A new multi-objective optimization algorithm combined with opposition-based learning
•A new multi-objective optimization method used OBL strategy, WOA and DE algorithms•It combines DE and the OBL to improve the performance of the WOA•The MWDEO results outperformed all other algorithms in most of the test problems•32 multi-objective test problems are used in the experiments and CEC20...
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 165; s. 113844 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Elsevier Ltd
01.03.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A new multi-objective optimization method used OBL strategy, WOA and DE algorithms•It combines DE and the OBL to improve the performance of the WOA•The MWDEO results outperformed all other algorithms in most of the test problems•32 multi-objective test problems are used in the experiments and CEC2017 problems
The optimization problems are divided into a single objective and multi-objective. Single objective optimization has only one objective function; whereas, multi-objective optimization has multiple objective functions that generate the Pareto set; therefore, solving a multi-objective problem is a challenging problem. This paper presents a new multi-objective optimization method (called MWDEO) based on improved whale optimization algorithm (WOA) by combining the differential evolution (DE) algorithm and the opposition-based learning (OBL). The MWDEO uses the WOA to perform a global exploration, whereas DE is used to exploit the search space; while the OBL is applied to improve the exploration and exploitation by generating the opposite values. The proposed algorithm is evaluated using 32 multi-objective test problems besides a set of benchmark problems of CEC’2017. The experimental results are compared with nine state-of-the-art multi-objective methods. The analysis of the results showed that the proposed MWDEO outperformed all other algorithms in most of the test problems which indicates that the proposed MWDEO is competitive and effective in solving different types of multi-objective problems. |
|---|---|
| AbstractList | The optimization problems are divided into a single objective and multi-objective. Single objective optimization has only one objective function; whereas, multi-objective optimization has multiple objective functions that generate the Pareto set; therefore, solving a multi-objective problem is a challenging problem. This paper presents a new multi-objective optimization method (called MWDEO) based on improved whale optimization algorithm (WOA) by combining the differential evolution (DE) algorithm and the opposition-based learning (OBL). The MWDEO uses the WOA to perform a global exploration, whereas DE is used to exploit the search space; while the OBL is applied to improve the exploration and exploitation by generating the opposite values. The proposed algorithm is evaluated using 32 multi-objective test problems besides a set of benchmark problems of CEC'2017. The experimental results are compared with nine state-of-the-art multi-objective methods. The analysis of the results showed that the proposed MWDEO outperformed all other algorithms in most of the test problems which indicates that the proposed MWDEO is competitive and effective in solving different types of multi-objective problems. •A new multi-objective optimization method used OBL strategy, WOA and DE algorithms•It combines DE and the OBL to improve the performance of the WOA•The MWDEO results outperformed all other algorithms in most of the test problems•32 multi-objective test problems are used in the experiments and CEC2017 problems The optimization problems are divided into a single objective and multi-objective. Single objective optimization has only one objective function; whereas, multi-objective optimization has multiple objective functions that generate the Pareto set; therefore, solving a multi-objective problem is a challenging problem. This paper presents a new multi-objective optimization method (called MWDEO) based on improved whale optimization algorithm (WOA) by combining the differential evolution (DE) algorithm and the opposition-based learning (OBL). The MWDEO uses the WOA to perform a global exploration, whereas DE is used to exploit the search space; while the OBL is applied to improve the exploration and exploitation by generating the opposite values. The proposed algorithm is evaluated using 32 multi-objective test problems besides a set of benchmark problems of CEC’2017. The experimental results are compared with nine state-of-the-art multi-objective methods. The analysis of the results showed that the proposed MWDEO outperformed all other algorithms in most of the test problems which indicates that the proposed MWDEO is competitive and effective in solving different types of multi-objective problems. |
| ArticleNumber | 113844 |
| Author | Abd Elaziz, Mohamed Ewees, Ahmed A. Oliva, Diego |
| Author_xml | – sequence: 1 givenname: Ahmed A. orcidid: 0000-0002-0666-7055 surname: Ewees fullname: Ewees, Ahmed A. email: ewees@du.edu.eg organization: Department of Computer, Damietta University, Damietta, Egypt – sequence: 2 givenname: Mohamed orcidid: 0000-0002-7682-6269 surname: Abd Elaziz fullname: Abd Elaziz, Mohamed email: abd_el_aziz_m@yahoo.com organization: Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt – sequence: 3 givenname: Diego surname: Oliva fullname: Oliva, Diego email: diego.oliva@cucei.udg.mx organization: IN3 - Computer Science Department, Universitat Oberta de Catalunya, Castelldefels, Spain |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Lnrcm2Y_sgpdS_IKCl3oOs9lpzbKb1CRt0V9vaj156GmY4X1mmGdCRsYaJOSW0RmjrLzvZugPMOOUxwHLqjy_IGNWiSwtRZ2NyJjWhUhzJvIrMvG-o5QJSsWYrOaJwUMy7PqgU9t0qILeY2K3QQ_6G4K2JoF-Y50OH0Oi7NBog21yiG0Mba3Xx0jagI_THsEZbTbX5HINvcebvzol70-Pq8VLunx7fl3Ml6nKeBXSmgNy2rCyyauWgWpKCjnDAluqaJbVWJbAWyEKJdhaMeQCBC8ENABFQanKpuTutHfr7OcOfZCd3TkTT0qeV4KVdcWKmKpOKeWs9w7XUunw-1lwoHvJqDw6lJ08OpRHh_LkMKL8H7p1egD3dR56OEEYX99rdNIrjUZhq13UK1urz-E_49yOFA |
| CitedBy_id | crossref_primary_10_1002_cpe_6630 crossref_primary_10_3390_sym14122568 crossref_primary_10_1007_s10586_022_03633_z crossref_primary_10_1007_s11227_021_03770_z crossref_primary_10_1016_j_cie_2023_109425 crossref_primary_10_1007_s40192_025_00412_7 crossref_primary_10_1016_j_aei_2025_103512 crossref_primary_10_1109_TEVC_2023_3250350 crossref_primary_10_1016_j_asoc_2025_113791 crossref_primary_10_3389_fgene_2021_644945 crossref_primary_10_1080_15397734_2024_2389109 crossref_primary_10_3390_biomimetics9090576 crossref_primary_10_3390_math12172708 crossref_primary_10_1049_gtd2_12400 crossref_primary_10_1016_j_heliyon_2024_e31771 crossref_primary_10_1007_s10489_022_03786_9 crossref_primary_10_1016_j_ress_2025_110922 crossref_primary_10_1016_j_ins_2022_08_035 crossref_primary_10_1109_ACCESS_2021_3067729 crossref_primary_10_1007_s10489_022_03808_6 crossref_primary_10_1007_s10586_025_05223_1 crossref_primary_10_3390_diagnostics13081422 crossref_primary_10_1007_s12008_025_02280_z crossref_primary_10_1016_j_eti_2025_104219 crossref_primary_10_1016_j_measurement_2022_110813 crossref_primary_10_3390_biomimetics10010047 crossref_primary_10_1016_j_eswa_2022_116895 crossref_primary_10_1177_16878132221098898 crossref_primary_10_1016_j_engappai_2024_108560 crossref_primary_10_1007_s12530_022_09461_1 crossref_primary_10_1016_j_egyr_2024_11_028 crossref_primary_10_1016_j_asoc_2021_107582 crossref_primary_10_1007_s42235_023_00336_y crossref_primary_10_1016_j_jnlest_2025_100334 crossref_primary_10_1007_s12652_021_03391_7 |
| Cites_doi | 10.1016/j.neucom.2020.01.022 10.1007/s00500-018-3199-5 10.1109/TEVC.2007.892759 10.1016/j.advengsoft.2016.01.008 10.1007/s11042-018-5840-9 10.1109/TEVC.2012.2204264 10.1016/j.cma.2004.09.007 10.1109/4235.585893 10.1016/j.cma.2005.09.006 10.1016/j.ejor.2006.08.008 10.1016/j.fss.2018.11.017 10.1016/j.eswa.2018.06.023 10.1109/ICNN.1995.488968 10.1016/j.cor.2009.02.006 10.1016/j.eswa.2017.04.023 10.1016/j.eswa.2015.10.039 10.1016/j.asoc.2018.09.014 10.1007/s10489-016-0825-8 10.1109/MCDM.2009.4938830 10.1016/j.asoc.2014.08.026 10.1016/j.apenergy.2017.05.029 10.1016/j.cie.2019.01.055 10.1016/j.cor.2015.04.003 10.1162/106365600568202 10.1016/j.neucom.2017.04.053 10.1007/s40747-017-0039-7 10.1016/j.eswa.2018.12.003 10.1007/s00500-010-0591-1 10.1109/TEVC.2016.2519378 10.1016/j.eswa.2015.07.043 10.1016/j.swevo.2019.02.003 10.1109/TEVC.2014.2378512 10.1016/j.amc.2019.124821 10.1007/s10489-017-1019-8 10.1007/s00158-019-02302-x 10.1109/TEVC.2009.2033671 10.1162/106365601750190406 10.1016/j.matcom.2019.06.017 10.1109/TEVC.2013.2281534 10.1109/TEVC.2013.2281535 10.1016/j.engappai.2019.103370 10.1109/CEC.2006.1688554 10.1109/TSMCA.2007.909595 10.1016/j.knosys.2017.07.018 10.1109/TEVC.2012.2227145 10.1109/TEVC.2007.894200 10.1007/s11042-017-4803-x 10.1109/TEVC.2008.919004 10.1016/j.neucom.2014.04.068 10.1109/TEVC.2010.2059031 10.1109/4235.996017 10.1162/evco.1994.2.3.221 10.1109/CEC.2011.5949792 10.1016/j.eswa.2019.113103 10.1016/j.eswa.2019.01.047 10.1109/TEVC.2014.2308305 10.1109/TEVC.2008.925798 10.1016/j.cnsns.2012.05.010 10.1023/A:1008202821328 10.1109/ACCESS.2020.2971249 10.1007/s13369-018-3155-9 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Mar 1, 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Mar 1, 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2020.113844 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2020_113844 S0957417420306539 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c328t-92ae20b16b48d1acb60a41e5ed0c0339e66a2d775c71fc1e27a7257abaa5500c3 |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000602359000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Fri Jul 25 02:53:04 EDT 2025 Sat Nov 29 07:07:52 EST 2025 Tue Nov 18 20:55:30 EST 2025 Fri Feb 23 02:46:02 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Differential evolution Multi-objective optimization Whale optimization algorithm Opposition-based learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-92ae20b16b48d1acb60a41e5ed0c0339e66a2d775c71fc1e27a7257abaa5500c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7682-6269 0000-0002-0666-7055 |
| PQID | 2487169815 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2487169815 crossref_citationtrail_10_1016_j_eswa_2020_113844 crossref_primary_10_1016_j_eswa_2020_113844 elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113844 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 2021-03-00 20210301 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Ewees, Abd Elaziz (b0115) 2020; 88 Li, Zhang, Kwong, Li, Wang (b0200) 2013; 18 Wang, Purshouse, Fleming (b0365) 2012; 17 Cai, X., Sun, H., Zhu, C., Li, Z., & Zhang, Q. (2018). Locating the boundaries of pareto fronts: A many-objective evolutionary algorithm based on corner solution search. arXiv preprint arXiv:1806.02967. Das, Abraham, Konar (b0045) 2008; 38 Mirjalili, Saremi, Mirjalili, Coelho (b0260) 2016; 47 El Aziz, Ewees, Hassanien (b0085) 2017; 83 Ewees, Elaziz, Houssein (b0125) 2018; 112 Rahnamayan, Tizhoosh, Salama (b0310) 2008; 12 Shi, Zhong, Tang, Cheng (b0325) 2020; 387 Lechunga (b0180) 2002 Holland, Goldberg (b0150) 1989 Gandomi, Alavi (b0135) 2012; 17 Nebro, A.J., Durillo, J.J., Garcia-Nieto, J., Coello, C.C., Luna, F., & Alba, E. (2009). Smpso: A new pso-based metaheuristic for multi-objective optimization. In Computational intelligence in miulti-criteria decision-making, 2009. mcdm’09. ieee symposium on (pp. 66–73). IEEE. Oliva, Cuevas (b0280) 2017 Lin, Chen, Zhan, Chen, Coello, Yin, Lin, Zhang (b0210) 2016; 20 Li, Deb, Zhang, Suganthan, Chen (b0190) 2019; 46 Deb, Jain (b0070) 2014; 18 Ibrahim, Oliva, Ewees, Lu (b0160) 2017 Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization (pso). In: Proc. IEEE International Conference on Neural Networks, Perth, Australia (pp. 1942–1948). Li, Zhang (b0195) 2009; 13 Zapotecas-Martínez, García-Nájera, López-Jaimes (b0390) 2019; 120 Deb, Beyer (b0065) 2001; 9 Mafarja, Mirjalili (b0230) 2017 Gong, Cai, Ling (b0140) 2010; 15 Zhang, Liu, Tsang, Virginas (b0400) 2010; 14 Abdel-Basset, M., Wang, G.-G., Sangaiah, A.K., & Rushdy, E. (2017). Krill herd algorithm based on cuckoo search for solving engineering optimization problems. Multimedia Tools and Applications, (pp. 1–24). Mirjalili, Lewis (b0255) 2016; 95 Beume, Naujoks, Emmerich (b0020) 2007; 181 Zadeh, Sayadi, Kosari (b0385) 2019; 74 Mirjalili, Jangir, Saremi (b0245) 2017; 46 Srinivas, Deb (b0335) 1994; 2 Ergezer, M., & Simon, D. (2011). Oppositional biogeography-based optimization for combinatorial problems, (pp. 1496–1503). Storn, Price (b0340) 1997; 11 Yang, Li, Liu, Zheng (b0375) 2013; 17 Mane, Rao (b0235) 2017; 12 Tongur, Ülker (b0350) 2016 Zouache, Arby, Nouioua, Abdelaziz (b0425) 2019; 129 Neggaz, Ewees, Abd Elaziz, Mafarja (b0275) 2020; 145 Deb (b0055) 2001; volume 16 Karaboga, Basturk (b0170) 2007 Mirjalili, Jangir, Mirjalili, Saremi, Trivedi (b0240) 2017; 134 Abd Elaziz, Oliva, Ewees, Xiong (b0005) 2019; 125 Wolpert, Macready (b0370) 1997; 1 Fleischer (b0130) 2003 Mirjalili, Mirjalili, Saremi, Faris, Aljarah (b0265) 2018; 48 Santana-Quintero, Hernández-Díaz, Molina, Coello, Caballero (b0315) 2010; 37 Zitzler, Deb, Thiele (b0420) 2000; 8 Cheng, Jin, Olhofer, Sendhoff (b0030) 2016; 20 Huband, Barone, While, Hingston (b0155) 2005 Das, Suganthan (b0050) 2011; 15 El Aziz, M.A., Ewees, A.A., & Hassanien, A.E. (2018a). Multi-objective whale optimization algorithm for content-based image retrieval. Multimedia Tools and Applications, (pp. 1–38). Li, Wang, Yan, Li (b0205) 2015; 42 Cheng, Li, Tian, Zhang, Yang, Jin, Yao (b0035) 2017; 3 Hacibeyoglu, Alaykiran, Acilar, Tongur, Ulker (b0145) 2018; 43 Panagant, Bureerat, Tai (b0295) 2019; 60 Shi, Wang, Tang, Zhong (b0320) 2020; 381 Peng, Hu, Shi, Luo, Huang, Ghosh, Huang (b0300) 2020; 369 Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., & Tiwari, S. (2008). Multiobjective optimization test instances for the cec 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, technical report, 264. Rahnamayan, S., Tizhoosh, H.R., & Salama, M.M. (2006). Opposition-based differential evolution algorithms, (pp. 2010–2017). Jain, Deb (b0165) 2013; 18 Lwin, Qu, Kendall (b0220) 2014; 24 Coello, Lamont, Van Veldhuizen (b0040) 2007; volume 5 El Aziz, Ewees, Hassanien, Mudhsh, Xiong (b0095) 2018 Elaziz, Ewees, Ibrahim, Lu (b0100) 2020; 168 Ewees, Abd Elaziz, Al-Qaness, Khalil, Kim (b0120) 2020; 8 Yang, Deb (b0380) 2009 Lee, Geem (b0185) 2005; 194 Tongur, Ülker (b0355) 2019; 23 Lin, Zhu, Huang, Chen, Ming, Yu (b0215) 2015; 62 Zhang, Tian, Cheng, Jin (b0410) 2015; 19 Onwubolu, Davendra (b0290) 2009; volume 175 Zhang, Tian, Jin (b0415) 2014; 19 Tizhoosh (b0345) 2005; vol. 1 Ma, Liu, Qi, Gong, Yin, Li, Jiao, Wu (b0225) 2014; 146 Deb, Thiele, Laumanns, Zitzler (b0080) 2005 Mirjalili, Lewis (b0250) 2016; 95 Zhang, Li (b0395) 2007; 11 Becerra, Coello (b0015) 2006; 195 Deb, Pratap, Agarwal, Meyarivan (b0075) 2002; 6 Oliva, El Aziz, Hassanien (b0285) 2017; 200 Deb, Agrawal, Pratap, Meyarivan (b0060) 2000 Ergezer, Sikder (b0105) 2011 Simon (b0330) 2008; 12 Vitaliy, F. (2006). Differential evolution–in search of solutions. Huband (10.1016/j.eswa.2020.113844_b0155) 2005 Shi (10.1016/j.eswa.2020.113844_b0320) 2020; 381 Zhang (10.1016/j.eswa.2020.113844_b0400) 2010; 14 Tongur (10.1016/j.eswa.2020.113844_b0355) 2019; 23 Gong (10.1016/j.eswa.2020.113844_b0140) 2010; 15 Deb (10.1016/j.eswa.2020.113844_b0055) 2001; volume 16 10.1016/j.eswa.2020.113844_b0110 Onwubolu (10.1016/j.eswa.2020.113844_b0290) 2009; volume 175 Mirjalili (10.1016/j.eswa.2020.113844_b0255) 2016; 95 Lwin (10.1016/j.eswa.2020.113844_b0220) 2014; 24 Santana-Quintero (10.1016/j.eswa.2020.113844_b0315) 2010; 37 Deb (10.1016/j.eswa.2020.113844_b0070) 2014; 18 Zouache (10.1016/j.eswa.2020.113844_b0425) 2019; 129 Wang (10.1016/j.eswa.2020.113844_b0365) 2012; 17 Zhang (10.1016/j.eswa.2020.113844_b0410) 2015; 19 Elaziz (10.1016/j.eswa.2020.113844_b0100) 2020; 168 Becerra (10.1016/j.eswa.2020.113844_b0015) 2006; 195 Li (10.1016/j.eswa.2020.113844_b0190) 2019; 46 Mirjalili (10.1016/j.eswa.2020.113844_b0240) 2017; 134 El Aziz (10.1016/j.eswa.2020.113844_b0085) 2017; 83 Das (10.1016/j.eswa.2020.113844_b0050) 2011; 15 Peng (10.1016/j.eswa.2020.113844_b0300) 2020; 369 Mane (10.1016/j.eswa.2020.113844_b0235) 2017; 12 Zitzler (10.1016/j.eswa.2020.113844_b0420) 2000; 8 El Aziz (10.1016/j.eswa.2020.113844_b0095) 2018 Li (10.1016/j.eswa.2020.113844_b0195) 2009; 13 Panagant (10.1016/j.eswa.2020.113844_b0295) 2019; 60 Zhang (10.1016/j.eswa.2020.113844_b0395) 2007; 11 Neggaz (10.1016/j.eswa.2020.113844_b0275) 2020; 145 10.1016/j.eswa.2020.113844_b0025 Gandomi (10.1016/j.eswa.2020.113844_b0135) 2012; 17 Holland (10.1016/j.eswa.2020.113844_b0150) 1989 Ewees (10.1016/j.eswa.2020.113844_b0115) 2020; 88 Mirjalili (10.1016/j.eswa.2020.113844_b0250) 2016; 95 Mirjalili (10.1016/j.eswa.2020.113844_b0245) 2017; 46 10.1016/j.eswa.2020.113844_b0305 Zapotecas-Martínez (10.1016/j.eswa.2020.113844_b0390) 2019; 120 Rahnamayan (10.1016/j.eswa.2020.113844_b0310) 2008; 12 Ma (10.1016/j.eswa.2020.113844_b0225) 2014; 146 Ergezer (10.1016/j.eswa.2020.113844_b0105) 2011 Ewees (10.1016/j.eswa.2020.113844_b0120) 2020; 8 10.1016/j.eswa.2020.113844_b0270 Ewees (10.1016/j.eswa.2020.113844_b0125) 2018; 112 Cheng (10.1016/j.eswa.2020.113844_b0035) 2017; 3 Jain (10.1016/j.eswa.2020.113844_b0165) 2013; 18 10.1016/j.eswa.2020.113844_b0175 10.1016/j.eswa.2020.113844_b0010 Beume (10.1016/j.eswa.2020.113844_b0020) 2007; 181 Hacibeyoglu (10.1016/j.eswa.2020.113844_b0145) 2018; 43 Yang (10.1016/j.eswa.2020.113844_b0375) 2013; 17 Zadeh (10.1016/j.eswa.2020.113844_b0385) 2019; 74 Abd Elaziz (10.1016/j.eswa.2020.113844_b0005) 2019; 125 Mirjalili (10.1016/j.eswa.2020.113844_b0260) 2016; 47 Deb (10.1016/j.eswa.2020.113844_b0080) 2005 Deb (10.1016/j.eswa.2020.113844_b0060) 2000 Deb (10.1016/j.eswa.2020.113844_b0065) 2001; 9 Yang (10.1016/j.eswa.2020.113844_b0380) 2009 Lin (10.1016/j.eswa.2020.113844_b0210) 2016; 20 Li (10.1016/j.eswa.2020.113844_b0200) 2013; 18 Ibrahim (10.1016/j.eswa.2020.113844_b0160) 2017 Lee (10.1016/j.eswa.2020.113844_b0185) 2005; 194 Wolpert (10.1016/j.eswa.2020.113844_b0370) 1997; 1 Das (10.1016/j.eswa.2020.113844_b0045) 2008; 38 Karaboga (10.1016/j.eswa.2020.113844_b0170) 2007 Oliva (10.1016/j.eswa.2020.113844_b0280) 2017 Lechunga (10.1016/j.eswa.2020.113844_b0180) 2002 Simon (10.1016/j.eswa.2020.113844_b0330) 2008; 12 Mafarja (10.1016/j.eswa.2020.113844_b0230) 2017 10.1016/j.eswa.2020.113844_b0360 Lin (10.1016/j.eswa.2020.113844_b0215) 2015; 62 Tizhoosh (10.1016/j.eswa.2020.113844_b0345) 2005; vol. 1 Coello (10.1016/j.eswa.2020.113844_b0040) 2007; volume 5 10.1016/j.eswa.2020.113844_b0405 Deb (10.1016/j.eswa.2020.113844_b0075) 2002; 6 Shi (10.1016/j.eswa.2020.113844_b0325) 2020; 387 10.1016/j.eswa.2020.113844_b0090 Fleischer (10.1016/j.eswa.2020.113844_b0130) 2003 Li (10.1016/j.eswa.2020.113844_b0205) 2015; 42 Tongur (10.1016/j.eswa.2020.113844_b0350) 2016 Srinivas (10.1016/j.eswa.2020.113844_b0335) 1994; 2 Zhang (10.1016/j.eswa.2020.113844_b0415) 2014; 19 Storn (10.1016/j.eswa.2020.113844_b0340) 1997; 11 Cheng (10.1016/j.eswa.2020.113844_b0030) 2016; 20 Oliva (10.1016/j.eswa.2020.113844_b0285) 2017; 200 Mirjalili (10.1016/j.eswa.2020.113844_b0265) 2018; 48 |
| References_xml | – start-page: 623 year: 2011 end-page: 628 ident: b0105 article-title: Survey of oppositional algorithms publication-title: 2011 14th International Conference on Computer and Information Technology (ICCIT) – volume: 129 start-page: 377 year: 2019 end-page: 391 ident: b0425 article-title: Multi-objective chicken swarm optimization: A novel algorithm for solving multi-objective optimization problems publication-title: Computers & Industrial Engineering – reference: Nebro, A.J., Durillo, J.J., Garcia-Nieto, J., Coello, C.C., Luna, F., & Alba, E. (2009). Smpso: A new pso-based metaheuristic for multi-objective optimization. In Computational intelligence in miulti-criteria decision-making, 2009. mcdm’09. ieee symposium on (pp. 66–73). IEEE. – volume: 146 start-page: 48 year: 2014 end-page: 64 ident: b0225 article-title: Moea/d with opposition-based learning for multiobjective optimization problem publication-title: Neurocomputing – volume: 47 start-page: 106 year: 2016 end-page: 119 ident: b0260 article-title: d. S. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization publication-title: Expert Systems with Applications – volume: 12 start-page: 9774 year: 2017 end-page: 9793 ident: b0235 article-title: Many-objective optimization: Problems and evolutionary algorithms-a short review publication-title: International Journal of Applied Engineering Research – reference: El Aziz, M.A., Ewees, A.A., & Hassanien, A.E. (2018a). Multi-objective whale optimization algorithm for content-based image retrieval. Multimedia Tools and Applications, (pp. 1–38). – volume: 37 start-page: 470 year: 2010 end-page: 480 ident: b0315 article-title: Demors: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems publication-title: Computers & Operations Research – volume: 120 start-page: 357 year: 2019 end-page: 371 ident: b0390 article-title: Multi-objective grey wolf optimizer based on decomposition publication-title: Expert Systems with Applications – volume: 168 start-page: 48 year: 2020 end-page: 75 ident: b0100 article-title: Opposition-based moth-flame optimization improved by differential evolution for feature selection publication-title: Mathematics and Computers in Simulation – start-page: 156 year: 2017 end-page: 166 ident: b0160 article-title: Feature selection based on improved runner-root algorithm using chaotic singer map and opposition-based learning publication-title: International Conference on Neural Information Processing – volume: 181 start-page: 1653 year: 2007 end-page: 1669 ident: b0020 article-title: Sms-emoa: Multiobjective selection based on dominated hypervolume publication-title: European Journal of Operational Research – reference: Abdel-Basset, M., Wang, G.-G., Sangaiah, A.K., & Rushdy, E. (2017). Krill herd algorithm based on cuckoo search for solving engineering optimization problems. Multimedia Tools and Applications, (pp. 1–24). – start-page: 210 year: 2009 end-page: 214 ident: b0380 article-title: Cuckoo search via lévy flights publication-title: 2009. NaBIC 2009. World Congress on Nature & Biologically Inspired Computing – volume: volume 16 year: 2001 ident: b0055 publication-title: Multi-objective optimization using evolutionary algorithms – volume: volume 5 year: 2007 ident: b0040 publication-title: Evolutionary algorithms for solving multi-objective problems – volume: 46 start-page: 104 year: 2019 end-page: 117 ident: b0190 article-title: Comparison between moea/d and nsga-iii on a set of novel many and multi-objective benchmark problems with challenging difficulties publication-title: Swarm and Evolutionary Computation – volume: 14 start-page: 456 year: 2010 end-page: 474 ident: b0400 article-title: Expensive multiobjective optimization by moea/d with gaussian process model publication-title: IEEE Transactions on Evolutionary Computation – reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization (pso). In: Proc. IEEE International Conference on Neural Networks, Perth, Australia (pp. 1942–1948). – volume: 19 start-page: 761 year: 2014 end-page: 776 ident: b0415 article-title: A knee point-driven evolutionary algorithm for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 387 start-page: 241 year: 2020 end-page: 254 ident: b0325 article-title: Hybrid-driven finite-time h sampling synchronization control for coupling memory complex networks with stochastic cyber attacks publication-title: Neurocomputing – volume: 46 start-page: 79 year: 2017 end-page: 95 ident: b0245 article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems publication-title: Applied Intelligence – volume: volume 175 year: 2009 ident: b0290 publication-title: Differential evolution: a handbook for global permutation-based combinatorial optimization – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: b0395 article-title: Moea/d: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Transactions on Evolutionary Computation – volume: 194 start-page: 3902 year: 2005 end-page: 3933 ident: b0185 article-title: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice publication-title: Computer Methods in Applied Mechanics and Engineering – start-page: 280 year: 2005 end-page: 295 ident: b0155 article-title: A scalable multi-objective test problem toolkit publication-title: International Conference on Evolutionary Multi-Criterion Optimization – volume: 48 start-page: 805 year: 2018 end-page: 820 ident: b0265 article-title: Grasshopper optimization algorithm for multi-objective optimization problems publication-title: Applied Intelligence – year: 1989 ident: b0150 article-title: Genetic algorithms in search, optimization and machine – volume: 19 start-page: 201 year: 2015 end-page: 213 ident: b0410 article-title: An efficient approach to nondominated sorting for evolutionary multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 15 start-page: 4 year: 2011 end-page: 31 ident: b0050 article-title: Differential evolution: A survey of the state-of-the-art publication-title: IEEE Transactions on Evolutionary Computation – volume: 23 start-page: 5469 year: 2019 end-page: 5484 ident: b0355 article-title: Pso-based improved multi-flocks migrating birds optimization (imfmbo) algorithm for solution of discrete problems publication-title: Soft Computing – volume: 9 start-page: 197 year: 2001 end-page: 221 ident: b0065 article-title: Self-adaptive genetic algorithms with simulated binary crossover publication-title: Evolutionary Computation – volume: vol. 1 start-page: 695 year: 2005 end-page: 701 ident: b0345 article-title: Opposition-based learning: a new scheme for machine intelligence publication-title: Computational intelligence for modelling, control and automation, 2005 and international conference on intelligent agents, web technologies and internet commerce, international conference on – volume: 18 start-page: 909 year: 2013 end-page: 923 ident: b0200 article-title: Stable matching-based selection in evolutionary multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 88 year: 2020 ident: b0115 article-title: Performance analysis of chaotic multi-verse harris hawks optimization: a case study on solving engineering problems publication-title: Engineering Applications of Artificial Intelligence – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b0250 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software – volume: 24 start-page: 757 year: 2014 end-page: 772 ident: b0220 article-title: A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization publication-title: Applied Soft Computing – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0075 article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii publication-title: IEEE Transactions on Evolutionary Computation – volume: 3 start-page: 67 year: 2017 end-page: 81 ident: b0035 article-title: A benchmark test suite for evolutionary many-objective optimization publication-title: Complex & Intelligent Systems – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b0340 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b0370 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – start-page: 305 year: 2016 end-page: 316 ident: b0350 article-title: B-spline curve knot estimation by using niched pareto genetic algorithm (npga) publication-title: Intelligent and Evolutionary Systems – start-page: 1051 year: 2002 end-page: 1056 ident: b0180 article-title: Mopso: A proposal for multiple objective particle swarm optimizations publication-title: Proceedings of the 2002 Congress on Evolutionary Computation, Part of the 2002 IEEE World Congress on Computational Intelligence – reference: Cai, X., Sun, H., Zhu, C., Li, Z., & Zhang, Q. (2018). Locating the boundaries of pareto fronts: A many-objective evolutionary algorithm based on corner solution search. arXiv preprint arXiv:1806.02967. – start-page: 519 year: 2003 end-page: 533 ident: b0130 article-title: The measure of pareto optima applications to multi-objective metaheuristics publication-title: International Conference on Evolutionary Multi-Criterion Optimization – volume: 17 start-page: 474 year: 2012 end-page: 494 ident: b0365 article-title: Preference-inspired coevolutionary algorithms for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 8 start-page: 26304 year: 2020 end-page: 26315 ident: b0120 article-title: Improved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentation publication-title: IEEE Access – volume: 13 start-page: 284 year: 2009 end-page: 302 ident: b0195 article-title: Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii publication-title: IEEE Transactions on Evolutionary Computation – volume: 83 start-page: 242 year: 2017 end-page: 256 ident: b0085 article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation publication-title: Expert Systems with Applications – start-page: 23 year: 2018 end-page: 39 ident: b0095 article-title: Multi-objective whale optimization algorithm for multilevel thresholding segmentation publication-title: Advances in Soft Computing and Machine Learning in Image Processing – start-page: 789 year: 2007 end-page: 798 ident: b0170 article-title: Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems publication-title: International Fuzzy Systems Association World Congress – volume: 112 start-page: 156 year: 2018 end-page: 172 ident: b0125 article-title: Improved grasshopper optimization algorithm using opposition-based learning publication-title: Expert Systems with Applications – volume: 12 start-page: 64 year: 2008 end-page: 79 ident: b0310 article-title: Opposition-based differential evolution publication-title: IEEE Transactions on Evolutionary computation – volume: 15 start-page: 645 year: 2010 end-page: 665 ident: b0140 article-title: De/bbo: A hybrid differential evolution with biogeography-based optimization for global numerical optimization publication-title: Soft Computing – volume: 20 start-page: 711 year: 2016 end-page: 729 ident: b0210 article-title: A hybrid evolutionary immune algorithm for multiobjective optimization problems publication-title: IEEE Transactions on Evolutionary Computation – volume: 62 start-page: 95 year: 2015 end-page: 111 ident: b0215 article-title: A novel hybrid multi-objective immune algorithm with adaptive differential evolution publication-title: Computers & Operations Research – volume: 125 start-page: 112 year: 2019 end-page: 129 ident: b0005 article-title: Multi-level thresholding-based grey scale image segmentation using multi-objective multi-verse optimizer publication-title: Expert Systems with Applications – volume: 134 start-page: 50 year: 2017 end-page: 71 ident: b0240 article-title: Optimization of problems with multiple objectives using the multi-verse optimization algorithm publication-title: Knowledge-Based Systems – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b0255 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software – volume: 145 year: 2020 ident: b0275 article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection publication-title: Expert Systems with Applications – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: b0070 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints publication-title: IEEE Trans. Evolutionary Computation – volume: 369 year: 2020 ident: b0300 article-title: A novel optimal bipartite consensus control scheme for unknown multi-agent systems via model-free reinforcement learning publication-title: Applied Mathematics and Computation – reference: Rahnamayan, S., Tizhoosh, H.R., & Salama, M.M. (2006). Opposition-based differential evolution algorithms, (pp. 2010–2017). – year: 2005 ident: b0080 article-title: Scalable test problems for evolutionary multiobjective optimization – year: 2017 ident: b0230 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing – volume: 17 start-page: 721 year: 2013 end-page: 736 ident: b0375 article-title: A grid-based evolutionary algorithm for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 17 start-page: 4831 year: 2012 end-page: 4845 ident: b0135 article-title: Krill herd: a new bio-inspired optimization algorithm publication-title: Communications in Nonlinear Science and Numerical Simulation – start-page: 159 year: 2017 end-page: 178 ident: b0280 article-title: An emo improvement: Opposition-based electromagnetism-like for global optimization. publication-title: Advances and Applications of Optimised Algorithms in Image Processing – volume: 12 start-page: 702 year: 2008 end-page: 713 ident: b0330 article-title: Biogeography-based optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 38 start-page: 218 year: 2008 end-page: 237 ident: b0045 article-title: Automatic clustering using an improved differential evolution algorithm publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans – volume: 60 start-page: 1937 year: 2019 end-page: 1955 ident: b0295 article-title: A novel self-adaptive hybrid multi-objective meta-heuristic for reliability design of trusses with simultaneous topology, shape and sizing optimisation design variables publication-title: Structural and Multidisciplinary Optimization – volume: 2 start-page: 221 year: 1994 end-page: 248 ident: b0335 article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evolutionary Computation – volume: 74 start-page: 760 year: 2019 end-page: 782 ident: b0385 article-title: An efficient metamodel-based multi-objective multidisciplinary design optimization framework publication-title: Applied Soft Computing – reference: Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., & Tiwari, S. (2008). Multiobjective optimization test instances for the cec 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, technical report, 264. – reference: Vitaliy, F. (2006). Differential evolution–in search of solutions. – volume: 43 start-page: 7499 year: 2018 end-page: 7520 ident: b0145 article-title: A comparative analysis of metaheuristic approaches for multidimensional two-way number partitioning problem publication-title: Arabian Journal for Science and Engineering – volume: 42 start-page: 8881 year: 2015 end-page: 8895 ident: b0205 article-title: Ps-abc: A hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems publication-title: Expert Systems With Applications – start-page: 849 year: 2000 end-page: 858 ident: b0060 article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii publication-title: International Conference on Parallel Problem Solving From Nature – volume: 195 start-page: 4303 year: 2006 end-page: 4322 ident: b0015 article-title: Cultured differential evolution for constrained optimization publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 381 start-page: 1 year: 2020 end-page: 25 ident: b0320 article-title: Reliable asynchronous sampled-data filtering of t–s fuzzy uncertain delayed neural networks with stochastic switched topologies publication-title: Fuzzy Sets and Systems – volume: 200 start-page: 141 year: 2017 end-page: 154 ident: b0285 article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm publication-title: Applied Energy – volume: 20 start-page: 773 year: 2016 end-page: 791 ident: b0030 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 18 start-page: 602 year: 2013 end-page: 622 ident: b0165 article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach publication-title: IEEE Transactions on Evolutionary Computation – reference: Ergezer, M., & Simon, D. (2011). Oppositional biogeography-based optimization for combinatorial problems, (pp. 1496–1503). – volume: 8 start-page: 173 year: 2000 end-page: 195 ident: b0420 article-title: Comparison of multiobjective evolutionary algorithms: Empirical results publication-title: Evolutionary Computation – volume: 387 start-page: 241 year: 2020 ident: 10.1016/j.eswa.2020.113844_b0325 article-title: Hybrid-driven finite-time h sampling synchronization control for coupling memory complex networks with stochastic cyber attacks publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.022 – volume: 23 start-page: 5469 year: 2019 ident: 10.1016/j.eswa.2020.113844_b0355 article-title: Pso-based improved multi-flocks migrating birds optimization (imfmbo) algorithm for solution of discrete problems publication-title: Soft Computing doi: 10.1007/s00500-018-3199-5 – volume: 11 start-page: 712 year: 2007 ident: 10.1016/j.eswa.2020.113844_b0395 article-title: Moea/d: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2007.892759 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.eswa.2020.113844_b0255 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – ident: 10.1016/j.eswa.2020.113844_b0090 doi: 10.1007/s11042-018-5840-9 – volume: 17 start-page: 474 year: 2012 ident: 10.1016/j.eswa.2020.113844_b0365 article-title: Preference-inspired coevolutionary algorithms for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2012.2204264 – start-page: 156 year: 2017 ident: 10.1016/j.eswa.2020.113844_b0160 article-title: Feature selection based on improved runner-root algorithm using chaotic singer map and opposition-based learning – volume: 194 start-page: 3902 year: 2005 ident: 10.1016/j.eswa.2020.113844_b0185 article-title: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2004.09.007 – volume: 1 start-page: 67 year: 1997 ident: 10.1016/j.eswa.2020.113844_b0370 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585893 – volume: vol. 1 start-page: 695 year: 2005 ident: 10.1016/j.eswa.2020.113844_b0345 article-title: Opposition-based learning: a new scheme for machine intelligence – volume: 195 start-page: 4303 year: 2006 ident: 10.1016/j.eswa.2020.113844_b0015 article-title: Cultured differential evolution for constrained optimization publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2005.09.006 – year: 1989 ident: 10.1016/j.eswa.2020.113844_b0150 – volume: 181 start-page: 1653 year: 2007 ident: 10.1016/j.eswa.2020.113844_b0020 article-title: Sms-emoa: Multiobjective selection based on dominated hypervolume publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.08.008 – volume: 381 start-page: 1 year: 2020 ident: 10.1016/j.eswa.2020.113844_b0320 article-title: Reliable asynchronous sampled-data filtering of t–s fuzzy uncertain delayed neural networks with stochastic switched topologies publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2018.11.017 – volume: 112 start-page: 156 year: 2018 ident: 10.1016/j.eswa.2020.113844_b0125 article-title: Improved grasshopper optimization algorithm using opposition-based learning publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.06.023 – ident: 10.1016/j.eswa.2020.113844_b0175 doi: 10.1109/ICNN.1995.488968 – volume: 37 start-page: 470 year: 2010 ident: 10.1016/j.eswa.2020.113844_b0315 article-title: Demors: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems publication-title: Computers & Operations Research doi: 10.1016/j.cor.2009.02.006 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.eswa.2020.113844_b0250 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 83 start-page: 242 year: 2017 ident: 10.1016/j.eswa.2020.113844_b0085 article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.04.023 – volume: 47 start-page: 106 year: 2016 ident: 10.1016/j.eswa.2020.113844_b0260 article-title: d. S. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.10.039 – start-page: 210 year: 2009 ident: 10.1016/j.eswa.2020.113844_b0380 article-title: Cuckoo search via lévy flights – volume: 74 start-page: 760 year: 2019 ident: 10.1016/j.eswa.2020.113844_b0385 article-title: An efficient metamodel-based multi-objective multidisciplinary design optimization framework publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.09.014 – volume: 46 start-page: 79 year: 2017 ident: 10.1016/j.eswa.2020.113844_b0245 article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems publication-title: Applied Intelligence doi: 10.1007/s10489-016-0825-8 – start-page: 519 year: 2003 ident: 10.1016/j.eswa.2020.113844_b0130 article-title: The measure of pareto optima applications to multi-objective metaheuristics – ident: 10.1016/j.eswa.2020.113844_b0270 doi: 10.1109/MCDM.2009.4938830 – volume: 24 start-page: 757 year: 2014 ident: 10.1016/j.eswa.2020.113844_b0220 article-title: A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2014.08.026 – volume: 12 start-page: 9774 year: 2017 ident: 10.1016/j.eswa.2020.113844_b0235 article-title: Many-objective optimization: Problems and evolutionary algorithms-a short review publication-title: International Journal of Applied Engineering Research – volume: 200 start-page: 141 year: 2017 ident: 10.1016/j.eswa.2020.113844_b0285 article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm publication-title: Applied Energy doi: 10.1016/j.apenergy.2017.05.029 – volume: 129 start-page: 377 year: 2019 ident: 10.1016/j.eswa.2020.113844_b0425 article-title: Multi-objective chicken swarm optimization: A novel algorithm for solving multi-objective optimization problems publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2019.01.055 – volume: 62 start-page: 95 year: 2015 ident: 10.1016/j.eswa.2020.113844_b0215 article-title: A novel hybrid multi-objective immune algorithm with adaptive differential evolution publication-title: Computers & Operations Research doi: 10.1016/j.cor.2015.04.003 – volume: 8 start-page: 173 year: 2000 ident: 10.1016/j.eswa.2020.113844_b0420 article-title: Comparison of multiobjective evolutionary algorithms: Empirical results publication-title: Evolutionary Computation doi: 10.1162/106365600568202 – year: 2017 ident: 10.1016/j.eswa.2020.113844_b0230 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.053 – ident: 10.1016/j.eswa.2020.113844_b0025 – volume: 3 start-page: 67 year: 2017 ident: 10.1016/j.eswa.2020.113844_b0035 article-title: A benchmark test suite for evolutionary many-objective optimization publication-title: Complex & Intelligent Systems doi: 10.1007/s40747-017-0039-7 – volume: 120 start-page: 357 year: 2019 ident: 10.1016/j.eswa.2020.113844_b0390 article-title: Multi-objective grey wolf optimizer based on decomposition publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.12.003 – volume: 15 start-page: 645 year: 2010 ident: 10.1016/j.eswa.2020.113844_b0140 article-title: De/bbo: A hybrid differential evolution with biogeography-based optimization for global numerical optimization publication-title: Soft Computing doi: 10.1007/s00500-010-0591-1 – start-page: 159 year: 2017 ident: 10.1016/j.eswa.2020.113844_b0280 article-title: An emo improvement: Opposition-based electromagnetism-like for global optimization. – volume: 20 start-page: 773 year: 2016 ident: 10.1016/j.eswa.2020.113844_b0030 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2016.2519378 – volume: 18 start-page: 909 year: 2013 ident: 10.1016/j.eswa.2020.113844_b0200 article-title: Stable matching-based selection in evolutionary multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 42 start-page: 8881 year: 2015 ident: 10.1016/j.eswa.2020.113844_b0205 article-title: Ps-abc: A hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems publication-title: Expert Systems With Applications doi: 10.1016/j.eswa.2015.07.043 – volume: volume 16 year: 2001 ident: 10.1016/j.eswa.2020.113844_b0055 – volume: 46 start-page: 104 year: 2019 ident: 10.1016/j.eswa.2020.113844_b0190 article-title: Comparison between moea/d and nsga-iii on a set of novel many and multi-objective benchmark problems with challenging difficulties publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2019.02.003 – volume: 19 start-page: 761 year: 2014 ident: 10.1016/j.eswa.2020.113844_b0415 article-title: A knee point-driven evolutionary algorithm for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2014.2378512 – volume: volume 5 year: 2007 ident: 10.1016/j.eswa.2020.113844_b0040 – start-page: 280 year: 2005 ident: 10.1016/j.eswa.2020.113844_b0155 article-title: A scalable multi-objective test problem toolkit – start-page: 1051 year: 2002 ident: 10.1016/j.eswa.2020.113844_b0180 article-title: Mopso: A proposal for multiple objective particle swarm optimizations – start-page: 623 year: 2011 ident: 10.1016/j.eswa.2020.113844_b0105 article-title: Survey of oppositional algorithms – volume: 369 year: 2020 ident: 10.1016/j.eswa.2020.113844_b0300 article-title: A novel optimal bipartite consensus control scheme for unknown multi-agent systems via model-free reinforcement learning publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2019.124821 – volume: 48 start-page: 805 year: 2018 ident: 10.1016/j.eswa.2020.113844_b0265 article-title: Grasshopper optimization algorithm for multi-objective optimization problems publication-title: Applied Intelligence doi: 10.1007/s10489-017-1019-8 – volume: 60 start-page: 1937 year: 2019 ident: 10.1016/j.eswa.2020.113844_b0295 article-title: A novel self-adaptive hybrid multi-objective meta-heuristic for reliability design of trusses with simultaneous topology, shape and sizing optimisation design variables publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-019-02302-x – start-page: 849 year: 2000 ident: 10.1016/j.eswa.2020.113844_b0060 article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii – volume: 14 start-page: 456 year: 2010 ident: 10.1016/j.eswa.2020.113844_b0400 article-title: Expensive multiobjective optimization by moea/d with gaussian process model publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2009.2033671 – volume: 20 start-page: 711 year: 2016 ident: 10.1016/j.eswa.2020.113844_b0210 article-title: A hybrid evolutionary immune algorithm for multiobjective optimization problems publication-title: IEEE Transactions on Evolutionary Computation – volume: 9 start-page: 197 year: 2001 ident: 10.1016/j.eswa.2020.113844_b0065 article-title: Self-adaptive genetic algorithms with simulated binary crossover publication-title: Evolutionary Computation doi: 10.1162/106365601750190406 – start-page: 23 year: 2018 ident: 10.1016/j.eswa.2020.113844_b0095 article-title: Multi-objective whale optimization algorithm for multilevel thresholding segmentation – volume: 168 start-page: 48 year: 2020 ident: 10.1016/j.eswa.2020.113844_b0100 article-title: Opposition-based moth-flame optimization improved by differential evolution for feature selection publication-title: Mathematics and Computers in Simulation doi: 10.1016/j.matcom.2019.06.017 – volume: 18 start-page: 602 year: 2013 ident: 10.1016/j.eswa.2020.113844_b0165 article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2013.2281534 – volume: 18 start-page: 577 year: 2014 ident: 10.1016/j.eswa.2020.113844_b0070 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints publication-title: IEEE Trans. Evolutionary Computation doi: 10.1109/TEVC.2013.2281535 – year: 2005 ident: 10.1016/j.eswa.2020.113844_b0080 – volume: 88 year: 2020 ident: 10.1016/j.eswa.2020.113844_b0115 article-title: Performance analysis of chaotic multi-verse harris hawks optimization: a case study on solving engineering problems publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2019.103370 – ident: 10.1016/j.eswa.2020.113844_b0305 doi: 10.1109/CEC.2006.1688554 – volume: 38 start-page: 218 year: 2008 ident: 10.1016/j.eswa.2020.113844_b0045 article-title: Automatic clustering using an improved differential evolution algorithm publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans doi: 10.1109/TSMCA.2007.909595 – volume: 134 start-page: 50 year: 2017 ident: 10.1016/j.eswa.2020.113844_b0240 article-title: Optimization of problems with multiple objectives using the multi-verse optimization algorithm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.07.018 – start-page: 789 year: 2007 ident: 10.1016/j.eswa.2020.113844_b0170 article-title: Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems – ident: 10.1016/j.eswa.2020.113844_b0405 – volume: 17 start-page: 721 year: 2013 ident: 10.1016/j.eswa.2020.113844_b0375 article-title: A grid-based evolutionary algorithm for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2012.2227145 – volume: 12 start-page: 64 year: 2008 ident: 10.1016/j.eswa.2020.113844_b0310 article-title: Opposition-based differential evolution publication-title: IEEE Transactions on Evolutionary computation doi: 10.1109/TEVC.2007.894200 – ident: 10.1016/j.eswa.2020.113844_b0010 doi: 10.1007/s11042-017-4803-x – volume: 12 start-page: 702 year: 2008 ident: 10.1016/j.eswa.2020.113844_b0330 article-title: Biogeography-based optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.919004 – volume: volume 175 year: 2009 ident: 10.1016/j.eswa.2020.113844_b0290 – volume: 146 start-page: 48 year: 2014 ident: 10.1016/j.eswa.2020.113844_b0225 article-title: Moea/d with opposition-based learning for multiobjective optimization problem publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.04.068 – volume: 15 start-page: 4 year: 2011 ident: 10.1016/j.eswa.2020.113844_b0050 article-title: Differential evolution: A survey of the state-of-the-art publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2010.2059031 – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.eswa.2020.113844_b0075 article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – volume: 2 start-page: 221 year: 1994 ident: 10.1016/j.eswa.2020.113844_b0335 article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evolutionary Computation doi: 10.1162/evco.1994.2.3.221 – ident: 10.1016/j.eswa.2020.113844_b0110 doi: 10.1109/CEC.2011.5949792 – volume: 145 year: 2020 ident: 10.1016/j.eswa.2020.113844_b0275 article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.113103 – volume: 125 start-page: 112 year: 2019 ident: 10.1016/j.eswa.2020.113844_b0005 article-title: Multi-level thresholding-based grey scale image segmentation using multi-objective multi-verse optimizer publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.01.047 – volume: 19 start-page: 201 year: 2015 ident: 10.1016/j.eswa.2020.113844_b0410 article-title: An efficient approach to nondominated sorting for evolutionary multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2014.2308305 – volume: 13 start-page: 284 year: 2009 ident: 10.1016/j.eswa.2020.113844_b0195 article-title: Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.925798 – volume: 17 start-page: 4831 year: 2012 ident: 10.1016/j.eswa.2020.113844_b0135 article-title: Krill herd: a new bio-inspired optimization algorithm publication-title: Communications in Nonlinear Science and Numerical Simulation doi: 10.1016/j.cnsns.2012.05.010 – start-page: 305 year: 2016 ident: 10.1016/j.eswa.2020.113844_b0350 article-title: B-spline curve knot estimation by using niched pareto genetic algorithm (npga) – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.eswa.2020.113844_b0340 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – ident: 10.1016/j.eswa.2020.113844_b0360 – volume: 8 start-page: 26304 year: 2020 ident: 10.1016/j.eswa.2020.113844_b0120 article-title: Improved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2971249 – volume: 43 start-page: 7499 year: 2018 ident: 10.1016/j.eswa.2020.113844_b0145 article-title: A comparative analysis of metaheuristic approaches for multidimensional two-way number partitioning problem publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-018-3155-9 |
| SSID | ssj0017007 |
| Score | 2.4984946 |
| Snippet | •A new multi-objective optimization method used OBL strategy, WOA and DE algorithms•It combines DE and the OBL to improve the performance of the WOA•The MWDEO... The optimization problems are divided into a single objective and multi-objective. Single objective optimization has only one objective function; whereas,... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113844 |
| SubjectTerms | Differential evolution Evolutionary algorithms Evolutionary computation Machine learning Multi-objective optimization Multiple objective analysis Opposition-based learning Optimization algorithms Pareto optimization Whale optimization algorithm |
| Title | A new multi-objective optimization algorithm combined with opposition-based learning |
| URI | https://dx.doi.org/10.1016/j.eswa.2020.113844 https://www.proquest.com/docview/2487169815 |
| Volume | 165 |
| WOSCitedRecordID | wos000602359000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcuvBELC_KBW-Qqduw4PkaoCBCskChSb8FJnD7UJlUbuqv99WvHdlqKWAESlyiKkjjyfBnPjL-ZAeCNkNqoFbRCuGIMUSowkiLGJvUJx6rUHovqirh-4hcXyWQivgwG330uzG7J6zq5uhLr_ypqfU0L26TO_oW4-5fqC_pcC10ftdj18Y8En5ou4ZYoiJp8YRVa0GjVsHI5l4FcTpvNvJ2tDKNcu8aegt6sPYcLmdWt9D0lpj_F701x5NaVgPbJcQfb4L2NfqmsCkpnesUN0uF-p6kMRkt5Pe9i15-bmVy5DKsu2Dvf2S2ouZo2hzEJckDKsoEynyyzZybZiCNHFNumPENl9W3CIxRz2ySxV8i2e8Qvyt3GGRZDtb00FaNI15AmoXS_lPUEw69mMDMWMT4Ri8QdcEo4E1p1n6YfRpOP_U4TD21Kvf84l1hlOYDHI_3OeDlaxjvbZPwQ3HdOBUwtGB6Bgaofgwe-YQd0-vsJGKdQYwMeYQMeYgP22IAeG9CIGB5jA3psPAXf3o3Gb98j11YDFRFJWiSIVCTMcZzTpMSyyONQUqyYKsMijCKh4liSknNWcFwVWBEuuVbsMpdSu7NhET0DJ3VTq-cAVgnLSRVThcOEqiiWoaqwNjrLgrMyL6IzgP18ZYWrOW9anywzTy5cZGaOMzPHmZ3jMxD0z6xtxZVb72ZeDJmzGa0tmGnU3PrcuZdZ5n7ebUaoCR-IBLMX__jal-De_n84Byft5od6Be4Wu3a-3bx22LsB_6-csA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+multi-objective+optimization+algorithm+combined+with+opposition-based+learning&rft.jtitle=Expert+systems+with+applications&rft.au=Ewees%2C+Ahmed+A.&rft.au=Abd+Elaziz%2C+Mohamed&rft.au=Oliva%2C+Diego&rft.date=2021-03-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=165&rft_id=info:doi/10.1016%2Fj.eswa.2020.113844&rft.externalDocID=S0957417420306539 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |