Plug-and-Play Algorithms for Video Snapshot Compressive Imaging

We consider the reconstruction problem of video snapshot compressive imaging (SCI), which captures high-speed videos using a low-speed 2D sensor (detector). The underlying principle of SCI is to modulate sequential high-speed frames with different masks and then these encoded frames are integrated i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on pattern analysis and machine intelligence Ročník 44; číslo 10; s. 7093 - 7111
Hlavní autori: Yuan, Xin, Liu, Yang, Suo, Jinli, Durand, Fredo, Dai, Qionghai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We consider the reconstruction problem of video snapshot compressive imaging (SCI), which captures high-speed videos using a low-speed 2D sensor (detector). The underlying principle of SCI is to modulate sequential high-speed frames with different masks and then these encoded frames are integrated into a snapshot on the sensor and thus the sensor can be of low-speed. On one hand, video SCI enjoys the advantages of low-bandwidth, low-power and low-cost. On the other hand, applying SCI to large-scale problems (HD or UHD videos) in our daily life is still challenging and one of the bottlenecks lies in the reconstruction algorithm. Existing algorithms are either too slow (iterative optimization algorithms) or not flexible to the encoding process (deep learning based end-to-end networks). In this paper, we develop fast and flexible algorithms for SCI based on the plug-and-play (PnP) framework. In addition to the PnP-ADMM method, we further propose the PnP-GAP (generalized alternating projection) algorithm with a lower computational workload. We first employ the image deep denoising priors to show that PnP can recover a UHD color video with 30 frames from a snapshot measurement. Since videos have strong temporal correlation, by employing the video deep denoising priors, we achieve a significant improvement in the results. Furthermore, we extend the proposed PnP algorithms to the color SCI system using mosaic sensors, where each pixel only captures the red, green or blue channels. A joint reconstruction and demosaicing paradigm is developed for flexible and high quality reconstruction of color video SCI systems. Extensive results on both simulation and real datasets verify the superiority of our proposed algorithm.
AbstractList We consider the reconstruction problem of video snapshot compressive imaging (SCI), which captures high-speed videos using a low-speed 2D sensor (detector). The underlying principle of SCI is to modulate sequential high-speed frames with different masks and then these encoded frames are integrated into a snapshot on the sensor and thus the sensor can be of low-speed. On one hand, video SCI enjoys the advantages of low-bandwidth, low-power and low-cost. On the other hand, applying SCI to large-scale problems (HD or UHD videos) in our daily life is still challenging and one of the bottlenecks lies in the reconstruction algorithm. Existing algorithms are either too slow (iterative optimization algorithms) or not flexible to the encoding process (deep learning based end-to-end networks). In this paper, we develop fast and flexible algorithms for SCI based on the plug-and-play (PnP) framework. In addition to the PnP-ADMM method, we further propose the PnP-GAP (generalized alternating projection) algorithm with a lower computational workload. We first employ the image deep denoising priors to show that PnP can recover a UHD color video with 30 frames from a snapshot measurement. Since videos have strong temporal correlation, by employing the video deep denoising priors, we achieve a significant improvement in the results. Furthermore, we extend the proposed PnP algorithms to the color SCI system using mosaic sensors, where each pixel only captures the red, green or blue channels. A joint reconstruction and demosaicing paradigm is developed for flexible and high quality reconstruction of color video SCI systems. Extensive results on both simulation and real datasets verify the superiority of our proposed algorithm.
We consider the reconstruction problem of video snapshot compressive imaging (SCI), which captures high-speed videos using a low-speed 2D sensor (detector). The underlying principle of SCI is to modulate sequential high-speed frames with different masks and then these encoded frames are integrated into a snapshot on the sensor and thus the sensor can be of low-speed. On one hand, video SCI enjoys the advantages of low-bandwidth, low-power and low-cost. On the other hand, applying SCI to large-scale problems (HD or UHD videos) in our daily life is still challenging and one of the bottlenecks lies in the reconstruction algorithm. Existing algorithms are either too slow (iterative optimization algorithms) or not flexible to the encoding process (deep learning based end-to-end networks). In this paper, we develop fast and flexible algorithms for SCI based on the plug-and-play (PnP) framework. In addition to the PnP-ADMM method, we further propose the PnP-GAP (generalized alternating projection) algorithm with a lower computational workload. We first employ the image deep denoising priors to show that PnP can recover a UHD color video with 30 frames from a snapshot measurement. Since videos have strong temporal correlation, by employing the video deep denoising priors, we achieve a significant improvement in the results. Furthermore, we extend the proposed PnP algorithms to the color SCI system using mosaic sensors, where each pixel only captures the red, green or blue channels. A joint reconstruction and demosaicing paradigm is developed for flexible and high quality reconstruction of color video SCI systems. Extensive results on both simulation and real datasets verify the superiority of our proposed algorithm.We consider the reconstruction problem of video snapshot compressive imaging (SCI), which captures high-speed videos using a low-speed 2D sensor (detector). The underlying principle of SCI is to modulate sequential high-speed frames with different masks and then these encoded frames are integrated into a snapshot on the sensor and thus the sensor can be of low-speed. On one hand, video SCI enjoys the advantages of low-bandwidth, low-power and low-cost. On the other hand, applying SCI to large-scale problems (HD or UHD videos) in our daily life is still challenging and one of the bottlenecks lies in the reconstruction algorithm. Existing algorithms are either too slow (iterative optimization algorithms) or not flexible to the encoding process (deep learning based end-to-end networks). In this paper, we develop fast and flexible algorithms for SCI based on the plug-and-play (PnP) framework. In addition to the PnP-ADMM method, we further propose the PnP-GAP (generalized alternating projection) algorithm with a lower computational workload. We first employ the image deep denoising priors to show that PnP can recover a UHD color video with 30 frames from a snapshot measurement. Since videos have strong temporal correlation, by employing the video deep denoising priors, we achieve a significant improvement in the results. Furthermore, we extend the proposed PnP algorithms to the color SCI system using mosaic sensors, where each pixel only captures the red, green or blue channels. A joint reconstruction and demosaicing paradigm is developed for flexible and high quality reconstruction of color video SCI systems. Extensive results on both simulation and real datasets verify the superiority of our proposed algorithm.
Author Yuan, Xin
Suo, Jinli
Liu, Yang
Dai, Qionghai
Durand, Fredo
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0002-8311-7524
  surname: Yuan
  fullname: Yuan, Xin
  email: xyuan@westlake.edu.cn
  organization: School of Engineering, Westlake University, Hangzhou, Zhejiang, China
– sequence: 2
  givenname: Yang
  orcidid: 0000-0002-5787-0934
  surname: Liu
  fullname: Liu, Yang
  email: yliu12@mit.edu
  organization: Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 3
  givenname: Jinli
  orcidid: 0000-0002-3426-1634
  surname: Suo
  fullname: Suo, Jinli
  email: jlsuo@tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Fredo
  surname: Durand
  fullname: Durand, Fredo
  email: fredo@mit.edu
  organization: Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 5
  givenname: Qionghai
  orcidid: 0000-0001-7043-3061
  surname: Dai
  fullname: Dai, Qionghai
  email: qhdai@tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
BookMark eNp9kEtLw0AURgdRtFb_gG4Cbtyk3nmlMyspxUdBseBjO9wkkzolydSZVPDfG21x0YWruznn43KOyX7rW0vIGYURpaCvXuaTx9mIAaMjDloDl3tkwGgGqWaa7ZMB0IylSjF1RI5jXAJQIYEfkiMuOAWm1IBcz-v1IsW2TOc1fiWTeuGD696bmFQ-JG-utD55bnEV332XTH2zCjZG92mTWYML1y5OyEGFdbSn2zskr7c3L9P79OHpbjadPKQFZ6pLtYKS5UircYEyF5VVosiVKKFCndGCoRBY5VQKCgLLshQWcwUyy4sKlR0rPiSXm91V8B9rGzvTuFjYusbW-nU0TEqZcaWV7NGLHXTp16HtvzNsTIXq4wDvKbWhiuBjDLYyheuwc77tArraUDA_kc1vZPMT2Wwj9yrbUVfBNRi-_pfON5Kz1v4JWmhJteDfGDCH9Q
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3538499
crossref_primary_10_3390_rs16234601
crossref_primary_10_1007_s11263_023_01777_y
crossref_primary_10_1016_j_optlastec_2025_113757
crossref_primary_10_1364_OL_555833
crossref_primary_10_1038_s41467_025_59104_7
crossref_primary_10_1364_AO_510414
crossref_primary_10_1109_TGRS_2023_3347220
crossref_primary_10_1016_j_optlastec_2025_113913
crossref_primary_10_1137_25M1723979
crossref_primary_10_1016_j_asoc_2024_111420
crossref_primary_10_1364_OPTICA_573166
crossref_primary_10_1021_acsphotonics_4c02003
crossref_primary_10_1364_OE_545510
crossref_primary_10_1109_TCI_2023_3237175
crossref_primary_10_1109_TPAMI_2023_3265103
crossref_primary_10_1109_TCI_2023_3241551
crossref_primary_10_1016_j_apm_2024_115645
crossref_primary_10_1109_TCI_2024_3477262
crossref_primary_10_1109_TNNLS_2024_3400809
crossref_primary_10_1109_TCSVT_2025_3543569
crossref_primary_10_1109_TPAMI_2024_3357704
crossref_primary_10_1016_j_optcom_2023_130010
crossref_primary_10_1049_ipr2_70024
crossref_primary_10_1109_TPAMI_2022_3161934
crossref_primary_10_1007_s11263_021_01532_1
crossref_primary_10_1364_PRJ_515895
crossref_primary_10_1364_PRJ_555010
crossref_primary_10_1016_j_neucom_2025_130803
crossref_primary_10_1117_1_JBO_29_S1_S11524
crossref_primary_10_1109_TPAMI_2022_3225382
crossref_primary_10_1007_s12596_022_00893_1
crossref_primary_10_1007_s00371_024_03700_z
crossref_primary_10_1186_s43074_022_00065_1
crossref_primary_10_1109_JPROC_2023_3338272
crossref_primary_10_1109_TIM_2025_3593593
Cites_doi 10.1364/OE.25.018182
10.1109/TPAMI.2018.2817496
10.1364/OL.386238
10.1137/080716542
10.1137/17M1122451
10.1109/ICCV.2011.6126254
10.1109/CVPR.2014.424
10.1109/TCI.2016.2629286
10.1109/TIP.2006.884928
10.1117/12.766768
10.1109/ICIP.2016.7532817
10.1109/TSP.2006.881199
10.1109/MSP.2007.914730
10.1364/OE.17.006368
10.1007/978-3-030-01249-6_39
10.1145/2487575.2487586
10.1109/TIP.2007.901238
10.1109/CVPR.2011.5995542
10.1109/TIP.2017.2713099
10.1364/AOP.10.000409
10.1063/1.5140721
10.1364/OL.40.004054
10.1109/CVPR46437.2021.01595
10.1364/BOE.7.000746
10.1364/PRJ.411745
10.1109/TIP.2020.3005515
10.1109/TIP.2003.819861
10.1109/TPAMI.2019.2946567
10.1109/TIT.2019.2940666
10.1109/MSP.2020.3023869
10.1126/science.aat2298
10.1007/978-3-030-58592-1_12
10.1364/OPTICA.5.000127
10.1364/OPTICA.2.000822
10.1109/CVPR42600.2020.00152
10.1007/978-3-030-58586-0_16
10.1109/TIP.2020.2972109
10.1364/AOP.7.000756
10.1364/AO.55.007556
10.1109/TIP.2007.909319
10.1016/0167-2789(92)90242-f
10.1109/TCI.2016.2599778
10.1109/TIT.2006.871582
10.1109/ICCV.2009.5459452
10.1137/130936658
10.1109/TPAMI.2018.2873587
10.1109/CVPR.2014.366
10.1109/CVPR46437.2021.01598
10.1109/TIP.2014.2344294
10.1109/TIP.2012.2199324
10.1109/ICCV.2019.00416
10.1109/ICCV.2019.01032
10.1364/OE.23.011912
10.1109/ICASSP.2004.1326587
10.1109/TIP.2014.2365720
10.1109/ICIP.2013.6738004
10.1364/OL.420139
10.1109/CVPR42600.2020.00143
10.1364/AOP.398263
10.1109/JSTSP.2015.2411575
10.1109/GlobalSIP.2013.6737048
10.1109/MSP.2017.2717489
10.1364/OL.393213
10.1364/OE.26.001962
10.1109/TIP.2020.2989550
10.1561/9781601984616
10.1109/ISIT.2018.8437878
10.1364/OE.21.010526
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2021.3099035
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 7111
ExternalDocumentID 10_1109_TPAMI_2021_3099035
9495194
Genre orig-research
GrantInformation_xml – fundername: NSFC
  grantid: 61722110; 61931012; 61631009
– fundername: Beijing Municipal Science & Technology Commission
  grantid: Z181100003118014
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c328t-980d2ba1f7ca5b4fe84cb84d0fa961c2a44afb154104addd4eab8056bcfa8e783
IEDL.DBID RIE
ISICitedReferencesCount 72
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000853875300087&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Thu Oct 02 07:08:16 EDT 2025
Sun Nov 09 08:11:06 EST 2025
Sat Nov 29 05:16:00 EST 2025
Tue Nov 18 22:43:54 EST 2025
Wed Aug 27 02:18:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-980d2ba1f7ca5b4fe84cb84d0fa961c2a44afb154104addd4eab8056bcfa8e783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7043-3061
0000-0002-5787-0934
0000-0002-3426-1634
0000-0002-8311-7524
PMID 34310288
PQID 2714892903
PQPubID 85458
PageCount 19
ParticipantIDs proquest_journals_2714892903
crossref_citationtrail_10_1109_TPAMI_2021_3099035
ieee_primary_9495194
proquest_miscellaneous_2555638985
crossref_primary_10_1109_TPAMI_2021_3099035
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref11
ref55
ref10
ref54
ref17
Ryu (ref48)
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
Y. (ref27)
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref63
ref22
Yuan (ref64) 2020
ref66
ref21
ref65
Zhang (ref52) 2018; 27
ref28
ref29
ref60
ref62
ref61
References_xml – ident: ref17
  doi: 10.1364/OE.25.018182
– ident: ref30
  doi: 10.1109/TPAMI.2018.2817496
– ident: ref18
  doi: 10.1364/OL.386238
– ident: ref62
  doi: 10.1137/080716542
– ident: ref56
  doi: 10.1137/17M1122451
– ident: ref10
  doi: 10.1109/ICCV.2011.6126254
– ident: ref8
  doi: 10.1109/CVPR.2014.424
– ident: ref47
  doi: 10.1109/TCI.2016.2629286
– ident: ref60
  doi: 10.1109/TIP.2006.884928
– ident: ref57
  doi: 10.1117/12.766768
– ident: ref23
  doi: 10.1109/ICIP.2016.7532817
– ident: ref68
  doi: 10.1109/TSP.2006.881199
– ident: ref54
  doi: 10.1109/MSP.2007.914730
– ident: ref9
  doi: 10.1364/OE.17.006368
– ident: ref42
  doi: 10.1007/978-3-030-01249-6_39
– ident: ref66
  doi: 10.1145/2487575.2487586
– ident: ref70
  doi: 10.1109/TIP.2007.901238
– ident: ref11
  doi: 10.1109/CVPR.2011.5995542
– ident: ref40
  doi: 10.1109/TIP.2017.2713099
– ident: ref2
  doi: 10.1364/AOP.10.000409
– ident: ref16
  doi: 10.1063/1.5140721
– start-page: 1
  volume-title: Proc. IEEE Int. Conf. Comput. Photogr.
  ident: ref27
  article-title: End-to-end video compressive sensing using anderson-accelerated unrolled networks
– ident: ref5
  doi: 10.1364/OL.40.004054
– ident: ref44
  doi: 10.1109/CVPR46437.2021.01595
– ident: ref12
  doi: 10.1364/BOE.7.000746
– ident: ref63
  doi: 10.1364/PRJ.411745
– ident: ref65
  doi: 10.1109/TIP.2020.3005515
– ident: ref72
  doi: 10.1109/TIP.2003.819861
– ident: ref13
  doi: 10.1109/TPAMI.2019.2946567
– ident: ref51
  doi: 10.1109/TIT.2019.2940666
– ident: ref6
  doi: 10.1109/MSP.2020.3023869
– ident: ref1
  doi: 10.1126/science.aat2298
– ident: ref32
  doi: 10.1007/978-3-030-58592-1_12
– ident: ref3
  doi: 10.1364/OPTICA.5.000127
– year: 2020
  ident: ref64
  article-title: Various total variation for snapshot video compressive imaging
– ident: ref33
  doi: 10.1364/OPTICA.2.000822
– ident: ref50
  doi: 10.1109/CVPR42600.2020.00152
– ident: ref28
  doi: 10.1007/978-3-030-58586-0_16
– ident: ref61
  doi: 10.1109/TIP.2020.2972109
– ident: ref4
  doi: 10.1364/AOP.7.000756
– ident: ref34
  doi: 10.1364/AO.55.007556
– ident: ref20
  doi: 10.1109/TIP.2007.909319
– volume: 27
  start-page: 4608
  issue: 9
  volume-title: IEEE Trans. Image Process.
  year: 2018
  ident: ref52
  article-title: FFDNet: Toward a fast and flexible solution for CNN-based image denoising.
– ident: ref37
  doi: 10.1016/0167-2789(92)90242-f
– ident: ref46
  doi: 10.1109/TCI.2016.2599778
– ident: ref36
  doi: 10.1109/TIT.2006.871582
– ident: ref69
  doi: 10.1109/ICCV.2009.5459452
– ident: ref24
  doi: 10.1137/130936658
– start-page: 5546
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref48
  article-title: Plug-and-play methods provably converge with properly trained denoisers
– ident: ref25
  doi: 10.1109/TPAMI.2018.2873587
– ident: ref38
  doi: 10.1109/CVPR.2014.366
– ident: ref43
  doi: 10.1109/CVPR46437.2021.01598
– ident: ref22
  doi: 10.1109/TIP.2014.2344294
– ident: ref71
  doi: 10.1109/TIP.2012.2199324
– ident: ref14
  doi: 10.1109/ICCV.2019.00416
– ident: ref26
  doi: 10.1109/ICCV.2019.01032
– ident: ref35
  doi: 10.1364/OE.23.011912
– ident: ref59
  doi: 10.1109/ICASSP.2004.1326587
– ident: ref21
  doi: 10.1109/TIP.2014.2365720
– ident: ref29
  doi: 10.1109/ICIP.2013.6738004
– ident: ref19
  doi: 10.1364/OL.420139
– ident: ref53
  doi: 10.1109/CVPR42600.2020.00143
– ident: ref58
  doi: 10.1364/AOP.398263
– ident: ref15
  doi: 10.1109/JSTSP.2015.2411575
– ident: ref45
  doi: 10.1109/GlobalSIP.2013.6737048
– ident: ref49
  doi: 10.1109/MSP.2017.2717489
– ident: ref31
  doi: 10.1364/OL.393213
– ident: ref41
  doi: 10.1364/OE.26.001962
– ident: ref67
  doi: 10.1109/TIP.2020.2989550
– ident: ref39
  doi: 10.1561/9781601984616
– ident: ref55
  doi: 10.1109/ISIT.2018.8437878
– ident: ref7
  doi: 10.1364/OE.21.010526
SSID ssj0014503
Score 2.6563125
Snippet We consider the reconstruction problem of video snapshot compressive imaging (SCI), which captures high-speed videos using a low-speed 2D sensor (detector)....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7093
SubjectTerms Algorithms
Cameras
coded aperture
coded aperture compressive temporal imaging (CACTI)
Color
Compressive sensing
computational imaging
deep learning
Frames (data processing)
Gray-scale
High speed
Image coding
Image color analysis
image processing
Image reconstruction
Iterative methods
Low speed
Machine learning
Noise reduction
Optimization
plug-and-play (PnP) algorithms
Plugs
Sensors
Video compression
video processing
Title Plug-and-Play Algorithms for Video Snapshot Compressive Imaging
URI https://ieeexplore.ieee.org/document/9495194
https://www.proquest.com/docview/2714892903
https://www.proquest.com/docview/2555638985
Volume 44
WOSCitedRecordID wos000853875300087&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-iOBNq900aZOTLKLoQVnwwd5KkqbuwtrKblfw3zvJdouiCN5Km4aSyWS-r8nMB3DMc55ohLpBLLkKGNKvQFun9aJ5Lmgu8Ib2YhPJ_b3o9WR3Dk6bXBhrrT98Zs_cpd_Lz0ozcb_KziWieSTd8zCfJPE0V6vZMWDcqyAjgkEPRxoxS5AJ5fljt3N3i1SQts8itw8UObmaCCMnxlbxLR55gZUfq7IPNder__vINVipISXpTOfAOszZYgNWZ3INpPbeDVj-UntwEy66w8lLoIos6A7VB-kMX8rRoOq_jgnCWPI8yGxJHgr1Nu6XFXGd-QOz75bcvnphoy14ur56vLwJajWFwERUVIEUYUa1aueJUVyz3ApmtGBZmCsZtw1VjKlcI6JCgoaLXsas0gLhkTa5EjYR0TYsFGVhd4DEkU64lkoahQSDUo3mjaXQmWFSiYy3oD0b09TUpcad4sUw9ZQjlKk3SepMktYmacFJ887btNDGn6033cg3LetBb8H-zHRp7YvjlCZI-RAFhlELjprH6EVua0QVtpxgG-4KpQkp-O7vPe_BEnWJD_4Y3z4sVKOJPYBF814NxqNDnJA9cegn5CfIHNo4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-QwEB48FU4f9NQ7XH_m4N602k2TbfIkiygu6rJwq_hWkjTVhbWV3a7gf-8k2y2KIvhW2jSUTCbzfU1mPoB_POOxRqgbtCRXAUP6FWjrtF40zwTNBN7QXmwi7nbF3Z3szcFhnQtjrfWHz-yRu_R7-WlhJu5X2bFENI-k-wcscMZoOM3WqvcMGPc6yIhh0MeRSMxSZEJ53O-1rztIBmnzKHI7QZETrIkwdmJ0Fe8ikpdY-bAu-2Bzvvq9z_wFKxWoJO3pLFiDOZuvw-pMsIFU_rsOy2-qD27ASW84uQ9Unga9oXoh7eF9MRqUD49jgkCW3A5SW5D_uXoaPxQlcZ35I7PPlnQevbTRb7g5P-ufXgSVnkJgIirKQIowpVo1s9gorllmBTNasDTMlGw1DVWMqUwjpkKKhsteyqzSAgGSNpkSNhbRH5jPi9xuAmlFOuZaKmkUUgxKNRq4JYVODZNKpLwBzdmYJqYqNu40L4aJJx2hTLxJEmeSpDJJAw7qd56mpTa-bL3hRr5uWQ16A3ZmpksqbxwnNEbShzgwjBrwt36MfuQ2R1Ruiwm24a5UmpCCb33e8z78vOhfXyVXne7lNixRlwbhD_XtwHw5mthdWDTP5WA82vPT8hUlF9yX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plug-and-Play+Algorithms+for+Video+Snapshot+Compressive+Imaging&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Yuan%2C+Xin&rft.au=Liu%2C+Yang&rft.au=Suo%2C+Jinli&rft.au=Durand%2C+Fredo&rft.date=2022-10-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=44&rft.issue=10&rft.spage=7093&rft.epage=7111&rft_id=info:doi/10.1109%2FTPAMI.2021.3099035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2021_3099035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon