Broad Learning System Based on Maximum Correntropy Criterion

As an effective and efficient discriminative learning method, broad learning system (BLS) has received increasing attention due to its outstanding performance in various regression and classification problems. However, the standard BLS is derived under the minimum mean square error (MMSE) criterion,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 32; no. 7; pp. 3083 - 3097
Main Authors: Zheng, Yunfei, Chen, Badong, Wang, Shiyuan, Wang, Weiqun
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As an effective and efficient discriminative learning method, broad learning system (BLS) has received increasing attention due to its outstanding performance in various regression and classification problems. However, the standard BLS is derived under the minimum mean square error (MMSE) criterion, which is, of course, not always a good choice due to its sensitivity to outliers. To enhance the robustness of BLS, we propose in this work to adopt the maximum correntropy criterion (MCC) to train the output weights, obtaining a correntropy-based BLS (C-BLS). Due to the inherent superiorities of MCC, the proposed C-BLS is expected to achieve excellent robustness to outliers while maintaining the original performance of the standard BLS in the Gaussian or noise-free environment. In addition, three alternative incremental learning algorithms, derived from a weighted regularized least-squares solution rather than pseudoinverse formula, for C-BLS are developed. With the incremental learning algorithms, the system can be updated quickly without the entire retraining process from the beginning when some new samples arrive or the network deems to be expanded. Experiments on various regression and classification data sets are reported to demonstrate the desirable performance of the new methods.
AbstractList As an effective and efficient discriminative learning method, broad learning system (BLS) has received increasing attention due to its outstanding performance in various regression and classification problems. However, the standard BLS is derived under the minimum mean square error (MMSE) criterion, which is, of course, not always a good choice due to its sensitivity to outliers. To enhance the robustness of BLS, we propose in this work to adopt the maximum correntropy criterion (MCC) to train the output weights, obtaining a correntropy-based BLS (C-BLS). Due to the inherent superiorities of MCC, the proposed C-BLS is expected to achieve excellent robustness to outliers while maintaining the original performance of the standard BLS in the Gaussian or noise-free environment. In addition, three alternative incremental learning algorithms, derived from a weighted regularized least-squares solution rather than pseudoinverse formula, for C-BLS are developed. With the incremental learning algorithms, the system can be updated quickly without the entire retraining process from the beginning when some new samples arrive or the network deems to be expanded. Experiments on various regression and classification data sets are reported to demonstrate the desirable performance of the new methods.
As an effective and efficient discriminative learning method, broad learning system (BLS) has received increasing attention due to its outstanding performance in various regression and classification problems. However, the standard BLS is derived under the minimum mean square error (MMSE) criterion, which is, of course, not always a good choice due to its sensitivity to outliers. To enhance the robustness of BLS, we propose in this work to adopt the maximum correntropy criterion (MCC) to train the output weights, obtaining a correntropy-based BLS (C-BLS). Due to the inherent superiorities of MCC, the proposed C-BLS is expected to achieve excellent robustness to outliers while maintaining the original performance of the standard BLS in the Gaussian or noise-free environment. In addition, three alternative incremental learning algorithms, derived from a weighted regularized least-squares solution rather than pseudoinverse formula, for C-BLS are developed. With the incremental learning algorithms, the system can be updated quickly without the entire retraining process from the beginning when some new samples arrive or the network deems to be expanded. Experiments on various regression and classification data sets are reported to demonstrate the desirable performance of the new methods.As an effective and efficient discriminative learning method, broad learning system (BLS) has received increasing attention due to its outstanding performance in various regression and classification problems. However, the standard BLS is derived under the minimum mean square error (MMSE) criterion, which is, of course, not always a good choice due to its sensitivity to outliers. To enhance the robustness of BLS, we propose in this work to adopt the maximum correntropy criterion (MCC) to train the output weights, obtaining a correntropy-based BLS (C-BLS). Due to the inherent superiorities of MCC, the proposed C-BLS is expected to achieve excellent robustness to outliers while maintaining the original performance of the standard BLS in the Gaussian or noise-free environment. In addition, three alternative incremental learning algorithms, derived from a weighted regularized least-squares solution rather than pseudoinverse formula, for C-BLS are developed. With the incremental learning algorithms, the system can be updated quickly without the entire retraining process from the beginning when some new samples arrive or the network deems to be expanded. Experiments on various regression and classification data sets are reported to demonstrate the desirable performance of the new methods.
Author Wang, Shiyuan
Wang, Weiqun
Chen, Badong
Zheng, Yunfei
Author_xml – sequence: 1
  givenname: Yunfei
  orcidid: 0000-0003-4026-2956
  surname: Zheng
  fullname: Zheng, Yunfei
  email: zhengyf@stu.xjtu.edu.cn
  organization: Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China
– sequence: 2
  givenname: Badong
  orcidid: 0000-0003-1710-3818
  surname: Chen
  fullname: Chen, Badong
  email: chenbd@mail.xjtu.edu.cn
  organization: Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China
– sequence: 3
  givenname: Shiyuan
  orcidid: 0000-0002-5028-5839
  surname: Wang
  fullname: Wang, Shiyuan
  email: wsy@swu.edu.cn
  organization: College of Electronic and Information Engineering, Southwest University, Chongqing, China
– sequence: 4
  givenname: Weiqun
  orcidid: 0000-0001-6981-297X
  surname: Wang
  fullname: Wang, Weiqun
  email: weiqun.wang@ia.ac.cn
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
BookMark eNp9kE1PAjEQhhuDEVT-gF428eIF7Nd228SLEL8SxAOYeGtKdzAlbIvtksi_dxHCgYNzmTm8z2TmOUctHzwgdEVwnxCs7qbj8WjSp5jiPsNYcVKcoA4lgvYok7J1mIvPNuqmtMBNCZwLrs5Qm9ECC8FlB90PYjBlNgITvfNf2WSTaqiygUlQZsFnb-bHVesqG4YYwdcxrDbZMLoaogv-Ep3OzTJBd98v0MfT43T40hu9P78OH0Y9y6ise6qwVnFmGMznIrfKGqtyzktRYrBCFTNcSoCinGGgRknLpDWQK4GNUUCsYRfodrd3FcP3GlKtK5csLJfGQ1gnTTktqJKE5k305ii6COvom-s0zblUqrEgm5TcpWwMKUWYa-tqUzcv1dG4pSZYbyXrP8l6K1nvJTcoPUJX0VUmbv6HrneQA4ADoAgvcC7ZL_eCh_g
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_jestch_2024_101945
crossref_primary_10_1016_j_apacoust_2025_110807
crossref_primary_10_1016_j_engappai_2022_105353
crossref_primary_10_1016_j_neucom_2022_08_047
crossref_primary_10_1016_j_neunet_2025_108032
crossref_primary_10_3390_act10100249
crossref_primary_10_1016_j_jtice_2022_104568
crossref_primary_10_1109_TNNLS_2023_3317255
crossref_primary_10_3390_electronics12143118
crossref_primary_10_1016_j_asoc_2024_112412
crossref_primary_10_1016_j_neunet_2023_09_034
crossref_primary_10_1109_TNNLS_2023_3280086
crossref_primary_10_1016_j_neucom_2023_126324
crossref_primary_10_1109_TCYB_2024_3471919
crossref_primary_10_1109_TNNLS_2022_3184846
crossref_primary_10_3390_math10050829
crossref_primary_10_1016_j_neunet_2025_107305
crossref_primary_10_1016_j_neunet_2025_107468
crossref_primary_10_1109_TCYB_2021_3126711
crossref_primary_10_3390_math10183292
crossref_primary_10_1109_TII_2023_3332957
crossref_primary_10_1016_j_knosys_2022_108403
crossref_primary_10_1016_j_knosys_2024_112923
crossref_primary_10_1016_j_patcog_2023_109656
crossref_primary_10_1109_TNNLS_2025_3540076
crossref_primary_10_1109_TNNLS_2024_3352285
crossref_primary_10_1016_j_engappai_2025_111294
crossref_primary_10_1007_s10489_022_03498_0
crossref_primary_10_1016_j_aei_2024_102967
crossref_primary_10_1109_TCSI_2024_3476150
crossref_primary_10_1109_TIM_2023_3318711
crossref_primary_10_1109_TNNLS_2021_3106773
crossref_primary_10_1109_TSMC_2024_3462801
crossref_primary_10_1016_j_knosys_2025_113765
crossref_primary_10_1109_TCYB_2022_3181449
crossref_primary_10_3390_sym17091556
crossref_primary_10_1007_s11432_022_3560_8
crossref_primary_10_1016_j_ins_2024_121026
crossref_primary_10_1109_TAI_2022_3143079
crossref_primary_10_1109_JAS_2024_124932
crossref_primary_10_1016_j_neunet_2024_106226
crossref_primary_10_1109_TIM_2024_3460883
crossref_primary_10_1109_TIM_2025_3595230
crossref_primary_10_3390_app131911009
crossref_primary_10_1109_TCDS_2022_3192536
crossref_primary_10_1109_TSMC_2022_3211519
crossref_primary_10_1007_s10462_022_10263_9
crossref_primary_10_1007_s11063_023_11191_7
crossref_primary_10_1016_j_sigpro_2025_110055
crossref_primary_10_1109_TETCI_2022_3146983
crossref_primary_10_1109_TNNLS_2023_3256999
crossref_primary_10_1109_TIM_2024_3522707
crossref_primary_10_1109_TCYB_2021_3061094
crossref_primary_10_1007_s10489_025_06666_0
crossref_primary_10_1016_j_energy_2023_127291
crossref_primary_10_1109_TBDATA_2025_3547174
crossref_primary_10_1016_j_engappai_2022_105447
crossref_primary_10_3390_en15207700
crossref_primary_10_1109_TSMC_2023_3300318
crossref_primary_10_1109_TMM_2024_3375774
crossref_primary_10_1109_ACCESS_2021_3066217
crossref_primary_10_1016_j_asoc_2023_110068
crossref_primary_10_1016_j_ins_2022_04_051
crossref_primary_10_1016_j_ymssp_2024_111348
crossref_primary_10_1109_JIOT_2025_3545741
crossref_primary_10_1016_j_neunet_2024_106521
crossref_primary_10_1016_j_ins_2024_120876
crossref_primary_10_3390_su17114894
crossref_primary_10_1109_TNNLS_2023_3294788
crossref_primary_10_3390_s24134268
Cites_doi 10.1109/TNSRE.2007.906956
10.1109/LSP.2015.2428713
10.1109/TIP.2010.2103949
10.1109/5.726791
10.1109/TCSII.2017.2778038
10.1007/978-3-319-10978-7
10.1016/j.jfranklin.2017.08.014
10.1109/TCYB.2018.2857815
10.1007/978-1-4899-3324-9
10.1109/TGRS.2017.2696262
10.1016/0925-2312(94)90053-1
10.1016/j.dsp.2017.01.010
10.1016/j.sigpro.2015.04.024
10.1016/j.ins.2016.12.007
10.1016/j.eswa.2008.11.053
10.1109/TSP.2007.896065
10.1109/MLSP.2017.8168132
10.1090/S0002-9947-1950-0051437-7
10.1109/TNNLS.2018.2866622
10.1109/CVPR.2017.240
10.1007/s00034-017-0551-4
10.1109/TNNLS.2019.2935033
10.1016/j.neucom.2018.09.028
10.1109/TPAMI.2015.2456899
10.1109/ACCESS.2018.2885164
10.1109/3477.740166
10.1109/TKDE.2018.2866149
10.1017/CBO9780511543005
10.1109/TCYB.2017.2727278
10.1109/TIE.2019.2931255
10.1016/j.ins.2018.09.026
10.1016/0377-0427(90)90260-7
10.1016/j.patcog.2018.07.011
10.1109/TCYB.2018.2863020
10.1007/s11784-017-0474-5
10.1109/ACCESS.2019.2905528
10.1007/s00521-012-1184-y
10.1109/TNNLS.2013.2258936
10.1007/BF00994018
10.1016/j.neucom.2017.05.087
10.1016/j.neucom.2005.12.126
10.1109/TSMC.2019.2931403
10.1109/TNNLS.2017.2753725
10.1109/TSMC.1985.6313426
10.1109/TNNLS.2017.2716952
10.1002/9780470608593
10.1016/j.automatica.2017.09.006
10.1162/neco.2006.18.7.1527
10.1007/978-3-030-01313-4_1
10.1109/TAU.1967.1161901
10.1109/MLSP.2010.5589239
10.1109/TCYB.2019.2934823
10.1016/j.automatica.2016.10.004
10.3390/rs10050685
10.1109/TPAMI.2010.220
10.1007/s00521-015-1916-x
10.1007/s11042-019-07979-2
10.1007/s11432-017-9421-3
10.1007/978-1-4419-1570-2
10.1109/ICASSP.2014.6854900
10.1016/j.neunet.2019.05.009
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2020.3009417
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 3097
ExternalDocumentID 10_1109_TNNLS_2020_3009417
9147058
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China-Shenzhen Robotics Research Center Project; National Natural Science Foundation-Shenzhen Joint Research Program
  grantid: U1613219
  funderid: 10.13039/100017440
– fundername: Key Project of Natural Science Basic Research Plan in Shaanxi Province of China
  grantid: 2019JZ-05
  funderid: 10.13039/501100017596
– fundername: National Natural Science Foundation of China
  grantid: 91648208; 61976175
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c328t-97cc943a3eff65c9cac9544d6d0ec697b0d8ee7db0e2a98c38cae5960aa9e1ca3
IEDL.DBID RIE
ISICitedReferencesCount 80
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000670541500023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Nov 09 10:03:20 EST 2025
Sun Nov 09 08:53:16 EST 2025
Sat Nov 29 01:40:07 EST 2025
Tue Nov 18 22:00:29 EST 2025
Wed Aug 27 02:26:39 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-97cc943a3eff65c9cac9544d6d0ec697b0d8ee7db0e2a98c38cae5960aa9e1ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1710-3818
0000-0001-6981-297X
0000-0002-5028-5839
0000-0003-4026-2956
PMID 32706648
PQID 2548990068
PQPubID 85436
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2020_3009417
proquest_miscellaneous_2427298125
ieee_primary_9147058
proquest_journals_2548990068
crossref_primary_10_1109_TNNLS_2020_3009417
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref14
ref53
ref52
ref55
ref11
ref10
ref17
ref16
bishop (ref2) 2006
ref19
ref18
ref51
ref50
ref46
ref45
ref48
arpit (ref61) 2017
ref47
van rooyen (ref59) 2015
ref41
ref44
ref49
ref8
ref7
ref9
ref3
ref6
ref5
ref40
ref35
ref34
ref37
dua (ref54) 2017
ref36
han (ref58) 2018
ref31
ref30
ref33
ref32
vincent (ref4) 2010; 11
ref1
ref39
ref38
hassanien (ref62) 2015
feng (ref43) 2015; 16
he (ref42) 2011; 33
ref68
ref24
ref67
ref23
ref26
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
ref28
ref27
ref29
palm (ref69) 2012
ref60
References_xml – ident: ref63
  doi: 10.1109/TNSRE.2007.906956
– ident: ref45
  doi: 10.1109/LSP.2015.2428713
– ident: ref31
  doi: 10.1109/TIP.2010.2103949
– ident: ref56
  doi: 10.1109/5.726791
– ident: ref25
  doi: 10.1109/TCSII.2017.2778038
– year: 2015
  ident: ref62
  publication-title: Brain-Computer Interfaces
  doi: 10.1007/978-3-319-10978-7
– ident: ref28
  doi: 10.1016/j.jfranklin.2017.08.014
– ident: ref6
  doi: 10.1109/TCYB.2018.2857815
– ident: ref48
  doi: 10.1007/978-1-4899-3324-9
– ident: ref41
  doi: 10.1109/TGRS.2017.2696262
– ident: ref36
  doi: 10.1016/0925-2312(94)90053-1
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref4
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref23
  doi: 10.1016/j.dsp.2017.01.010
– ident: ref22
  doi: 10.1016/j.sigpro.2015.04.024
– ident: ref20
  doi: 10.1016/j.ins.2016.12.007
– year: 2006
  ident: ref2
  publication-title: Pattern Recognition and Machine Learning
– ident: ref51
  doi: 10.1016/j.eswa.2008.11.053
– ident: ref35
  doi: 10.1109/TSP.2007.896065
– ident: ref34
  doi: 10.1109/MLSP.2017.8168132
– ident: ref38
  doi: 10.1090/S0002-9947-1950-0051437-7
– ident: ref5
  doi: 10.1109/TNNLS.2018.2866622
– ident: ref60
  doi: 10.1109/CVPR.2017.240
– ident: ref65
  doi: 10.1007/s00034-017-0551-4
– ident: ref18
  doi: 10.1109/TNNLS.2019.2935033
– ident: ref9
  doi: 10.1016/j.neucom.2018.09.028
– ident: ref57
  doi: 10.1109/TPAMI.2015.2456899
– ident: ref12
  doi: 10.1109/ACCESS.2018.2885164
– start-page: 8535
  year: 2018
  ident: ref58
  article-title: Co-teaching: Robust training of deep neural networks with extremely noisy labels
  publication-title: Proc 32nd Conf Neural Inf Process Syst (NeurIPS)
– ident: ref37
  doi: 10.1109/3477.740166
– year: 2017
  ident: ref54
  publication-title: UCI Machine Learning Repository
– ident: ref7
  doi: 10.1109/TKDE.2018.2866149
– ident: ref44
  doi: 10.1017/CBO9780511543005
– ident: ref47
  doi: 10.1109/TCYB.2017.2727278
– ident: ref17
  doi: 10.1109/TIE.2019.2931255
– ident: ref26
  doi: 10.1016/j.ins.2018.09.026
– ident: ref53
  doi: 10.1016/0377-0427(90)90260-7
– ident: ref29
  doi: 10.1016/j.patcog.2018.07.011
– ident: ref10
  doi: 10.1109/TCYB.2018.2863020
– ident: ref46
  doi: 10.1007/s11784-017-0474-5
– volume: 16
  start-page: 993
  year: 2015
  ident: ref43
  article-title: Learning with the maximum correntropy criterion induced losses for regression
  publication-title: J Mach Learn Res
– ident: ref13
  doi: 10.1109/ACCESS.2019.2905528
– ident: ref30
  doi: 10.1007/s00521-012-1184-y
– year: 2012
  ident: ref69
  article-title: Prediction as a candidate for learning deep hierarchical models of data
– ident: ref55
  doi: 10.1109/TNNLS.2013.2258936
– ident: ref67
  doi: 10.1007/BF00994018
– ident: ref27
  doi: 10.1016/j.neucom.2017.05.087
– ident: ref68
  doi: 10.1016/j.neucom.2005.12.126
– ident: ref39
  doi: 10.1109/TSMC.2019.2931403
– ident: ref52
  doi: 10.1109/TNNLS.2017.2753725
– ident: ref66
  doi: 10.1109/TSMC.1985.6313426
– ident: ref1
  doi: 10.1109/TNNLS.2017.2716952
– ident: ref50
  doi: 10.1002/9780470608593
– ident: ref40
  doi: 10.1016/j.automatica.2017.09.006
– ident: ref3
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref14
  doi: 10.1007/978-3-030-01313-4_1
– ident: ref64
  doi: 10.1109/TAU.1967.1161901
– ident: ref49
  doi: 10.1109/MLSP.2010.5589239
– ident: ref15
  doi: 10.1109/TCYB.2019.2934823
– ident: ref24
  doi: 10.1016/j.automatica.2016.10.004
– start-page: 10
  year: 2015
  ident: ref59
  article-title: Learning with symmetric label noise: The importance of being unhinged
  publication-title: Proc 28th Int Conf Neural Inf Process Syst (NeurIPS)
– ident: ref11
  doi: 10.3390/rs10050685
– volume: 33
  start-page: 1561
  year: 2011
  ident: ref42
  article-title: Maximum correntropy criterion for robust face recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.220
– ident: ref33
  doi: 10.1007/s00521-015-1916-x
– ident: ref16
  doi: 10.1007/s11042-019-07979-2
– start-page: 233
  year: 2017
  ident: ref61
  article-title: A closer look at memorization in deep networks
  publication-title: Proc 34th Int Conf Mach Learn (ICML)
– ident: ref8
  doi: 10.1007/s11432-017-9421-3
– ident: ref21
  doi: 10.1007/978-1-4419-1570-2
– ident: ref32
  doi: 10.1109/ICASSP.2014.6854900
– ident: ref19
  doi: 10.1016/j.neunet.2019.05.009
SSID ssj0000605649
Score 2.6088185
Snippet As an effective and efficient discriminative learning method, broad learning system (BLS) has received increasing attention due to its outstanding performance...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3083
SubjectTerms Algorithms
Broad learning system (BLS)
Classification
Criteria
incremental learning algorithms
Learning algorithms
Learning systems
Machine learning
maximum correntropy criterion (MCC)
Mean square error methods
Noise standards
Optimization
Outliers (statistics)
Perturbation methods
regression and classification
Robustness
Sensitivity enhancement
Training
Title Broad Learning System Based on Maximum Correntropy Criterion
URI https://ieeexplore.ieee.org/document/9147058
https://www.proquest.com/docview/2548990068
https://www.proquest.com/docview/2427298125
Volume 32
WOSCitedRecordID wos000670541500023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPHhxfeLqKhG8abVNH0nAi4riQRdBhb2VNJmK4Lay7or-eyfZbhEUwVuh01IyM535kpn5AA4oAunSmCiQmPIgoQAVKKtFkCaldulDlknfKHwj-n05GKi7OThqe2EQ0Ref4bG79Gf5tjYTt1V2oqJEhKmch3khxLRXq91PCSkvz3y2y6OMBzwWg1mPTKhOHvr9m3tCg5xAqiumixz5XswFBVzH_PMtJHmOlR8_Zh9trjr_-84VWG6ySnY2NYNVmMNqDTozxgbWOPA6nBLq1pY1Q1Wf2HReOTunUGZZXbFb_fE8nAzZRe2nNo3q10_myBDITOtqAx6vLh8uroOGPyEwMZfjQAljVBLrGMsyS40y2qg0SWxmQzSZEkVoJaKwRYhcK2liaTSmBGm0VhgZHW_CQlVXuAXMESdYnZQWkSCFsVJT2mOLqAgVL4o07kI0W8LcNMPFHcfFS-5BRqhyr4HcaSBvNNCFw_aZ1-lojT-l191Ct5LNGnehN9NU3njfW06gl2Ck637pwn57m_zGHYboCusJySSccAWlN-n272_egSXu6ld8aW4PFsajCe7ConkfP7-N9sgEB3LPm-AXvm_WGg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rS9xAEB_OB-iXnvWBV6-6Bb_ZaLJ57YJfWqlYegbBE-5b2OxORPCS4x7S_ved3csFoSL0WyCbEOaRmd_uzPwATikCqVLrwBMYcy-iAOVJo1Ivjkpl04ckEa5ReJBmmRiN5F0Hvra9MIjois_w3F66s3xT64XdKruQQZT6sViDjTiKeLDs1mp3VHzKzBOX7_Ig4R4P09GqS8aXF8MsG9wTHuQEU205XWDp90KeUsi13D-vgpJjWfnn1-zizXX3_750Bz40eSX7tjSEj9DBahe6K84G1rjwHlwS7laGNWNVH9lyYjn7TsHMsLpit-r303gxZle1m9s0rSd_mKVDIEOtq314uP4xvLrxGgYFT4dczD2Zai2jUIVYlkmspVZakuhMYnzUiUwL3wjE1BQ-ciWFDoVWGBOoUUpioFV4AOtVXeEhMEudYFRUGkQCFdoIRYmPKYLCl7wo4rAHwUqEuW7Gi1uWi-fcwQxf5k4DudVA3migB2ftM5PlcI13V-9ZQbcrGxn3oL_SVN743ywn2EtA0va_9OBLe5s8xx6HqArrBa2JOCELSnDiT2-_-QS2boa3g3zwM_t1BNvcVrO4Qt0-rM-nC_wMm_pl_jSbHjtD_Av9Tdh5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broad+Learning+System+Based+on+Maximum+Correntropy+Criterion&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zheng%2C+Yunfei&rft.au=Chen%2C+Badong&rft.au=Wang%2C+Shiyuan&rft.au=Wang%2C+Weiqun&rft.date=2021-07-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=32&rft.issue=7&rft.spage=3083&rft_id=info:doi/10.1109%2FTNNLS.2020.3009417&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon