124 Kota (10.1016/j.eswa.2019.112867_bib0027) 2015; 39 Bektas (10.1016/j.eswa.2019.112867_bib0003) 2006; 34 Király (10.1016/j.eswa.2019.112867_bib0026) 2016; 111 Sundar (10.1016/j.eswa.2019.112867_bib0043) 2016; 70 Hatamlou (10.1016/j.eswa.2019.112867_bib0020) 2018; 22 Shiri (10.1016/j.eswa.2019.112867_bib0042) 2016; 176 Changdar (10.1016/j.eswa.2019.112867_bib0005) 2017; 21 Matai (10.1016/j.eswa.2019.112867_bib0030) 2010 El Yafrani (10.1016/j.eswa.2019.112867_bib0014) 2018; 432 Oberlin (10.1016/j.eswa.2019.112867_bib0036) 2009 Necula (10.1016/j.eswa.2019.112867_bib0035) 2015 Jiang (10.1016/j.eswa.2019.112867_bib0022) 2016; 11 Maity (10.1016/j.eswa.2019.112867_bib0029) 2016; 46 Yuan (10.1016/j.eswa.2019.112867_bib0050) 2013; 228 De Santis (10.1016/j.eswa.2019.112867_bib0010) 2018; 267 Chen (10.1016/j.eswa.2019.112867_bib0007) 2017; 61 Ezugwu (10.1016/j.eswa.2019.112867_bib0016) 2017; 77 Karaboga (10.1016/j.eswa.2019.112867_bib0023) 2019; 28 |
| References_xml | – volume: 22 start-page: 8167 year: 2018 end-page: 8175 ident: bib0020 article-title: Solving travelling salesman problem using black hole algorithm publication-title: Soft Computing – year: 1992 ident: bib0012 publication-title: Optimization, learning and natural algorithms – volume: 39 start-page: 8947 year: 2012 end-page: 8953 ident: bib0034 article-title: A new genetic algorithm for the asymmetric traveling salesman problem publication-title: Expert Systems with Applications – volume: 48 start-page: 277 year: 2018 end-page: 288 ident: bib0031 article-title: Population-based incremental learning algorithm for a serial colored traveling salesman problem publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – start-page: 1292 year: 2009 end-page: 1297 ident: bib0036 article-title: A transformation for a heterogeneous, multiple depot, multiple traveling salesman problem publication-title: 2009 American control conference – volume: 42 start-page: 8956 year: 2015 end-page: 8970 ident: bib0041 article-title: Hybrid evolutionary algorithms for the multiobjective traveling salesman problem publication-title: Expert Systems with Applications – volume: 271 start-page: 2 year: 2018 end-page: 8 ident: bib0037 article-title: Good practice proposal for the implementation, presentation, and comparison of metaheuristics for solving routing problems publication-title: Neurocomputing – volume: 21 start-page: 4661 year: 2017 end-page: 4675 ident: bib0005 article-title: A genetic ant colony optimization based algorithm for solid multiple travelling salesmen problem in fuzzy rough environment publication-title: Soft Computing – volume: 48 start-page: 59 year: 2016 end-page: 71 ident: bib0039 article-title: An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems publication-title: Engineering Applications of Artificial Intelligence – volume: 42 start-page: 390 year: 2015 end-page: 410 ident: bib0015 article-title: Ant colony extended: Experiments on the travelling salesman problem publication-title: Expert Systems with Applications – year: 1996 ident: bib0032 publication-title: An introduction to genetic algorithms – volume: 71 start-page: 277 year: 2018 end-page: 290 ident: bib0038 article-title: A discrete water cycle algorithm for solving the symmetric and asymmetric traveling salesman problem publication-title: Applied Soft Computing – volume: 44 start-page: 622 year: 2019 end-page: 635 ident: bib0008 article-title: An artificial bee colony algorithm with a modified choice function for the traveling salesman problem publication-title: Swarm and Evolutionary Computation – volume: 19 start-page: 1099 year: 2015 end-page: 1106 ident: bib0040 article-title: Random-key cuckoo search for the travelling salesman problem publication-title: Soft Computing – volume: 228 start-page: 72 year: 2013 end-page: 82 ident: bib0050 article-title: A new crossover approach for solving the multiple travelling salesmen problem using genetic algorithms publication-title: European Journal of Operational Research – volume: 111 start-page: 253 year: 2016 end-page: 261 ident: bib0026 article-title: Minimization of off-grade production in multi-site multi-product plants by solving multiple traveling salesman problem publication-title: Journal of Cleaner Production – volume: 38 start-page: 3873 year: 2011 end-page: 3883 ident: bib0006 article-title: Parallelized genetic ant colony systems for solving the traveling salesman problem publication-title: Expert Systems with Applications – volume: 28 start-page: 476 year: 1984 end-page: 486 ident: bib0021 article-title: Aspects of the traveling salesman problem publication-title: IBM Journal of Research and Development – volume: 46 start-page: 196 year: 2016 end-page: 223 ident: bib0029 article-title: An imprecise multi-objective genetic algorithm for uncertain constrained multi-objective solid travelling salesman problem publication-title: Expert Systems With Applications – volume: 175 start-page: 246 year: 2006 end-page: 257 ident: bib0004 article-title: A new approach to solving the multiple traveling salesperson problem using genetic algorithms publication-title: European Journal of Operational Research – volume: 432 start-page: 231 year: 2018 end-page: 244 ident: bib0014 article-title: Efficiently solving the traveling thief problem using hill climbing and simulated annealing publication-title: Information Sciences – volume: 65 start-page: 1043 year: 2017 end-page: 1061 ident: bib0002 article-title: An publication-title: Operations Research – volume: 11 start-page: 692 year: 2018 end-page: 705 ident: bib0028 article-title: A genetic algorithm with new local operators for multiple traveling salesman problems publication-title: International Journal of Computational Intelligence Systems – volume: 34 start-page: 698 year: 1986 end-page: 717 ident: bib0017 article-title: An optimal solution method for large-scale multiple traveling salesmen problems publication-title: Operations Research – year: 2017 ident: bib0033 article-title: A new hybrid discrete firefly algorithm for solving the traveling salesman problem publication-title: In applied computing and information technology (pp. 169–180) – volume: 421 start-page: 70 year: 2017 end-page: 84 ident: bib0051 article-title: Hybrid discrete artificial bee colony algorithm with threshold acceptance criterion for traveling salesman problem publication-title: Information Sciences – volume: 39 start-page: 3410 year: 2015 end-page: 3433 ident: bib0027 article-title: Mathematical modeling of multiple tour multiple traveling salesman problem using evolutionary programming publication-title: Applied Mathematical Modelling – start-page: 873 year: 2015 end-page: 880 ident: bib0035 article-title: Tackling the bi-criteria facet of multipletraveling salesman problem with ant colony systems publication-title: 2015 IEEE 27th international conference on tools with artificial intelligence (ICTAI) – volume: 248 start-page: 372 year: 2016 end-page: 383 ident: bib0044 article-title: The traveling salesman problem with time-dependent service times publication-title: European Journal of Operational Research – volume: 70 start-page: 39 year: 2016 end-page: 55 ident: bib0043 article-title: Generalized multiple depot traveling salesmen problem–polyhedral study and exact algorithm publication-title: Computers & Operations Research – volume: 11 start-page: 1256 year: 2011 end-page: 1262 ident: bib0018 article-title: An ant colony algorithm for solving fixed destination multi-depot multiple traveling salesmen problems publication-title: Applied Soft Computing – volume: 227 start-page: 284 year: 2013 end-page: 292 ident: bib0049 article-title: Exact and approximation algorithms for the min-max publication-title: European Journal of Operational Research – volume: 262 start-page: 908 year: 2017 end-page: 928 ident: bib0019 article-title: Extended formulations and branch-and-cut algorithms for the black-and-white traveling salesman problem publication-title: European Journal of Operational Research – volume: 176 start-page: 7 year: 2016 end-page: 20 ident: bib0042 article-title: Optimization of drayage operations with time-window constraints publication-title: International Journal of Production Economics – start-page: 3171 year: 2015 end-page: 3178 ident: bib0001 article-title: Using genetic algorithms to minimize the distance and balance the routes for the multiple traveling salesman problem publication-title: 2015 IEEE congress on evolutionary computation (CEC) – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: bib0011 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation – volume: 77 start-page: 189 year: 2017 end-page: 210 ident: bib0016 article-title: Simulated annealing based symbiotic organisms search optimization algorithm for traveling salesman problem publication-title: Expert Systems with Applications – volume: 1989 start-page: 133 year: 1989 end-page: 140 ident: bib0048 article-title: Scheduling problems and traveling salesmen: The genetic edge recombination operator publication-title: Proceedings of the third international conference on genetic algorithms – volume: 61 start-page: 714 year: 2017 end-page: 725 ident: bib0007 article-title: A modified two-part wolf pack search algorithm for the multiple traveling salesmen problem publication-title: Applied Soft Computing – volume: 34 start-page: 209 year: 2006 end-page: 219 ident: bib0003 article-title: The multiple traveling salesman problem: An overview of formulations and solution procedures publication-title: Omega – start-page: 134 year: 1991 end-page: 142 ident: bib0009 article-title: Distributed optimization by ant colonies publication-title: Proceedings of the 1991 European conference on artificial life – volume: 26 start-page: 74 year: 2015 end-page: 89 ident: bib0046 article-title: Two metaheuristic approaches for the multiple traveling salesperson problem publication-title: Applied Soft Computing – volume: 64 start-page: 564 year: 2018 end-page: 580 ident: bib0053 article-title: A comparative study of improved GA and PSO in solving multiple traveling salesmen problem publication-title: Applied Soft Computing – volume: 44 start-page: 428 year: 2019 end-page: 438 ident: bib0024 article-title: A swap sequence based artificial bee colony algorithm for traveling salesman problem publication-title: Swarm and Evolutionary Computation – volume: 267 start-page: 120 year: 2018 end-page: 137 ident: bib0010 article-title: An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses publication-title: European Journal of Operational Research – volume: 124 start-page: 267 year: 2000 end-page: 282 ident: bib0045 article-title: A multiple traveling salesman problem model for hot rolling scheduling in shanghai baoshan iron & steel complex publication-title: European Journal of Operational Research – volume: 11 start-page: e0165804 year: 2016 ident: bib0022 article-title: A discrete fruit fly optimization algorithm for the traveling salesman problem publication-title: PLoS One – volume: 42 start-page: 77 year: 2018 end-page: 88 ident: bib0052 article-title: Discrete comprehensive learning particle swarm optimization algorithm with metropolis acceptance criterion for traveling salesman problem publication-title: Swarm and Evolutionary Computation – volume: 28 start-page: 1950004 year: 2019 ident: bib0023 article-title: Solving traveling salesman problem by using combinatorial artificial bee colony algorithms publication-title: International Journal on Artificial Intelligence Tools – volume: 463–464 start-page: 261 year: 2018 end-page: 281 ident: bib0047 article-title: A hyper-heuristic based artificial bee colony algorithm for publication-title: Information Sciences – start-page: 1 year: 2010 end-page: 24 ident: bib0030 article-title: Traveling salesman problem: An overview of applications, formulations, and solution approaches publication-title: Traveling Salesman Problem, Theory and Applications – volume: vol. 26 start-page: 29 year: 1996 end-page: 41 ident: bib0013 article-title: Ant system: Optimization by a colony of cooperating agents publication-title: IEEE transactions on systems, man, and cybernetics, part b – volume: 261 start-page: 475 year: 2017 end-page: 485 ident: bib0025 article-title: Exact algorithms for the equitable traveling salesman problem publication-title: European Journal of Operational Research – volume: 42 start-page: 390 issue: 1 year: 2015 ident: 10.1016/j.eswa.2019.112867_bib0015 article-title: Ant colony extended: Experiments on the travelling salesman problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.07.054 – volume: 19 start-page: 1099 issue: 4 year: 2015 ident: 10.1016/j.eswa.2019.112867_bib0040 article-title: Random-key cuckoo search for the travelling salesman problem publication-title: Soft Computing doi: 10.1007/s00500-014-1322-9 – volume: 42 start-page: 8956 issue: 22 year: 2015 ident: 10.1016/j.eswa.2019.112867_bib0041 article-title: Hybrid evolutionary algorithms for the multiobjective traveling salesman problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.07.051 – volume: 34 start-page: 209 issue: 3 year: 2006 ident: 10.1016/j.eswa.2019.112867_bib0003 article-title: The multiple traveling salesman problem: An overview of formulations and solution procedures publication-title: Omega doi: 10.1016/j.omega.2004.10.004 – volume: 64 start-page: 564 year: 2018 ident: 10.1016/j.eswa.2019.112867_bib0053 article-title: A comparative study of improved GA and PSO in solving multiple traveling salesmen problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.12.031 – volume: 11 start-page: 1256 issue: 1 year: 2011 ident: 10.1016/j.eswa.2019.112867_bib0018 article-title: An ant colony algorithm for solving fixed destination multi-depot multiple traveling salesmen problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2010.03.002 – volume: vol. 26 start-page: 29 year: 1996 ident: 10.1016/j.eswa.2019.112867_bib0013 article-title: Ant system: Optimization by a colony of cooperating agents – volume: 39 start-page: 8947 issue: 10 year: 2012 ident: 10.1016/j.eswa.2019.112867_bib0034 article-title: A new genetic algorithm for the asymmetric traveling salesman problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.02.029 – volume: 432 start-page: 231 year: 2018 ident: 10.1016/j.eswa.2019.112867_bib0014 article-title: Efficiently solving the traveling thief problem using hill climbing and simulated annealing publication-title: Information Sciences doi: 10.1016/j.ins.2017.12.011 – volume: 124 start-page: 267 issue: 2 year: 2000 ident: 10.1016/j.eswa.2019.112867_bib0045 article-title: A multiple traveling salesman problem model for hot rolling scheduling in shanghai baoshan iron & steel complex publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(99)00380-X – volume: 267 start-page: 120 issue: 1 year: 2018 ident: 10.1016/j.eswa.2019.112867_bib0010 article-title: An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2017.11.017 – volume: 26 start-page: 74 year: 2015 ident: 10.1016/j.eswa.2019.112867_bib0046 article-title: Two metaheuristic approaches for the multiple traveling salesperson problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2014.09.029 – volume: 271 start-page: 2 year: 2018 ident: 10.1016/j.eswa.2019.112867_bib0037 article-title: Good practice proposal for the implementation, presentation, and comparison of metaheuristics for solving routing problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.11.098 – volume: 262 start-page: 908 issue: 3 year: 2017 ident: 10.1016/j.eswa.2019.112867_bib0019 article-title: Extended formulations and branch-and-cut algorithms for the black-and-white traveling salesman problem publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2017.04.061 – volume: 175 start-page: 246 issue: 1 year: 2006 ident: 10.1016/j.eswa.2019.112867_bib0004 article-title: A new approach to solving the multiple traveling salesperson problem using genetic algorithms publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2005.04.027 – volume: 44 start-page: 622 year: 2019 ident: 10.1016/j.eswa.2019.112867_bib0008 article-title: An artificial bee colony algorithm with a modified choice function for the traveling salesman problem publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2018.08.004 – volume: 11 start-page: e0165804 issue: 11 year: 2016 ident: 10.1016/j.eswa.2019.112867_bib0022 article-title: A discrete fruit fly optimization algorithm for the traveling salesman problem publication-title: PLoS One doi: 10.1371/journal.pone.0165804 – volume: 228 start-page: 72 issue: 1 year: 2013 ident: 10.1016/j.eswa.2019.112867_bib0050 article-title: A new crossover approach for solving the multiple travelling salesmen problem using genetic algorithms publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2013.01.043 – volume: 227 start-page: 284 issue: 2 year: 2013 ident: 10.1016/j.eswa.2019.112867_bib0049 article-title: Exact and approximation algorithms for the min-max k-traveling salesmen problem on a tree publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2012.12.023 – volume: 46 start-page: 196 year: 2016 ident: 10.1016/j.eswa.2019.112867_bib0029 article-title: An imprecise multi-objective genetic algorithm for uncertain constrained multi-objective solid travelling salesman problem publication-title: Expert Systems With Applications doi: 10.1016/j.eswa.2015.10.019 – volume: 34 start-page: 698 issue: 5 year: 1986 ident: 10.1016/j.eswa.2019.112867_bib0017 article-title: An optimal solution method for large-scale multiple traveling salesmen problems publication-title: Operations Research doi: 10.1287/opre.34.5.698 – volume: 22 start-page: 8167 issue: 24 year: 2018 ident: 10.1016/j.eswa.2019.112867_bib0020 article-title: Solving travelling salesman problem using black hole algorithm publication-title: Soft Computing doi: 10.1007/s00500-017-2760-y – volume: 21 start-page: 4661 issue: 16 year: 2017 ident: 10.1016/j.eswa.2019.112867_bib0005 article-title: A genetic ant colony optimization based algorithm for solid multiple travelling salesmen problem in fuzzy rough environment publication-title: Soft Computing doi: 10.1007/s00500-016-2075-4 – volume: 48 start-page: 59 year: 2016 ident: 10.1016/j.eswa.2019.112867_bib0039 article-title: An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2015.10.006 – volume: 39 start-page: 3410 issue: 12 year: 2015 ident: 10.1016/j.eswa.2019.112867_bib0027 article-title: Mathematical modeling of multiple tour multiple traveling salesman problem using evolutionary programming publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2014.11.043 – volume: 111 start-page: 253 year: 2016 ident: 10.1016/j.eswa.2019.112867_bib0026 article-title: Minimization of off-grade production in multi-site multi-product plants by solving multiple traveling salesman problem publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2015.05.036 – start-page: 134 year: 1991 ident: 10.1016/j.eswa.2019.112867_sbref0009 article-title: Distributed optimization by ant colonies – volume: 44 start-page: 428 year: 2019 ident: 10.1016/j.eswa.2019.112867_bib0024 article-title: A swap sequence based artificial bee colony algorithm for traveling salesman problem publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2018.05.006 – volume: 71 start-page: 277 year: 2018 ident: 10.1016/j.eswa.2019.112867_bib0038 article-title: A discrete water cycle algorithm for solving the symmetric and asymmetric traveling salesman problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.06.047 – volume: 1 start-page: 3 year: 2011 ident: 10.1016/j.eswa.2019.112867_bib0011 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2011.02.002 – volume: 28 start-page: 476 issue: 4 year: 1984 ident: 10.1016/j.eswa.2019.112867_bib0021 article-title: Aspects of the traveling salesman problem publication-title: IBM Journal of Research and Development doi: 10.1147/rd.284.0476 – volume: 70 start-page: 39 year: 2016 ident: 10.1016/j.eswa.2019.112867_bib0043 article-title: Generalized multiple depot traveling salesmen problem–polyhedral study and exact algorithm publication-title: Computers & Operations Research doi: 10.1016/j.cor.2015.12.014 – start-page: 3171 year: 2015 ident: 10.1016/j.eswa.2019.112867_bib0001 article-title: Using genetic algorithms to minimize the distance and balance the routes for the multiple traveling salesman problem – volume: 1989 start-page: 133 year: 1989 ident: 10.1016/j.eswa.2019.112867_bib0048 article-title: Scheduling problems and traveling salesmen: The genetic edge recombination operator – volume: 261 start-page: 475 issue: 2 year: 2017 ident: 10.1016/j.eswa.2019.112867_bib0025 article-title: Exact algorithms for the equitable traveling salesman problem publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2017.02.017 – start-page: 1292 year: 2009 ident: 10.1016/j.eswa.2019.112867_bib0036 article-title: A transformation for a heterogeneous, multiple depot, multiple traveling salesman problem – volume: 77 start-page: 189 year: 2017 ident: 10.1016/j.eswa.2019.112867_bib0016 article-title: Simulated annealing based symbiotic organisms search optimization algorithm for traveling salesman problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.01.053 – year: 1996 ident: 10.1016/j.eswa.2019.112867_bib0032 – volume: 48 start-page: 277 issue: 2 year: 2018 ident: 10.1016/j.eswa.2019.112867_bib0031 article-title: Population-based incremental learning algorithm for a serial colored traveling salesman problem publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2016.2591267 – volume: 11 start-page: 692 issue: 1 year: 2018 ident: 10.1016/j.eswa.2019.112867_bib0028 article-title: A genetic algorithm with new local operators for multiple traveling salesman problems publication-title: International Journal of Computational Intelligence Systems doi: 10.2991/ijcis.11.1.53 – start-page: 873 year: 2015 ident: 10.1016/j.eswa.2019.112867_bib0035 article-title: Tackling the bi-criteria facet of multipletraveling salesman problem with ant colony systems – volume: 421 start-page: 70 year: 2017 ident: 10.1016/j.eswa.2019.112867_bib0051 article-title: Hybrid discrete artificial bee colony algorithm with threshold acceptance criterion for traveling salesman problem publication-title: Information Sciences doi: 10.1016/j.ins.2017.08.067 – year: 1992 ident: 10.1016/j.eswa.2019.112867_bib0012 – volume: 61 start-page: 714 year: 2017 ident: 10.1016/j.eswa.2019.112867_bib0007 article-title: A modified two-part wolf pack search algorithm for the multiple traveling salesmen problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.08.041 – volume: 65 start-page: 1043 issue: 4 year: 2017 ident: 10.1016/j.eswa.2019.112867_bib0002 article-title: An o(log n/log log n)-approximation algorithm for the asymmetric traveling salesman problem publication-title: Operations Research doi: 10.1287/opre.2017.1603 – year: 2017 ident: 10.1016/j.eswa.2019.112867_sbref0033 article-title: A new hybrid discrete firefly algorithm for solving the traveling salesman problem – volume: 42 start-page: 77 year: 2018 ident: 10.1016/j.eswa.2019.112867_bib0052 article-title: Discrete comprehensive learning particle swarm optimization algorithm with metropolis acceptance criterion for traveling salesman problem publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2018.02.017 – start-page: 1 year: 2010 ident: 10.1016/j.eswa.2019.112867_bib0030 article-title: Traveling salesman problem: An overview of applications, formulations, and solution approaches publication-title: Traveling Salesman Problem, Theory and Applications – volume: 463–464 start-page: 261 year: 2018 ident: 10.1016/j.eswa.2019.112867_bib0047 article-title: A hyper-heuristic based artificial bee colony algorithm for k-interconnected multi-depot multi-traveling salesman problem publication-title: Information Sciences – volume: 38 start-page: 3873 issue: 4 year: 2011 ident: 10.1016/j.eswa.2019.112867_bib0006 article-title: Parallelized genetic ant colony systems for solving the traveling salesman problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.09.048 – volume: 28 start-page: 1950004 issue: 01 year: 2019 ident: 10.1016/j.eswa.2019.112867_bib0023 article-title: Solving traveling salesman problem by using combinatorial artificial bee colony algorithms publication-title: International Journal on Artificial Intelligence Tools doi: 10.1142/S0218213019500040 – volume: 176 start-page: 7 year: 2016 ident: 10.1016/j.eswa.2019.112867_bib0042 article-title: Optimization of drayage operations with time-window constraints publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2016.03.005 – volume: 248 start-page: 372 issue: 2 year: 2016 ident: 10.1016/j.eswa.2019.112867_bib0044 article-title: The traveling salesman problem with time-dependent service times publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2015.07.048 |
| SSID | ssj0017007 |
| Score | 2.5405343 |
| Snippet | •A new hybrid algorithm AC-PGA is designed for solving large scale MTSPs.•AC-PGA has better performance than some existing algorithms.•AC-PGA has weak... Multiple traveling salesmen problem (MTSP) is not only a generalization of the traveling salesman problem (TSP), but also more suitable for modeling practical... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 112867 |
| SubjectTerms | Ant colony algorithm Ant colony optimization Genetic algorithm Genetic algorithms Hybrid algorithm Multiple traveling salesmen problem Partheno genetic algorithm Simulation Swarm intelligence Traveling salesman problem |
| Title | A new efficient hybrid algorithm for large scale multiple traveling salesman problems |
| URI | https://dx.doi.org/10.1016/j.eswa.2019.112867 https://www.proquest.com/docview/2312228670 |
| Volume | 139 |
| WOSCitedRecordID | wos000493221200031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5cCFN6JQkA_cVq7ytn1cVUXAoUKilVa9WHk4zVZLdrVJafvvmfFryyIqQOISJY4TR54vk_FkZj5C3staNhmcYnlZpCyropZJ3eSsjjhazxwp5AzZBD8-FrOZ_OKC2AdDJ8D7Xlxfy9V_FTW0gbAxdfYvxB1uCg2wD0KHLYgdtn8k-CmyhGOcxtzkOk66G0zKmpSL8-V6PnbfTGDhAgPAJwMISG9iCkekIjLp6QO0D-jdd3wzw08OfKyOPLoa0D477tZ_8BCUM3e-6MOuXG4c90bNnXXL_nzlP5tGNdu-Z53uu8vytjMiibacESFLZhOSZF2NnGWxZeM50FbRCp6yglt2xKCJbV2jX7S6dTBcHOjhCktFxRITn4Sl8diqlv0VB8OxwDAFqHF5n-wmPJeg8Hann45mn8MvJh7ZXHr_cC6jygb_bY_0O6tl6_ttjJKTJ-SRW03QqUXBU3JP98_IY8_UQZ3ifk5OpxRAQQMoqAUFDaCgAApqQEENKKgHBQ2goB4U1IPiBTn9cHRy-JE5Qg1Wp4kYmZQ6iaq6qFKZ1VzGJRdNLNoyE2UCu1ULc8F52sqoTXlTVXkKh_BoOVhS0LtIX5KdftnrV4QmYMboppIarCCw6XVZRVIU0K-A9UKr5R6J_YSp2lWbR9KThfJhhRcKJ1nhJCs7yXtkEq5Z2Vord_bOvRyUsxatFagANndet--FptxrOyhY5aArtODR63-87RvycPNC7JOdcX2p35IH9fdxPqzfOfD9AGybm3A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+efficient+hybrid+algorithm+for+large+scale+multiple+traveling+salesman+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Jiang%2C+Chao&rft.au=Wan%2C+Zhongping&rft.au=Peng%2C+Zhenhua&rft.date=2020-01-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=139&rft_id=info:doi/10.1016%2Fj.eswa.2019.112867&rft.externalDocID=S0957417419305779 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |