A dynamic predictor selection algorithm for predicting stock market movement

Although training a deep network with financial time series is not hard, the important issue is, how much the prediction for the truly new data can be trusted with a trained network. In this study, we propose a dynamic predictor selection algorithm (DPSA) that dynamically evaluates and selects the p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 186; s. 115836
Hlavní autori: Dong, Shuting, Wang, Jianxin, Luo, Hongze, Wang, Haodong, Wu, Fang-Xiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 30.12.2021
Elsevier BV
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Although training a deep network with financial time series is not hard, the important issue is, how much the prediction for the truly new data can be trusted with a trained network. In this study, we propose a dynamic predictor selection algorithm (DPSA) that dynamically evaluates and selects the prediction model (predictor) for stock daily movement trend prediction. We first build an initial set of potential candidate predictors based on the convolutional long short-term memory networks (ConvLSTMs) by using different values of parameters. To evaluate the candidate predictors, we propose a kernel time-weighted fuzzy c-means clustering algorithm (KTFCM), which improves the kernel FCM algorithm (KFCM), to organize the historical samples according to their relevance to the target sample, which makes the historical samples that are closely related to the target sample have more influence on the predictors. Then, we use the well-organized historical samples to evaluate the candidate predictors. The predictor that yields the best accuracy is selected to predict the target sample. The proposed DPSA algorithm takes less than one minute in total for training the networks, evaluating and selecting the predictors, and performing prediction, which greatly shortens the time of the deep learning prediction. We perform the comparative experiments for the proposed DPSA algorithm and seven popular methods. These experiments test a large real-life financial time series data of various stock markets. The experiment results show that DPSA achieves the best accuracy and the highest return compared to the seven other popular methods. •A dynamic predictor selection model for financial prediction is proposed.•The model organizes the historical samples according to their relevance.•A clustering algorithm is proposed to improve prediction performance.•The model needs a few iterations to differentiate each of the predictor.•The training time of this model is greatly shorter than in deep learning methods.
AbstractList Although training a deep network with financial time series is not hard, the important issue is, how much the prediction for the truly new data can be trusted with a trained network. In this study, we propose a dynamic predictor selection algorithm (DPSA) that dynamically evaluates and selects the prediction model (predictor) for stock daily movement trend prediction. We first build an initial set of potential candidate predictors based on the convolutional long short-term memory networks (ConvLSTMs) by using different values of parameters. To evaluate the candidate predictors, we propose a kernel time-weighted fuzzy c-means clustering algorithm (KTFCM), which improves the kernel FCM algorithm (KFCM), to organize the historical samples according to their relevance to the target sample, which makes the historical samples that are closely related to the target sample have more influence on the predictors. Then, we use the well-organized historical samples to evaluate the candidate predictors. The predictor that yields the best accuracy is selected to predict the target sample. The proposed DPSA algorithm takes less than one minute in total for training the networks, evaluating and selecting the predictors, and performing prediction, which greatly shortens the time of the deep learning prediction. We perform the comparative experiments for the proposed DPSA algorithm and seven popular methods. These experiments test a large real-life financial time series data of various stock markets. The experiment results show that DPSA achieves the best accuracy and the highest return compared to the seven other popular methods. •A dynamic predictor selection model for financial prediction is proposed.•The model organizes the historical samples according to their relevance.•A clustering algorithm is proposed to improve prediction performance.•The model needs a few iterations to differentiate each of the predictor.•The training time of this model is greatly shorter than in deep learning methods.
Although training a deep network with financial time series is not hard, the important issue is, how much the prediction for the truly new data can be trusted with a trained network. In this study, we propose a dynamic predictor selection algorithm (DPSA) that dynamically evaluates and selects the prediction model (predictor) for stock daily movement trend prediction. We first build an initial set of potential candidate predictors based on the convolutional long short-term memory networks (ConvLSTMs) by using different values of parameters. To evaluate the candidate predictors, we propose a kernel time-weighted fuzzy c-means clustering algorithm (KTFCM), which improves the kernel FCM algorithm (KFCM), to organize the historical samples according to their relevance to the target sample, which makes the historical samples that are closely related to the target sample have more influence on the predictors. Then, we use the well-organized historical samples to evaluate the candidate predictors. The predictor that yields the best accuracy is selected to predict the target sample. The proposed DPSA algorithm takes less than one minute in total for training the networks, evaluating and selecting the predictors, and performing prediction, which greatly shortens the time of the deep learning prediction. We perform the comparative experiments for the proposed DPSA algorithm and seven popular methods. These experiments test a large real-life financial time series data of various stock markets. The experiment results show that DPSA achieves the best accuracy and the highest return compared to the seven other popular methods.
ArticleNumber 115836
Author Wang, Haodong
Wu, Fang-Xiang
Dong, Shuting
Luo, Hongze
Wang, Jianxin
Author_xml – sequence: 1
  givenname: Shuting
  surname: Dong
  fullname: Dong, Shuting
  email: dst21@mails.tsinghua.edu.cn
  organization: School of Computer Science and Engineering, Central South University, Changsha 410083, China
– sequence: 2
  givenname: Jianxin
  orcidid: 0000-0003-1516-0480
  surname: Wang
  fullname: Wang, Jianxin
  email: jxwang@mail.csu.edu.cn
  organization: School of Computer Science and Engineering, Central South University, Changsha 410083, China
– sequence: 3
  givenname: Hongze
  surname: Luo
  fullname: Luo, Hongze
  email: 174611102@csu.edu.cn
  organization: School of Computer Science and Engineering, Central South University, Changsha 410083, China
– sequence: 4
  givenname: Haodong
  surname: Wang
  fullname: Wang, Haodong
  email: hwang@eecs.csuohio.edu
  organization: Department of Electrical Engineering and Computer Science, Cleveland State University, Cleveland, OH 44115, USA
– sequence: 5
  givenname: Fang-Xiang
  orcidid: 0000-0002-4593-9332
  surname: Wu
  fullname: Wu, Fang-Xiang
  email: faw341@mail.usask.ca
  organization: Division of Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SKS7N5A9, Canada
BookMark eNp9kD1rwzAQhkVJoUnaP9DJ0NmuPmzLgi4h9AsCXbILRT6ncmIrlZSU_PvKOFOHTAfHPXf3PjM06W0PCD0SnBFMyuc2A_-rMoopyQgpKlbeoCmpOEtLLtgETbEoeJoTnt-hmfctxoRjzKdotUjqc686o5ODg9roYF3iYQ86GNsnar-1zoTvLmli_zJh-m3ig9W7pFNuByHp7Ak66MM9um3U3sPDpc7R-u11vfxIV1_vn8vFKtWMViEVOcMKU15yxhRnQDc5UEUYUbrOG91sSlHhXDSCN3kpAAooBeYbAkTxQgs2R0_j2oOzP0fwQbb26Pp4UdJCiJifxdVzRMcp7az3Dhp5cCY-fJYEy0GabOUgTQ7S5CgtQtU_SJugBhXBKbO_jr6MKMTkJwNOem2g11GZizZlbc01_A9Ixooj
CitedBy_id crossref_primary_10_1016_j_ins_2022_02_015
crossref_primary_10_1007_s44443_025_00045_y
crossref_primary_10_3390_systems13030162
crossref_primary_10_3390_ijfs13010028
crossref_primary_10_1016_j_eswa_2022_118312
crossref_primary_10_1016_j_asoc_2024_111550
Cites_doi 10.1109/IJCNN.2017.7966019
10.1109/TII.2018.2811377
10.1109/TNNLS.2016.2522401
10.1016/j.eswa.2017.10.055
10.1016/S0957-4174(02)00034-9
10.1016/j.cie.2012.10.009
10.1109/72.655043
10.1016/j.engappai.2015.01.006
10.1016/j.eswa.2017.02.044
10.1109/ICOMET.2018.8346382
10.1109/TEVC.2008.928176
10.1109/BigData.2017.8258518
10.1016/j.knosys.2014.07.004
10.1016/j.physa.2017.07.017
10.1007/s00500-018-3335-2
10.1145/2939672.2939785
10.1016/j.cor.2004.03.016
10.18653/v1/P18-1183
10.1109/ICIS.2016.7550882
10.1016/j.eswa.2012.01.039
10.1109/TIP.2012.2219547
10.1109/IICSPI.2018.8690416
10.1016/j.asoc.2019.105652
10.1016/j.eswa.2011.02.068
10.1007/978-3-319-13560-1_60
10.1016/j.najef.2018.06.013
10.1371/journal.pone.0180944
10.1016/j.eswa.2016.08.066
10.1016/j.eswa.2019.03.029
10.1016/j.eswa.2019.01.083
10.1016/j.asoc.2006.03.004
10.1016/S0377-2217(01)00259-4
10.1016/j.eswa.2018.03.037
10.1016/j.jksuci.2015.06.002
10.1109/ICCONS.2017.8250694
10.1016/j.eswa.2014.12.003
10.1016/j.neucom.2017.06.010
10.1007/s10489-008-0150-y
10.1016/j.eswa.2017.03.028
10.12988/ces.2015.510286
10.1016/j.eswa.2015.03.017
10.1109/TII.2018.2794389
10.1109/TFUZZ.2016.2574915
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Dec 30, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 30, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.115836
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_115836
S0957417421011982
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-9430a0276733a73e2b4e2a131acd4fcfb698049f97f469ee5e6907b1e1a75c93
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000705533700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Mon Jul 14 10:00:22 EDT 2025
Sat Nov 29 07:08:56 EST 2025
Tue Nov 18 21:18:31 EST 2025
Fri Feb 23 02:40:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Time-weighted
Improved KFCM algorithm
Financial time series
ConvLSTM
Dynamic prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-9430a0276733a73e2b4e2a131acd4fcfb698049f97f469ee5e6907b1e1a75c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4593-9332
0000-0003-1516-0480
PQID 2599115367
PQPubID 2045477
ParticipantIDs proquest_journals_2599115367
crossref_primary_10_1016_j_eswa_2021_115836
crossref_citationtrail_10_1016_j_eswa_2021_115836
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115836
PublicationCentury 2000
PublicationDate 2021-12-30
PublicationDateYYYYMMDD 2021-12-30
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-30
  day: 30
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Deng, Bao, Kong, Ren, Dai (b12) 2017; 28
Podsiadlo, Rybinski (b37) 2016; 66
Tsinaslanidis (b44) 2018; 94
Cervelló-Royo, Guijarro, Michniuk (b7) 2015; 42
Yu, Chen, Wang, Lai (b51) 2009; 13
Lu, Yang, Liu, Pedrycz (b33) 2014; 70
Lee, Ahn, Oh, Kim (b31) 2010; 32
Xu, Y., & Cohen, S. B. (2018). Stock movement prediction from tweets and historical prices. In
LeBaron, Weigend (b30) 1998; 9
Nobre, Neves (b35) 2019; 125
Wang, Choi (b45) 2013
Chen, Hao (b9) 2017; 80
(pp. 14–15). Chennai, India.
Kamble, R. A. (2017). Short and long term stock trend prediction using decision tree. In
Wang, Pedrycz, Liu (b46) 2015; 41
Jiao, Y., & Jakubowicz, J. (2017). Predicting stock movement direction with machine learning: An extensive study on S&P 500 stocks. In
Deng, Wang, Wang, Sun (b14) 2019
Xingjian, S., Chen, Z., Wang, H., Yeung, D. -Y., Wong, W. -K., & Woo, W. -c. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In
Kim, Shin (b28) 2007; 7
Feng, Chen, He, Ding, Sun, Chua (b16) 2018
Jidong, L., & Ran, Z. (2018). Dynamic weighting multi factor stock selection strategy based on XGBoost machine learning algorithm. In
Jia (b23) 2016
(pp. 1371–1375).
(pp. 4705–4713). Boston, Massachusetts, USA.
Taieb, Bontempi, Atiya, Sorjamaa (b41) 2012; 39
(pp. 1419–1426). Anchorage, Alaska.
Leigh, Modani, Purvis, Roberts (b32) 2002; 23
Deboeck (b11) 1994
Kim, So, Jeong, Lee, Kim, Kang (b29) 2019
Tay, Shen (b42) 2002; 141
Xie, Gu, Li, Cao, Tan, Nahavandi (b47) 2013; 64
Batra, R., & Daudpota, S. M. (2018). Integrating StockTwits with sentiment analysis for better prediction of stock price movement. In
Akita, R., Yoshihara, A., Matsubara, T., & Uehara, K. (2016). Deep learning for stock prediction using numerical and textual information. In
Zhang, Zhang, Zhang, Yu, Huang (b52) 2019; 23
Rather, Agarwal, Sastry (b38) 2015; 42
Di Persio, Honchar (b15) 2016; 10
Rout, Dash, Dash, Bisoi (b40) 2015; 29
(pp. 1970–1979). Melbourne, Australia.
Yoshihara, A., Fujikawa, K., Seki, K., & Uehara, K. (2014). Predicting stock market trends by recurrent deep neural networks. In
(pp. 868–872).
Arévalo, García, Guijarro, Peris (b2) 2017; 81
Guresen, Kayakutlu, Daim (b19) 2011; 38
Astakhova, Demidova, Nikulchev (b3) 2015; 8
(pp. 759–969). Gold Coast, Australia.
(pp. 1–6). Okayama, Japan.
(pp. 785–794).
Nelson, D. M., Pereira, A. C., & de Oliveira, R. A. (2017). Stock market’s price movement prediction with LSTM neural networks. In
(pp. 802–810).
Gong, Liang, Shi, Ma, Ma (b18) 2013; 22
Troiano, Villa, Loia (b43) 2018; 14
Deng, Ren, Kong, Bao, Dai (b13) 2017; 25
Zhong, Enke (b53) 2017; 267
Huang, Nakamori, Wang (b21) 2005; 32
Imandoust, Bolandraftar (b22) 2013; 3
Hoseinzade, Haratizadeh (b20) 2019; 129
Rezaee, Jozmaleki, Valipour (b39) 2018; 489
(pp. 1–5). Antwerp, Belgium.
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In
Ghosh, R., & Purkayastha, P. (2017). Forecasting profitability in equity trades using random forest, support vector machine and XGBoost. In
Peng, Jiang (b36) 2015
Bao, Yue, Rao (b4) 2017; 12
Kia, Haratizadeh, Shouraki (b27) 2018; 105
Basak, Kar, Saha, Khaidem, Dey (b5) 2019; 47
Chou, Nguyen (b10) 2018; 14
Cervelló-Royo (10.1016/j.eswa.2021.115836_b7) 2015; 42
Leigh (10.1016/j.eswa.2021.115836_b32) 2002; 23
Tsinaslanidis (10.1016/j.eswa.2021.115836_b44) 2018; 94
Deboeck (10.1016/j.eswa.2021.115836_b11) 1994
10.1016/j.eswa.2021.115836_b26
Rather (10.1016/j.eswa.2021.115836_b38) 2015; 42
Basak (10.1016/j.eswa.2021.115836_b5) 2019; 47
Peng (10.1016/j.eswa.2021.115836_b36) 2015
10.1016/j.eswa.2021.115836_b25
10.1016/j.eswa.2021.115836_b24
Jia (10.1016/j.eswa.2021.115836_b23) 2016
Lu (10.1016/j.eswa.2021.115836_b33) 2014; 70
Deng (10.1016/j.eswa.2021.115836_b12) 2017; 28
Hoseinzade (10.1016/j.eswa.2021.115836_b20) 2019; 129
Kim (10.1016/j.eswa.2021.115836_b28) 2007; 7
Feng (10.1016/j.eswa.2021.115836_b16) 2018
Rout (10.1016/j.eswa.2021.115836_b40) 2015; 29
Huang (10.1016/j.eswa.2021.115836_b21) 2005; 32
LeBaron (10.1016/j.eswa.2021.115836_b30) 1998; 9
Tay (10.1016/j.eswa.2021.115836_b42) 2002; 141
Wang (10.1016/j.eswa.2021.115836_b46) 2015; 41
10.1016/j.eswa.2021.115836_b34
Arévalo (10.1016/j.eswa.2021.115836_b2) 2017; 81
Bao (10.1016/j.eswa.2021.115836_b4) 2017; 12
10.1016/j.eswa.2021.115836_b50
Zhong (10.1016/j.eswa.2021.115836_b53) 2017; 267
Troiano (10.1016/j.eswa.2021.115836_b43) 2018; 14
10.1016/j.eswa.2021.115836_b6
Xie (10.1016/j.eswa.2021.115836_b47) 2013; 64
Wang (10.1016/j.eswa.2021.115836_b45) 2013
10.1016/j.eswa.2021.115836_b8
Podsiadlo (10.1016/j.eswa.2021.115836_b37) 2016; 66
Rezaee (10.1016/j.eswa.2021.115836_b39) 2018; 489
Yu (10.1016/j.eswa.2021.115836_b51) 2009; 13
Nobre (10.1016/j.eswa.2021.115836_b35) 2019; 125
10.1016/j.eswa.2021.115836_b49
10.1016/j.eswa.2021.115836_b48
Astakhova (10.1016/j.eswa.2021.115836_b3) 2015; 8
10.1016/j.eswa.2021.115836_b1
Deng (10.1016/j.eswa.2021.115836_b14) 2019
Deng (10.1016/j.eswa.2021.115836_b13) 2017; 25
Imandoust (10.1016/j.eswa.2021.115836_b22) 2013; 3
Taieb (10.1016/j.eswa.2021.115836_b41) 2012; 39
Kia (10.1016/j.eswa.2021.115836_b27) 2018; 105
Chou (10.1016/j.eswa.2021.115836_b10) 2018; 14
Chen (10.1016/j.eswa.2021.115836_b9) 2017; 80
Di Persio (10.1016/j.eswa.2021.115836_b15) 2016; 10
Lee (10.1016/j.eswa.2021.115836_b31) 2010; 32
Gong (10.1016/j.eswa.2021.115836_b18) 2013; 22
10.1016/j.eswa.2021.115836_b17
Kim (10.1016/j.eswa.2021.115836_b29) 2019
Zhang (10.1016/j.eswa.2021.115836_b52) 2019; 23
Guresen (10.1016/j.eswa.2021.115836_b19) 2011; 38
References_xml – reference: Ghosh, R., & Purkayastha, P. (2017). Forecasting profitability in equity trades using random forest, support vector machine and XGBoost. In
– volume: 64
  start-page: 280
  year: 2013
  end-page: 289
  ident: b47
  article-title: Concurrent control chart patterns recognition with singular spectrum analysis and support vector machine
  publication-title: Computers & Industrial Engineering
– volume: 70
  start-page: 242
  year: 2014
  end-page: 255
  ident: b33
  article-title: The modeling and prediction of time series based on synergy of high-order fuzzy cognitive map and fuzzy C-means clustering
  publication-title: Knowledge-Based Systems
– reference: (pp. 1419–1426). Anchorage, Alaska.
– volume: 94
  start-page: 193
  year: 2018
  end-page: 204
  ident: b44
  article-title: Subsequence dynamic time warping for charting: Bullish and bearish class predictions for NYSE stocks
  publication-title: Expert Systems with Applications
– year: 2018
  ident: b16
  article-title: Enhancing stock movement prediction with adversarial training
– reference: Batra, R., & Daudpota, S. M. (2018). Integrating StockTwits with sentiment analysis for better prediction of stock price movement. In
– reference: (pp. 1371–1375).
– volume: 10
  start-page: 403
  year: 2016
  end-page: 413
  ident: b15
  article-title: Artificial neural networks architectures for stock price prediction: Comparisons and applications
  publication-title: International Journal of Circuits, Systems and Signal Processing
– year: 1994
  ident: b11
  article-title: Trading on the edge: neural, genetic, and fuzzy systems for chaotic financial markets
– reference: (pp. 868–872).
– volume: 42
  start-page: 3234
  year: 2015
  end-page: 3241
  ident: b38
  article-title: Recurrent neural network and a hybrid model for prediction of stock returns
  publication-title: Expert Systems with Applications
– volume: 8
  start-page: 1659
  year: 2015
  end-page: 1677
  ident: b3
  article-title: Forecasting of time series’ groups with application of fuzzy c-mean algorithm
  publication-title: Contemporary Engineering Sciences
– reference: (pp. 14–15). Chennai, India.
– volume: 25
  start-page: 1006
  year: 2017
  end-page: 1012
  ident: b13
  article-title: A hierarchical fused fuzzy deep neural network for data classification
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 489
  start-page: 78
  year: 2018
  end-page: 93
  ident: b39
  article-title: Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange
  publication-title: Physica A. Statistical Mechanics and its Applications
– volume: 14
  start-page: 1551
  year: 2018
  end-page: 3203
  ident: b43
  article-title: Replicating a trading strategy by means of LSTM for financial industry applications
  publication-title: IEEE Transactions on Industrial Informatics
– year: 2013
  ident: b45
  article-title: Market index and stock price direction prediction using machine learning techniques: An empirical study on the KOSPI and HSI
– volume: 28
  start-page: 653
  year: 2017
  end-page: 664
  ident: b12
  article-title: Deep direct reinforcement learning for financial signal representation and trading
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 81
  start-page: 177
  year: 2017
  end-page: 192
  ident: b2
  article-title: A dynamic trading rule based on filtered flag pattern recognition for stock market price forecasting
  publication-title: Expert Systems with Applications
– volume: 23
  start-page: 6979
  year: 2019
  end-page: 6994
  ident: b52
  article-title: A novel method based on FTS with both GA-FCM and multifactor BPNN for stock forecasting
  publication-title: Soft Computing
– volume: 32
  start-page: 2513
  year: 2005
  end-page: 2522
  ident: b21
  article-title: Forecasting stock market movement direction with support vector machine
  publication-title: Computers & Operations Research
– volume: 22
  start-page: 573
  year: 2013
  end-page: 584
  ident: b18
  article-title: Fuzzy C-means clustering with local information and kernel metric for image segmentation
  publication-title: IEEE Transactions on Image Processing
– reference: Akita, R., Yoshihara, A., Matsubara, T., & Uehara, K. (2016). Deep learning for stock prediction using numerical and textual information. In
– reference: Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In
– reference: (pp. 4705–4713). Boston, Massachusetts, USA.
– volume: 38
  start-page: 10389
  year: 2011
  end-page: 10397
  ident: b19
  article-title: Using artificial neural network models in stock market index prediction
  publication-title: Expert Systems with Applications
– volume: 129
  start-page: 273
  year: 2019
  end-page: 285
  ident: b20
  article-title: CNNpred: CNN-based stock market prediction using a diverse set of variables
  publication-title: Expert Systems with Applications
– year: 2015
  ident: b36
  article-title: Leverage financial news to predict stock price movements using word embeddings and deep neural networks
– reference: Kamble, R. A. (2017). Short and long term stock trend prediction using decision tree. In
– reference: (pp. 785–794).
– volume: 7
  start-page: 569
  year: 2007
  end-page: 576
  ident: b28
  article-title: A hybrid approach based on neural networks and genetic algorithms for detecting temporal patterns in stock markets
  publication-title: Applied Soft Computing
– volume: 29
  start-page: 536
  year: 2015
  end-page: 552
  ident: b40
  article-title: Forecasting financial time series using a low complexity recurrent neural network and evolutionary learning approach
  publication-title: Journal of King Saud University - Computer and Information Sciences
– volume: 80
  start-page: 340
  year: 2017
  end-page: 355
  ident: b9
  article-title: A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction
  publication-title: Expert Systems with Applications
– volume: 14
  start-page: 3132
  year: 2018
  end-page: 3142
  ident: b10
  article-title: Forward forecast of stock price using sliding-window metaheuristic-optimized machine learning regression
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 66
  start-page: 219
  year: 2016
  end-page: 233
  ident: b37
  article-title: Financial time series forecasting using rough sets with time-weighted rule voting
  publication-title: Expert Systems with Applications
– volume: 125
  start-page: 181
  year: 2019
  end-page: 194
  ident: b35
  article-title: Combining principal component analysis, discrete wavelet transform and XGBoost to trade in the financial markets
  publication-title: Expert Systems with Applications
– reference: (pp. 1970–1979). Melbourne, Australia.
– volume: 32
  start-page: 364
  year: 2010
  end-page: 377
  ident: b31
  article-title: Using rough set to support investment strategies of real-time trading in futures market
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
– volume: 23
  start-page: 155
  year: 2002
  end-page: 159
  ident: b32
  article-title: Stock market trading rule discovery using technical charting heuristics
  publication-title: Expert Systems with Applications
– reference: (pp. 802–810).
– year: 2019
  ident: b14
  article-title: A gradient boosting decision tree approach for insider trading identification: An empirical model evaluation of China stock market
  publication-title: Applied Soft Computing
– reference: Xingjian, S., Chen, Z., Wang, H., Yeung, D. -Y., Wong, W. -K., & Woo, W. -c. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In
– year: 2016
  ident: b23
  article-title: Investigation into the effectiveness of long short term memory networks for stock price prediction
– reference: (pp. 1–6). Okayama, Japan.
– volume: 41
  start-page: 17
  year: 2015
  end-page: 24
  ident: b46
  article-title: Time series long-term forecasting model based on information granules and fuzzy clustering
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 12
  start-page: 1
  year: 2017
  end-page: 24
  ident: b4
  article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory
  publication-title: PLoS One
– reference: Yoshihara, A., Fujikawa, K., Seki, K., & Uehara, K. (2014). Predicting stock market trends by recurrent deep neural networks. In
– reference: Nelson, D. M., Pereira, A. C., & de Oliveira, R. A. (2017). Stock market’s price movement prediction with LSTM neural networks. In
– reference: (pp. 759–969). Gold Coast, Australia.
– volume: 9
  start-page: 213
  year: 1998
  end-page: 220
  ident: b30
  article-title: A bootstrap evaluation of the effect of data splitting on financial time series
  publication-title: IEEE Transactions on Neural Networks
– reference: Xu, Y., & Cohen, S. B. (2018). Stock movement prediction from tweets and historical prices. In
– volume: 42
  start-page: 5963
  year: 2015
  end-page: 5975
  ident: b7
  article-title: Stock market trading rule based on pattern recognition and technical analysis: Forecasting the DJIA index with intraday data
  publication-title: Expert Systems with Applications
– volume: 47
  start-page: 552
  year: 2019
  end-page: 567
  ident: b5
  article-title: Predicting the direction of stock market prices using tree-based classifiers
  publication-title: The North American Journal of Economics and Finance
– volume: 141
  start-page: 641
  year: 2002
  end-page: 659
  ident: b42
  article-title: Economic and financial prediction using rough sets model
  publication-title: European Journal of Operational Research
– reference: (pp. 1–5). Antwerp, Belgium.
– volume: 39
  start-page: 7067
  year: 2012
  end-page: 7083
  ident: b41
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Systems with Applications
– volume: 13
  start-page: 87
  year: 2009
  end-page: 102
  ident: b51
  article-title: Evolving least squares support vector machines for stock market trend mining
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 267
  start-page: 152
  year: 2017
  end-page: 168
  ident: b53
  article-title: A comprehensive cluster and classification mining procedure for daily stock market return forecasting
  publication-title: Neurocomputing
– volume: 3
  start-page: 605
  year: 2013
  end-page: 610
  ident: b22
  article-title: Application of k-nearest neighbor (KNN) approach for predicting economic events: Theoretical background
  publication-title: International Journal of Engineering Research and Applications
– reference: Jiao, Y., & Jakubowicz, J. (2017). Predicting stock movement direction with machine learning: An extensive study on S&P 500 stocks. In
– year: 2019
  ident: b29
  article-title: HATS: A hierarchical graph attention network for stock movement prediction
– reference: Jidong, L., & Ran, Z. (2018). Dynamic weighting multi factor stock selection strategy based on XGBoost machine learning algorithm. In
– volume: 105
  start-page: 159
  year: 2018
  end-page: 173
  ident: b27
  article-title: A hybrid supervised semi-supervised graph-based model to predict one-day ahead movement of global stock markets and commodity prices
  publication-title: Expert Systems with Applications
– ident: 10.1016/j.eswa.2021.115836_b34
  doi: 10.1109/IJCNN.2017.7966019
– volume: 14
  start-page: 1551
  issue: 7
  year: 2018
  ident: 10.1016/j.eswa.2021.115836_b43
  article-title: Replicating a trading strategy by means of LSTM for financial industry applications
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2018.2811377
– volume: 28
  start-page: 653
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2021.115836_b12
  article-title: Deep direct reinforcement learning for financial signal representation and trading
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2522401
– volume: 10
  start-page: 403
  year: 2016
  ident: 10.1016/j.eswa.2021.115836_b15
  article-title: Artificial neural networks architectures for stock price prediction: Comparisons and applications
  publication-title: International Journal of Circuits, Systems and Signal Processing
– volume: 94
  start-page: 193
  year: 2018
  ident: 10.1016/j.eswa.2021.115836_b44
  article-title: Subsequence dynamic time warping for charting: Bullish and bearish class predictions for NYSE stocks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.10.055
– volume: 23
  start-page: 155
  issue: 2
  year: 2002
  ident: 10.1016/j.eswa.2021.115836_b32
  article-title: Stock market trading rule discovery using technical charting heuristics
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(02)00034-9
– volume: 3
  start-page: 605
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2021.115836_b22
  article-title: Application of k-nearest neighbor (KNN) approach for predicting economic events: Theoretical background
  publication-title: International Journal of Engineering Research and Applications
– volume: 64
  start-page: 280
  year: 2013
  ident: 10.1016/j.eswa.2021.115836_b47
  article-title: Concurrent control chart patterns recognition with singular spectrum analysis and support vector machine
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2012.10.009
– volume: 9
  start-page: 213
  issue: 1
  year: 1998
  ident: 10.1016/j.eswa.2021.115836_b30
  article-title: A bootstrap evaluation of the effect of data splitting on financial time series
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.655043
– volume: 41
  start-page: 17
  year: 2015
  ident: 10.1016/j.eswa.2021.115836_b46
  article-title: Time series long-term forecasting model based on information granules and fuzzy clustering
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2015.01.006
– volume: 80
  start-page: 340
  year: 2017
  ident: 10.1016/j.eswa.2021.115836_b9
  article-title: A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.02.044
– ident: 10.1016/j.eswa.2021.115836_b6
  doi: 10.1109/ICOMET.2018.8346382
– year: 2013
  ident: 10.1016/j.eswa.2021.115836_b45
– volume: 13
  start-page: 87
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2021.115836_b51
  article-title: Evolving least squares support vector machines for stock market trend mining
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.928176
– ident: 10.1016/j.eswa.2021.115836_b24
  doi: 10.1109/BigData.2017.8258518
– volume: 70
  start-page: 242
  year: 2014
  ident: 10.1016/j.eswa.2021.115836_b33
  article-title: The modeling and prediction of time series based on synergy of high-order fuzzy cognitive map and fuzzy C-means clustering
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2014.07.004
– volume: 489
  start-page: 78
  year: 2018
  ident: 10.1016/j.eswa.2021.115836_b39
  article-title: Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange
  publication-title: Physica A. Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2017.07.017
– volume: 23
  start-page: 6979
  year: 2019
  ident: 10.1016/j.eswa.2021.115836_b52
  article-title: A novel method based on FTS with both GA-FCM and multifactor BPNN for stock forecasting
  publication-title: Soft Computing
  doi: 10.1007/s00500-018-3335-2
– ident: 10.1016/j.eswa.2021.115836_b17
– year: 1994
  ident: 10.1016/j.eswa.2021.115836_b11
– ident: 10.1016/j.eswa.2021.115836_b8
  doi: 10.1145/2939672.2939785
– volume: 32
  start-page: 2513
  issue: 10
  year: 2005
  ident: 10.1016/j.eswa.2021.115836_b21
  article-title: Forecasting stock market movement direction with support vector machine
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2004.03.016
– ident: 10.1016/j.eswa.2021.115836_b49
  doi: 10.18653/v1/P18-1183
– ident: 10.1016/j.eswa.2021.115836_b1
  doi: 10.1109/ICIS.2016.7550882
– volume: 39
  start-page: 7067
  issue: 8
  year: 2012
  ident: 10.1016/j.eswa.2021.115836_b41
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.01.039
– volume: 22
  start-page: 573
  issue: 2
  year: 2013
  ident: 10.1016/j.eswa.2021.115836_b18
  article-title: Fuzzy C-means clustering with local information and kernel metric for image segmentation
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2012.2219547
– ident: 10.1016/j.eswa.2021.115836_b25
  doi: 10.1109/IICSPI.2018.8690416
– ident: 10.1016/j.eswa.2021.115836_b48
– year: 2019
  ident: 10.1016/j.eswa.2021.115836_b14
  article-title: A gradient boosting decision tree approach for insider trading identification: An empirical model evaluation of China stock market
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105652
– volume: 38
  start-page: 10389
  issue: 8
  year: 2011
  ident: 10.1016/j.eswa.2021.115836_b19
  article-title: Using artificial neural network models in stock market index prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.02.068
– year: 2019
  ident: 10.1016/j.eswa.2021.115836_b29
– ident: 10.1016/j.eswa.2021.115836_b50
  doi: 10.1007/978-3-319-13560-1_60
– volume: 47
  start-page: 552
  year: 2019
  ident: 10.1016/j.eswa.2021.115836_b5
  article-title: Predicting the direction of stock market prices using tree-based classifiers
  publication-title: The North American Journal of Economics and Finance
  doi: 10.1016/j.najef.2018.06.013
– volume: 12
  start-page: 1
  issue: 7
  year: 2017
  ident: 10.1016/j.eswa.2021.115836_b4
  article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0180944
– volume: 66
  start-page: 219
  year: 2016
  ident: 10.1016/j.eswa.2021.115836_b37
  article-title: Financial time series forecasting using rough sets with time-weighted rule voting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.08.066
– year: 2018
  ident: 10.1016/j.eswa.2021.115836_b16
– volume: 129
  start-page: 273
  year: 2019
  ident: 10.1016/j.eswa.2021.115836_b20
  article-title: CNNpred: CNN-based stock market prediction using a diverse set of variables
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.03.029
– volume: 125
  start-page: 181
  year: 2019
  ident: 10.1016/j.eswa.2021.115836_b35
  article-title: Combining principal component analysis, discrete wavelet transform and XGBoost to trade in the financial markets
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.01.083
– volume: 7
  start-page: 569
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2021.115836_b28
  article-title: A hybrid approach based on neural networks and genetic algorithms for detecting temporal patterns in stock markets
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2006.03.004
– year: 2015
  ident: 10.1016/j.eswa.2021.115836_b36
– volume: 141
  start-page: 641
  issue: 3
  year: 2002
  ident: 10.1016/j.eswa.2021.115836_b42
  article-title: Economic and financial prediction using rough sets model
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(01)00259-4
– volume: 105
  start-page: 159
  year: 2018
  ident: 10.1016/j.eswa.2021.115836_b27
  article-title: A hybrid supervised semi-supervised graph-based model to predict one-day ahead movement of global stock markets and commodity prices
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.03.037
– volume: 29
  start-page: 536
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2021.115836_b40
  article-title: Forecasting financial time series using a low complexity recurrent neural network and evolutionary learning approach
  publication-title: Journal of King Saud University - Computer and Information Sciences
  doi: 10.1016/j.jksuci.2015.06.002
– year: 2016
  ident: 10.1016/j.eswa.2021.115836_b23
– ident: 10.1016/j.eswa.2021.115836_b26
  doi: 10.1109/ICCONS.2017.8250694
– volume: 42
  start-page: 3234
  issue: 6
  year: 2015
  ident: 10.1016/j.eswa.2021.115836_b38
  article-title: Recurrent neural network and a hybrid model for prediction of stock returns
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.12.003
– volume: 267
  start-page: 152
  year: 2017
  ident: 10.1016/j.eswa.2021.115836_b53
  article-title: A comprehensive cluster and classification mining procedure for daily stock market return forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.010
– volume: 32
  start-page: 364
  issue: 3
  year: 2010
  ident: 10.1016/j.eswa.2021.115836_b31
  article-title: Using rough set to support investment strategies of real-time trading in futures market
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
  doi: 10.1007/s10489-008-0150-y
– volume: 81
  start-page: 177
  year: 2017
  ident: 10.1016/j.eswa.2021.115836_b2
  article-title: A dynamic trading rule based on filtered flag pattern recognition for stock market price forecasting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.03.028
– volume: 8
  start-page: 1659
  issue: 35
  year: 2015
  ident: 10.1016/j.eswa.2021.115836_b3
  article-title: Forecasting of time series’ groups with application of fuzzy c-mean algorithm
  publication-title: Contemporary Engineering Sciences
  doi: 10.12988/ces.2015.510286
– volume: 42
  start-page: 5963
  issue: 14
  year: 2015
  ident: 10.1016/j.eswa.2021.115836_b7
  article-title: Stock market trading rule based on pattern recognition and technical analysis: Forecasting the DJIA index with intraday data
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.03.017
– volume: 14
  start-page: 3132
  issue: 7
  year: 2018
  ident: 10.1016/j.eswa.2021.115836_b10
  article-title: Forward forecast of stock price using sliding-window metaheuristic-optimized machine learning regression
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2018.2794389
– volume: 25
  start-page: 1006
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2021.115836_b13
  article-title: A hierarchical fused fuzzy deep neural network for data classification
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2016.2574915
SSID ssj0017007
Score 2.406757
Snippet Although training a deep network with financial time series is not hard, the important issue is, how much the prediction for the truly new data can be trusted...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115836
SubjectTerms Algorithms
Clustering
ConvLSTM
Deep learning
Dynamic prediction
Financial time series
Improved KFCM algorithm
Kernels
Machine learning
Performance prediction
Prediction models
Stock exchanges
Time series
Time-weighted
Training
Title A dynamic predictor selection algorithm for predicting stock market movement
URI https://dx.doi.org/10.1016/j.eswa.2021.115836
https://www.proquest.com/docview/2599115367
Volume 186
WOSCitedRecordID wos000705533700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbtpode-i5JmwYdejMOtixb1nEpKdsQQqF72JuRbanZJesNa2-69Nd39LCcbElIDrkYY0aD8HwajUbzQOgrq5XI4roKs5qrkCpYijxRNISlVPEojQSxicJn7Pw8n834T3dj2pp2Aqxp8u2WXz2pqOEbCFunzj5C3J4pfIB3EDo8QezwfJDgx0Ftu8zr_P96rp3yQWu63ZjI48vfq_W8u1ia-EJHYX0KoBmDpUmCDpar6yEkZuGj9eS6c6Wf-6S4G9ff3iR2Qb6_LjZdvy8aj72L_QU8budDINDG-GonMOiv3KWdCDg0OxbOM0FiU_8wuuViZCGNbReeQdve1Jdgj-a2AMp_qtx6FRbHsv2j60OR-Hggvl03e2c_81GGfQDbotA8Cs2jsDyeoz3CUp6P0N74x8ns1N87scgm2Pczd2lWNiJwdyZ3mTI7m7qxVKZv0Ct3xMBjC4236Jls3qHXffsO7LT5e3Q2xg4p2CMFe6RgjxQMSMEDUrBBCrZIwT1SPqDp95Ppt0nommuEVULyLtRl90VEWMaSRLBEkpJKIuIkFlVNVaXKjOdwelScKZpxKVOp_ShlLGPB0oonH9GoWTVyH2HdGTnPgIIKQTkpBStlqUitmL6yJvQAxf1vKipXeF73P7ks7hbQAQr8mCtbduVe6rT_-4UzHK1BWACY7h132IuqcCu4LUgKRyawAzL26VGT-IxeDovgEI269UZ-QS-q627ero8c0P4BA1-bbg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+predictor+selection+algorithm+for+predicting+stock+market+movement&rft.jtitle=Expert+systems+with+applications&rft.au=Dong%2C+Shuting&rft.au=Wang%2C+Jianxin&rft.au=Luo%2C+Hongze&rft.au=Wang%2C+Haodong&rft.date=2021-12-30&rft.issn=0957-4174&rft.volume=186&rft.spage=115836&rft_id=info:doi/10.1016%2Fj.eswa.2021.115836&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2021_115836
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon