A new multi-objective optimization algorithm combined with opposition-based learning

•A new multi-objective optimization method used OBL strategy, WOA and DE algorithms•It combines DE and the OBL to improve the performance of the WOA•The MWDEO results outperformed all other algorithms in most of the test problems•32 multi-objective test problems are used in the experiments and CEC20...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 165; s. 113844
Hlavní autoři: Ewees, Ahmed A., Abd Elaziz, Mohamed, Oliva, Diego
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 01.03.2021
Elsevier BV
Témata:
ISSN:0957-4174, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A new multi-objective optimization method used OBL strategy, WOA and DE algorithms•It combines DE and the OBL to improve the performance of the WOA•The MWDEO results outperformed all other algorithms in most of the test problems•32 multi-objective test problems are used in the experiments and CEC2017 problems The optimization problems are divided into a single objective and multi-objective. Single objective optimization has only one objective function; whereas, multi-objective optimization has multiple objective functions that generate the Pareto set; therefore, solving a multi-objective problem is a challenging problem. This paper presents a new multi-objective optimization method (called MWDEO) based on improved whale optimization algorithm (WOA) by combining the differential evolution (DE) algorithm and the opposition-based learning (OBL). The MWDEO uses the WOA to perform a global exploration, whereas DE is used to exploit the search space; while the OBL is applied to improve the exploration and exploitation by generating the opposite values. The proposed algorithm is evaluated using 32 multi-objective test problems besides a set of benchmark problems of CEC’2017. The experimental results are compared with nine state-of-the-art multi-objective methods. The analysis of the results showed that the proposed MWDEO outperformed all other algorithms in most of the test problems which indicates that the proposed MWDEO is competitive and effective in solving different types of multi-objective problems.
AbstractList The optimization problems are divided into a single objective and multi-objective. Single objective optimization has only one objective function; whereas, multi-objective optimization has multiple objective functions that generate the Pareto set; therefore, solving a multi-objective problem is a challenging problem. This paper presents a new multi-objective optimization method (called MWDEO) based on improved whale optimization algorithm (WOA) by combining the differential evolution (DE) algorithm and the opposition-based learning (OBL). The MWDEO uses the WOA to perform a global exploration, whereas DE is used to exploit the search space; while the OBL is applied to improve the exploration and exploitation by generating the opposite values. The proposed algorithm is evaluated using 32 multi-objective test problems besides a set of benchmark problems of CEC'2017. The experimental results are compared with nine state-of-the-art multi-objective methods. The analysis of the results showed that the proposed MWDEO outperformed all other algorithms in most of the test problems which indicates that the proposed MWDEO is competitive and effective in solving different types of multi-objective problems.
•A new multi-objective optimization method used OBL strategy, WOA and DE algorithms•It combines DE and the OBL to improve the performance of the WOA•The MWDEO results outperformed all other algorithms in most of the test problems•32 multi-objective test problems are used in the experiments and CEC2017 problems The optimization problems are divided into a single objective and multi-objective. Single objective optimization has only one objective function; whereas, multi-objective optimization has multiple objective functions that generate the Pareto set; therefore, solving a multi-objective problem is a challenging problem. This paper presents a new multi-objective optimization method (called MWDEO) based on improved whale optimization algorithm (WOA) by combining the differential evolution (DE) algorithm and the opposition-based learning (OBL). The MWDEO uses the WOA to perform a global exploration, whereas DE is used to exploit the search space; while the OBL is applied to improve the exploration and exploitation by generating the opposite values. The proposed algorithm is evaluated using 32 multi-objective test problems besides a set of benchmark problems of CEC’2017. The experimental results are compared with nine state-of-the-art multi-objective methods. The analysis of the results showed that the proposed MWDEO outperformed all other algorithms in most of the test problems which indicates that the proposed MWDEO is competitive and effective in solving different types of multi-objective problems.
ArticleNumber 113844
Author Abd Elaziz, Mohamed
Ewees, Ahmed A.
Oliva, Diego
Author_xml – sequence: 1
  givenname: Ahmed A.
  orcidid: 0000-0002-0666-7055
  surname: Ewees
  fullname: Ewees, Ahmed A.
  email: ewees@du.edu.eg
  organization: Department of Computer, Damietta University, Damietta, Egypt
– sequence: 2
  givenname: Mohamed
  orcidid: 0000-0002-7682-6269
  surname: Abd Elaziz
  fullname: Abd Elaziz, Mohamed
  email: abd_el_aziz_m@yahoo.com
  organization: Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt
– sequence: 3
  givenname: Diego
  surname: Oliva
  fullname: Oliva, Diego
  email: diego.oliva@cucei.udg.mx
  organization: IN3 - Computer Science Department, Universitat Oberta de Catalunya, Castelldefels, Spain
BookMark eNp9kE1LAzEQhoNUsK3-AU8Lnrcm2Y_sgpdS_IKCl3oOs9lpzbKb1CRt0V9vaj156GmY4X1mmGdCRsYaJOSW0RmjrLzvZugPMOOUxwHLqjy_IGNWiSwtRZ2NyJjWhUhzJvIrMvG-o5QJSsWYrOaJwUMy7PqgU9t0qILeY2K3QQ_6G4K2JoF-Y50OH0Oi7NBog21yiG0Mba3Xx0jagI_THsEZbTbX5HINvcebvzol70-Pq8VLunx7fl3Ml6nKeBXSmgNy2rCyyauWgWpKCjnDAluqaJbVWJbAWyEKJdhaMeQCBC8ENABFQanKpuTutHfr7OcOfZCd3TkTT0qeV4KVdcWKmKpOKeWs9w7XUunw-1lwoHvJqDw6lJ08OpRHh_LkMKL8H7p1egD3dR56OEEYX99rdNIrjUZhq13UK1urz-E_49yOFA
CitedBy_id crossref_primary_10_1002_cpe_6630
crossref_primary_10_3390_sym14122568
crossref_primary_10_1007_s10586_022_03633_z
crossref_primary_10_1007_s11227_021_03770_z
crossref_primary_10_1016_j_cie_2023_109425
crossref_primary_10_1007_s40192_025_00412_7
crossref_primary_10_1016_j_aei_2025_103512
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1016_j_asoc_2025_113791
crossref_primary_10_3389_fgene_2021_644945
crossref_primary_10_1080_15397734_2024_2389109
crossref_primary_10_3390_biomimetics9090576
crossref_primary_10_3390_math12172708
crossref_primary_10_1049_gtd2_12400
crossref_primary_10_1016_j_heliyon_2024_e31771
crossref_primary_10_1007_s10489_022_03786_9
crossref_primary_10_1016_j_ress_2025_110922
crossref_primary_10_1016_j_ins_2022_08_035
crossref_primary_10_1109_ACCESS_2021_3067729
crossref_primary_10_1007_s10489_022_03808_6
crossref_primary_10_1007_s10586_025_05223_1
crossref_primary_10_3390_diagnostics13081422
crossref_primary_10_1007_s12008_025_02280_z
crossref_primary_10_1016_j_eti_2025_104219
crossref_primary_10_1016_j_measurement_2022_110813
crossref_primary_10_3390_biomimetics10010047
crossref_primary_10_1016_j_eswa_2022_116895
crossref_primary_10_1177_16878132221098898
crossref_primary_10_1016_j_engappai_2024_108560
crossref_primary_10_1007_s12530_022_09461_1
crossref_primary_10_1016_j_egyr_2024_11_028
crossref_primary_10_1016_j_asoc_2021_107582
crossref_primary_10_1007_s42235_023_00336_y
crossref_primary_10_1016_j_jnlest_2025_100334
crossref_primary_10_1007_s12652_021_03391_7
Cites_doi 10.1016/j.neucom.2020.01.022
10.1007/s00500-018-3199-5
10.1109/TEVC.2007.892759
10.1016/j.advengsoft.2016.01.008
10.1007/s11042-018-5840-9
10.1109/TEVC.2012.2204264
10.1016/j.cma.2004.09.007
10.1109/4235.585893
10.1016/j.cma.2005.09.006
10.1016/j.ejor.2006.08.008
10.1016/j.fss.2018.11.017
10.1016/j.eswa.2018.06.023
10.1109/ICNN.1995.488968
10.1016/j.cor.2009.02.006
10.1016/j.eswa.2017.04.023
10.1016/j.eswa.2015.10.039
10.1016/j.asoc.2018.09.014
10.1007/s10489-016-0825-8
10.1109/MCDM.2009.4938830
10.1016/j.asoc.2014.08.026
10.1016/j.apenergy.2017.05.029
10.1016/j.cie.2019.01.055
10.1016/j.cor.2015.04.003
10.1162/106365600568202
10.1016/j.neucom.2017.04.053
10.1007/s40747-017-0039-7
10.1016/j.eswa.2018.12.003
10.1007/s00500-010-0591-1
10.1109/TEVC.2016.2519378
10.1016/j.eswa.2015.07.043
10.1016/j.swevo.2019.02.003
10.1109/TEVC.2014.2378512
10.1016/j.amc.2019.124821
10.1007/s10489-017-1019-8
10.1007/s00158-019-02302-x
10.1109/TEVC.2009.2033671
10.1162/106365601750190406
10.1016/j.matcom.2019.06.017
10.1109/TEVC.2013.2281534
10.1109/TEVC.2013.2281535
10.1016/j.engappai.2019.103370
10.1109/CEC.2006.1688554
10.1109/TSMCA.2007.909595
10.1016/j.knosys.2017.07.018
10.1109/TEVC.2012.2227145
10.1109/TEVC.2007.894200
10.1007/s11042-017-4803-x
10.1109/TEVC.2008.919004
10.1016/j.neucom.2014.04.068
10.1109/TEVC.2010.2059031
10.1109/4235.996017
10.1162/evco.1994.2.3.221
10.1109/CEC.2011.5949792
10.1016/j.eswa.2019.113103
10.1016/j.eswa.2019.01.047
10.1109/TEVC.2014.2308305
10.1109/TEVC.2008.925798
10.1016/j.cnsns.2012.05.010
10.1023/A:1008202821328
10.1109/ACCESS.2020.2971249
10.1007/s13369-018-3155-9
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Mar 1, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 1, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.113844
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_113844
S0957417420306539
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-92ae20b16b48d1acb60a41e5ed0c0339e66a2d775c71fc1e27a7257abaa5500c3
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000602359000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Fri Jul 25 02:53:04 EDT 2025
Sat Nov 29 07:07:52 EST 2025
Tue Nov 18 20:55:30 EST 2025
Fri Feb 23 02:46:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Differential evolution
Multi-objective optimization
Whale optimization algorithm
Opposition-based learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-92ae20b16b48d1acb60a41e5ed0c0339e66a2d775c71fc1e27a7257abaa5500c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7682-6269
0000-0002-0666-7055
PQID 2487169815
PQPubID 2045477
ParticipantIDs proquest_journals_2487169815
crossref_citationtrail_10_1016_j_eswa_2020_113844
crossref_primary_10_1016_j_eswa_2020_113844
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113844
PublicationCentury 2000
PublicationDate 2021-03-01
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ewees, Abd Elaziz (b0115) 2020; 88
Li, Zhang, Kwong, Li, Wang (b0200) 2013; 18
Wang, Purshouse, Fleming (b0365) 2012; 17
Cai, X., Sun, H., Zhu, C., Li, Z., & Zhang, Q. (2018). Locating the boundaries of pareto fronts: A many-objective evolutionary algorithm based on corner solution search. arXiv preprint arXiv:1806.02967.
Das, Abraham, Konar (b0045) 2008; 38
Mirjalili, Saremi, Mirjalili, Coelho (b0260) 2016; 47
El Aziz, Ewees, Hassanien (b0085) 2017; 83
Ewees, Elaziz, Houssein (b0125) 2018; 112
Rahnamayan, Tizhoosh, Salama (b0310) 2008; 12
Shi, Zhong, Tang, Cheng (b0325) 2020; 387
Lechunga (b0180) 2002
Holland, Goldberg (b0150) 1989
Gandomi, Alavi (b0135) 2012; 17
Nebro, A.J., Durillo, J.J., Garcia-Nieto, J., Coello, C.C., Luna, F., & Alba, E. (2009). Smpso: A new pso-based metaheuristic for multi-objective optimization. In Computational intelligence in miulti-criteria decision-making, 2009. mcdm’09. ieee symposium on (pp. 66–73). IEEE.
Oliva, Cuevas (b0280) 2017
Lin, Chen, Zhan, Chen, Coello, Yin, Lin, Zhang (b0210) 2016; 20
Li, Deb, Zhang, Suganthan, Chen (b0190) 2019; 46
Deb, Jain (b0070) 2014; 18
Ibrahim, Oliva, Ewees, Lu (b0160) 2017
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization (pso). In: Proc. IEEE International Conference on Neural Networks, Perth, Australia (pp. 1942–1948).
Li, Zhang (b0195) 2009; 13
Zapotecas-Martínez, García-Nájera, López-Jaimes (b0390) 2019; 120
Deb, Beyer (b0065) 2001; 9
Mafarja, Mirjalili (b0230) 2017
Gong, Cai, Ling (b0140) 2010; 15
Zhang, Liu, Tsang, Virginas (b0400) 2010; 14
Abdel-Basset, M., Wang, G.-G., Sangaiah, A.K., & Rushdy, E. (2017). Krill herd algorithm based on cuckoo search for solving engineering optimization problems. Multimedia Tools and Applications, (pp. 1–24).
Mirjalili, Lewis (b0255) 2016; 95
Beume, Naujoks, Emmerich (b0020) 2007; 181
Zadeh, Sayadi, Kosari (b0385) 2019; 74
Mirjalili, Jangir, Saremi (b0245) 2017; 46
Srinivas, Deb (b0335) 1994; 2
Ergezer, M., & Simon, D. (2011). Oppositional biogeography-based optimization for combinatorial problems, (pp. 1496–1503).
Storn, Price (b0340) 1997; 11
Yang, Li, Liu, Zheng (b0375) 2013; 17
Mane, Rao (b0235) 2017; 12
Tongur, Ülker (b0350) 2016
Zouache, Arby, Nouioua, Abdelaziz (b0425) 2019; 129
Neggaz, Ewees, Abd Elaziz, Mafarja (b0275) 2020; 145
Deb (b0055) 2001; volume 16
Karaboga, Basturk (b0170) 2007
Mirjalili, Jangir, Mirjalili, Saremi, Trivedi (b0240) 2017; 134
Abd Elaziz, Oliva, Ewees, Xiong (b0005) 2019; 125
Wolpert, Macready (b0370) 1997; 1
Fleischer (b0130) 2003
Mirjalili, Mirjalili, Saremi, Faris, Aljarah (b0265) 2018; 48
Santana-Quintero, Hernández-Díaz, Molina, Coello, Caballero (b0315) 2010; 37
Zitzler, Deb, Thiele (b0420) 2000; 8
Cheng, Jin, Olhofer, Sendhoff (b0030) 2016; 20
Huband, Barone, While, Hingston (b0155) 2005
Das, Suganthan (b0050) 2011; 15
El Aziz, M.A., Ewees, A.A., & Hassanien, A.E. (2018a). Multi-objective whale optimization algorithm for content-based image retrieval. Multimedia Tools and Applications, (pp. 1–38).
Li, Wang, Yan, Li (b0205) 2015; 42
Cheng, Li, Tian, Zhang, Yang, Jin, Yao (b0035) 2017; 3
Hacibeyoglu, Alaykiran, Acilar, Tongur, Ulker (b0145) 2018; 43
Panagant, Bureerat, Tai (b0295) 2019; 60
Shi, Wang, Tang, Zhong (b0320) 2020; 381
Peng, Hu, Shi, Luo, Huang, Ghosh, Huang (b0300) 2020; 369
Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., & Tiwari, S. (2008). Multiobjective optimization test instances for the cec 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, technical report, 264.
Rahnamayan, S., Tizhoosh, H.R., & Salama, M.M. (2006). Opposition-based differential evolution algorithms, (pp. 2010–2017).
Jain, Deb (b0165) 2013; 18
Lwin, Qu, Kendall (b0220) 2014; 24
Coello, Lamont, Van Veldhuizen (b0040) 2007; volume 5
El Aziz, Ewees, Hassanien, Mudhsh, Xiong (b0095) 2018
Elaziz, Ewees, Ibrahim, Lu (b0100) 2020; 168
Ewees, Abd Elaziz, Al-Qaness, Khalil, Kim (b0120) 2020; 8
Yang, Deb (b0380) 2009
Lee, Geem (b0185) 2005; 194
Tongur, Ülker (b0355) 2019; 23
Lin, Zhu, Huang, Chen, Ming, Yu (b0215) 2015; 62
Zhang, Tian, Cheng, Jin (b0410) 2015; 19
Onwubolu, Davendra (b0290) 2009; volume 175
Zhang, Tian, Jin (b0415) 2014; 19
Tizhoosh (b0345) 2005; vol. 1
Ma, Liu, Qi, Gong, Yin, Li, Jiao, Wu (b0225) 2014; 146
Deb, Thiele, Laumanns, Zitzler (b0080) 2005
Mirjalili, Lewis (b0250) 2016; 95
Zhang, Li (b0395) 2007; 11
Becerra, Coello (b0015) 2006; 195
Deb, Pratap, Agarwal, Meyarivan (b0075) 2002; 6
Oliva, El Aziz, Hassanien (b0285) 2017; 200
Deb, Agrawal, Pratap, Meyarivan (b0060) 2000
Ergezer, Sikder (b0105) 2011
Simon (b0330) 2008; 12
Vitaliy, F. (2006). Differential evolution–in search of solutions.
Huband (10.1016/j.eswa.2020.113844_b0155) 2005
Shi (10.1016/j.eswa.2020.113844_b0320) 2020; 381
Zhang (10.1016/j.eswa.2020.113844_b0400) 2010; 14
Tongur (10.1016/j.eswa.2020.113844_b0355) 2019; 23
Gong (10.1016/j.eswa.2020.113844_b0140) 2010; 15
Deb (10.1016/j.eswa.2020.113844_b0055) 2001; volume 16
10.1016/j.eswa.2020.113844_b0110
Onwubolu (10.1016/j.eswa.2020.113844_b0290) 2009; volume 175
Mirjalili (10.1016/j.eswa.2020.113844_b0255) 2016; 95
Lwin (10.1016/j.eswa.2020.113844_b0220) 2014; 24
Santana-Quintero (10.1016/j.eswa.2020.113844_b0315) 2010; 37
Deb (10.1016/j.eswa.2020.113844_b0070) 2014; 18
Zouache (10.1016/j.eswa.2020.113844_b0425) 2019; 129
Wang (10.1016/j.eswa.2020.113844_b0365) 2012; 17
Zhang (10.1016/j.eswa.2020.113844_b0410) 2015; 19
Elaziz (10.1016/j.eswa.2020.113844_b0100) 2020; 168
Becerra (10.1016/j.eswa.2020.113844_b0015) 2006; 195
Li (10.1016/j.eswa.2020.113844_b0190) 2019; 46
Mirjalili (10.1016/j.eswa.2020.113844_b0240) 2017; 134
El Aziz (10.1016/j.eswa.2020.113844_b0085) 2017; 83
Das (10.1016/j.eswa.2020.113844_b0050) 2011; 15
Peng (10.1016/j.eswa.2020.113844_b0300) 2020; 369
Mane (10.1016/j.eswa.2020.113844_b0235) 2017; 12
Zitzler (10.1016/j.eswa.2020.113844_b0420) 2000; 8
El Aziz (10.1016/j.eswa.2020.113844_b0095) 2018
Li (10.1016/j.eswa.2020.113844_b0195) 2009; 13
Panagant (10.1016/j.eswa.2020.113844_b0295) 2019; 60
Zhang (10.1016/j.eswa.2020.113844_b0395) 2007; 11
Neggaz (10.1016/j.eswa.2020.113844_b0275) 2020; 145
10.1016/j.eswa.2020.113844_b0025
Gandomi (10.1016/j.eswa.2020.113844_b0135) 2012; 17
Holland (10.1016/j.eswa.2020.113844_b0150) 1989
Ewees (10.1016/j.eswa.2020.113844_b0115) 2020; 88
Mirjalili (10.1016/j.eswa.2020.113844_b0250) 2016; 95
Mirjalili (10.1016/j.eswa.2020.113844_b0245) 2017; 46
10.1016/j.eswa.2020.113844_b0305
Zapotecas-Martínez (10.1016/j.eswa.2020.113844_b0390) 2019; 120
Rahnamayan (10.1016/j.eswa.2020.113844_b0310) 2008; 12
Ma (10.1016/j.eswa.2020.113844_b0225) 2014; 146
Ergezer (10.1016/j.eswa.2020.113844_b0105) 2011
Ewees (10.1016/j.eswa.2020.113844_b0120) 2020; 8
10.1016/j.eswa.2020.113844_b0270
Ewees (10.1016/j.eswa.2020.113844_b0125) 2018; 112
Cheng (10.1016/j.eswa.2020.113844_b0035) 2017; 3
Jain (10.1016/j.eswa.2020.113844_b0165) 2013; 18
10.1016/j.eswa.2020.113844_b0175
10.1016/j.eswa.2020.113844_b0010
Beume (10.1016/j.eswa.2020.113844_b0020) 2007; 181
Hacibeyoglu (10.1016/j.eswa.2020.113844_b0145) 2018; 43
Yang (10.1016/j.eswa.2020.113844_b0375) 2013; 17
Zadeh (10.1016/j.eswa.2020.113844_b0385) 2019; 74
Abd Elaziz (10.1016/j.eswa.2020.113844_b0005) 2019; 125
Mirjalili (10.1016/j.eswa.2020.113844_b0260) 2016; 47
Deb (10.1016/j.eswa.2020.113844_b0080) 2005
Deb (10.1016/j.eswa.2020.113844_b0060) 2000
Deb (10.1016/j.eswa.2020.113844_b0065) 2001; 9
Yang (10.1016/j.eswa.2020.113844_b0380) 2009
Lin (10.1016/j.eswa.2020.113844_b0210) 2016; 20
Li (10.1016/j.eswa.2020.113844_b0200) 2013; 18
Ibrahim (10.1016/j.eswa.2020.113844_b0160) 2017
Lee (10.1016/j.eswa.2020.113844_b0185) 2005; 194
Wolpert (10.1016/j.eswa.2020.113844_b0370) 1997; 1
Das (10.1016/j.eswa.2020.113844_b0045) 2008; 38
Karaboga (10.1016/j.eswa.2020.113844_b0170) 2007
Oliva (10.1016/j.eswa.2020.113844_b0280) 2017
Lechunga (10.1016/j.eswa.2020.113844_b0180) 2002
Simon (10.1016/j.eswa.2020.113844_b0330) 2008; 12
Mafarja (10.1016/j.eswa.2020.113844_b0230) 2017
10.1016/j.eswa.2020.113844_b0360
Lin (10.1016/j.eswa.2020.113844_b0215) 2015; 62
Tizhoosh (10.1016/j.eswa.2020.113844_b0345) 2005; vol. 1
Coello (10.1016/j.eswa.2020.113844_b0040) 2007; volume 5
10.1016/j.eswa.2020.113844_b0405
Deb (10.1016/j.eswa.2020.113844_b0075) 2002; 6
Shi (10.1016/j.eswa.2020.113844_b0325) 2020; 387
10.1016/j.eswa.2020.113844_b0090
Fleischer (10.1016/j.eswa.2020.113844_b0130) 2003
Li (10.1016/j.eswa.2020.113844_b0205) 2015; 42
Tongur (10.1016/j.eswa.2020.113844_b0350) 2016
Srinivas (10.1016/j.eswa.2020.113844_b0335) 1994; 2
Zhang (10.1016/j.eswa.2020.113844_b0415) 2014; 19
Storn (10.1016/j.eswa.2020.113844_b0340) 1997; 11
Cheng (10.1016/j.eswa.2020.113844_b0030) 2016; 20
Oliva (10.1016/j.eswa.2020.113844_b0285) 2017; 200
Mirjalili (10.1016/j.eswa.2020.113844_b0265) 2018; 48
References_xml – start-page: 623
  year: 2011
  end-page: 628
  ident: b0105
  article-title: Survey of oppositional algorithms
  publication-title: 2011 14th International Conference on Computer and Information Technology (ICCIT)
– volume: 129
  start-page: 377
  year: 2019
  end-page: 391
  ident: b0425
  article-title: Multi-objective chicken swarm optimization: A novel algorithm for solving multi-objective optimization problems
  publication-title: Computers & Industrial Engineering
– reference: Nebro, A.J., Durillo, J.J., Garcia-Nieto, J., Coello, C.C., Luna, F., & Alba, E. (2009). Smpso: A new pso-based metaheuristic for multi-objective optimization. In Computational intelligence in miulti-criteria decision-making, 2009. mcdm’09. ieee symposium on (pp. 66–73). IEEE.
– volume: 146
  start-page: 48
  year: 2014
  end-page: 64
  ident: b0225
  article-title: Moea/d with opposition-based learning for multiobjective optimization problem
  publication-title: Neurocomputing
– volume: 47
  start-page: 106
  year: 2016
  end-page: 119
  ident: b0260
  article-title: d. S. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization
  publication-title: Expert Systems with Applications
– volume: 12
  start-page: 9774
  year: 2017
  end-page: 9793
  ident: b0235
  article-title: Many-objective optimization: Problems and evolutionary algorithms-a short review
  publication-title: International Journal of Applied Engineering Research
– reference: El Aziz, M.A., Ewees, A.A., & Hassanien, A.E. (2018a). Multi-objective whale optimization algorithm for content-based image retrieval. Multimedia Tools and Applications, (pp. 1–38).
– volume: 37
  start-page: 470
  year: 2010
  end-page: 480
  ident: b0315
  article-title: Demors: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems
  publication-title: Computers & Operations Research
– volume: 120
  start-page: 357
  year: 2019
  end-page: 371
  ident: b0390
  article-title: Multi-objective grey wolf optimizer based on decomposition
  publication-title: Expert Systems with Applications
– volume: 168
  start-page: 48
  year: 2020
  end-page: 75
  ident: b0100
  article-title: Opposition-based moth-flame optimization improved by differential evolution for feature selection
  publication-title: Mathematics and Computers in Simulation
– start-page: 156
  year: 2017
  end-page: 166
  ident: b0160
  article-title: Feature selection based on improved runner-root algorithm using chaotic singer map and opposition-based learning
  publication-title: International Conference on Neural Information Processing
– volume: 181
  start-page: 1653
  year: 2007
  end-page: 1669
  ident: b0020
  article-title: Sms-emoa: Multiobjective selection based on dominated hypervolume
  publication-title: European Journal of Operational Research
– reference: Abdel-Basset, M., Wang, G.-G., Sangaiah, A.K., & Rushdy, E. (2017). Krill herd algorithm based on cuckoo search for solving engineering optimization problems. Multimedia Tools and Applications, (pp. 1–24).
– start-page: 210
  year: 2009
  end-page: 214
  ident: b0380
  article-title: Cuckoo search via lévy flights
  publication-title: 2009. NaBIC 2009. World Congress on Nature & Biologically Inspired Computing
– volume: volume 16
  year: 2001
  ident: b0055
  publication-title: Multi-objective optimization using evolutionary algorithms
– volume: volume 5
  year: 2007
  ident: b0040
  publication-title: Evolutionary algorithms for solving multi-objective problems
– volume: 46
  start-page: 104
  year: 2019
  end-page: 117
  ident: b0190
  article-title: Comparison between moea/d and nsga-iii on a set of novel many and multi-objective benchmark problems with challenging difficulties
  publication-title: Swarm and Evolutionary Computation
– volume: 14
  start-page: 456
  year: 2010
  end-page: 474
  ident: b0400
  article-title: Expensive multiobjective optimization by moea/d with gaussian process model
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization (pso). In: Proc. IEEE International Conference on Neural Networks, Perth, Australia (pp. 1942–1948).
– volume: 19
  start-page: 761
  year: 2014
  end-page: 776
  ident: b0415
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 387
  start-page: 241
  year: 2020
  end-page: 254
  ident: b0325
  article-title: Hybrid-driven finite-time h sampling synchronization control for coupling memory complex networks with stochastic cyber attacks
  publication-title: Neurocomputing
– volume: 46
  start-page: 79
  year: 2017
  end-page: 95
  ident: b0245
  article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
  publication-title: Applied Intelligence
– volume: volume 175
  year: 2009
  ident: b0290
  publication-title: Differential evolution: a handbook for global permutation-based combinatorial optimization
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b0395
  article-title: Moea/d: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 194
  start-page: 3902
  year: 2005
  end-page: 3933
  ident: b0185
  article-title: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice
  publication-title: Computer Methods in Applied Mechanics and Engineering
– start-page: 280
  year: 2005
  end-page: 295
  ident: b0155
  article-title: A scalable multi-objective test problem toolkit
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– volume: 48
  start-page: 805
  year: 2018
  end-page: 820
  ident: b0265
  article-title: Grasshopper optimization algorithm for multi-objective optimization problems
  publication-title: Applied Intelligence
– year: 1989
  ident: b0150
  article-title: Genetic algorithms in search, optimization and machine
– volume: 19
  start-page: 201
  year: 2015
  end-page: 213
  ident: b0410
  article-title: An efficient approach to nondominated sorting for evolutionary multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 15
  start-page: 4
  year: 2011
  end-page: 31
  ident: b0050
  article-title: Differential evolution: A survey of the state-of-the-art
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 23
  start-page: 5469
  year: 2019
  end-page: 5484
  ident: b0355
  article-title: Pso-based improved multi-flocks migrating birds optimization (imfmbo) algorithm for solution of discrete problems
  publication-title: Soft Computing
– volume: 9
  start-page: 197
  year: 2001
  end-page: 221
  ident: b0065
  article-title: Self-adaptive genetic algorithms with simulated binary crossover
  publication-title: Evolutionary Computation
– volume: vol. 1
  start-page: 695
  year: 2005
  end-page: 701
  ident: b0345
  article-title: Opposition-based learning: a new scheme for machine intelligence
  publication-title: Computational intelligence for modelling, control and automation, 2005 and international conference on intelligent agents, web technologies and internet commerce, international conference on
– volume: 18
  start-page: 909
  year: 2013
  end-page: 923
  ident: b0200
  article-title: Stable matching-based selection in evolutionary multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 88
  year: 2020
  ident: b0115
  article-title: Performance analysis of chaotic multi-verse harris hawks optimization: a case study on solving engineering problems
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0250
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
– volume: 24
  start-page: 757
  year: 2014
  end-page: 772
  ident: b0220
  article-title: A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization
  publication-title: Applied Soft Computing
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0075
  article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 3
  start-page: 67
  year: 2017
  end-page: 81
  ident: b0035
  article-title: A benchmark test suite for evolutionary many-objective optimization
  publication-title: Complex & Intelligent Systems
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0340
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b0370
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 305
  year: 2016
  end-page: 316
  ident: b0350
  article-title: B-spline curve knot estimation by using niched pareto genetic algorithm (npga)
  publication-title: Intelligent and Evolutionary Systems
– start-page: 1051
  year: 2002
  end-page: 1056
  ident: b0180
  article-title: Mopso: A proposal for multiple objective particle swarm optimizations
  publication-title: Proceedings of the 2002 Congress on Evolutionary Computation, Part of the 2002 IEEE World Congress on Computational Intelligence
– reference: Cai, X., Sun, H., Zhu, C., Li, Z., & Zhang, Q. (2018). Locating the boundaries of pareto fronts: A many-objective evolutionary algorithm based on corner solution search. arXiv preprint arXiv:1806.02967.
– start-page: 519
  year: 2003
  end-page: 533
  ident: b0130
  article-title: The measure of pareto optima applications to multi-objective metaheuristics
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– volume: 17
  start-page: 474
  year: 2012
  end-page: 494
  ident: b0365
  article-title: Preference-inspired coevolutionary algorithms for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 8
  start-page: 26304
  year: 2020
  end-page: 26315
  ident: b0120
  article-title: Improved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentation
  publication-title: IEEE Access
– volume: 13
  start-page: 284
  year: 2009
  end-page: 302
  ident: b0195
  article-title: Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 83
  start-page: 242
  year: 2017
  end-page: 256
  ident: b0085
  article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation
  publication-title: Expert Systems with Applications
– start-page: 23
  year: 2018
  end-page: 39
  ident: b0095
  article-title: Multi-objective whale optimization algorithm for multilevel thresholding segmentation
  publication-title: Advances in Soft Computing and Machine Learning in Image Processing
– start-page: 789
  year: 2007
  end-page: 798
  ident: b0170
  article-title: Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems
  publication-title: International Fuzzy Systems Association World Congress
– volume: 112
  start-page: 156
  year: 2018
  end-page: 172
  ident: b0125
  article-title: Improved grasshopper optimization algorithm using opposition-based learning
  publication-title: Expert Systems with Applications
– volume: 12
  start-page: 64
  year: 2008
  end-page: 79
  ident: b0310
  article-title: Opposition-based differential evolution
  publication-title: IEEE Transactions on Evolutionary computation
– volume: 15
  start-page: 645
  year: 2010
  end-page: 665
  ident: b0140
  article-title: De/bbo: A hybrid differential evolution with biogeography-based optimization for global numerical optimization
  publication-title: Soft Computing
– volume: 20
  start-page: 711
  year: 2016
  end-page: 729
  ident: b0210
  article-title: A hybrid evolutionary immune algorithm for multiobjective optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 62
  start-page: 95
  year: 2015
  end-page: 111
  ident: b0215
  article-title: A novel hybrid multi-objective immune algorithm with adaptive differential evolution
  publication-title: Computers & Operations Research
– volume: 125
  start-page: 112
  year: 2019
  end-page: 129
  ident: b0005
  article-title: Multi-level thresholding-based grey scale image segmentation using multi-objective multi-verse optimizer
  publication-title: Expert Systems with Applications
– volume: 134
  start-page: 50
  year: 2017
  end-page: 71
  ident: b0240
  article-title: Optimization of problems with multiple objectives using the multi-verse optimization algorithm
  publication-title: Knowledge-Based Systems
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0255
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
– volume: 145
  year: 2020
  ident: b0275
  article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection
  publication-title: Expert Systems with Applications
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b0070
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints
  publication-title: IEEE Trans. Evolutionary Computation
– volume: 369
  year: 2020
  ident: b0300
  article-title: A novel optimal bipartite consensus control scheme for unknown multi-agent systems via model-free reinforcement learning
  publication-title: Applied Mathematics and Computation
– reference: Rahnamayan, S., Tizhoosh, H.R., & Salama, M.M. (2006). Opposition-based differential evolution algorithms, (pp. 2010–2017).
– year: 2005
  ident: b0080
  article-title: Scalable test problems for evolutionary multiobjective optimization
– year: 2017
  ident: b0230
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
– volume: 17
  start-page: 721
  year: 2013
  end-page: 736
  ident: b0375
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 17
  start-page: 4831
  year: 2012
  end-page: 4845
  ident: b0135
  article-title: Krill herd: a new bio-inspired optimization algorithm
  publication-title: Communications in Nonlinear Science and Numerical Simulation
– start-page: 159
  year: 2017
  end-page: 178
  ident: b0280
  article-title: An emo improvement: Opposition-based electromagnetism-like for global optimization.
  publication-title: Advances and Applications of Optimised Algorithms in Image Processing
– volume: 12
  start-page: 702
  year: 2008
  end-page: 713
  ident: b0330
  article-title: Biogeography-based optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 38
  start-page: 218
  year: 2008
  end-page: 237
  ident: b0045
  article-title: Automatic clustering using an improved differential evolution algorithm
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
– volume: 60
  start-page: 1937
  year: 2019
  end-page: 1955
  ident: b0295
  article-title: A novel self-adaptive hybrid multi-objective meta-heuristic for reliability design of trusses with simultaneous topology, shape and sizing optimisation design variables
  publication-title: Structural and Multidisciplinary Optimization
– volume: 2
  start-page: 221
  year: 1994
  end-page: 248
  ident: b0335
  article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolutionary Computation
– volume: 74
  start-page: 760
  year: 2019
  end-page: 782
  ident: b0385
  article-title: An efficient metamodel-based multi-objective multidisciplinary design optimization framework
  publication-title: Applied Soft Computing
– reference: Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., & Tiwari, S. (2008). Multiobjective optimization test instances for the cec 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, technical report, 264.
– reference: Vitaliy, F. (2006). Differential evolution–in search of solutions.
– volume: 43
  start-page: 7499
  year: 2018
  end-page: 7520
  ident: b0145
  article-title: A comparative analysis of metaheuristic approaches for multidimensional two-way number partitioning problem
  publication-title: Arabian Journal for Science and Engineering
– volume: 42
  start-page: 8881
  year: 2015
  end-page: 8895
  ident: b0205
  article-title: Ps-abc: A hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems
  publication-title: Expert Systems With Applications
– start-page: 849
  year: 2000
  end-page: 858
  ident: b0060
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii
  publication-title: International Conference on Parallel Problem Solving From Nature
– volume: 195
  start-page: 4303
  year: 2006
  end-page: 4322
  ident: b0015
  article-title: Cultured differential evolution for constrained optimization
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 381
  start-page: 1
  year: 2020
  end-page: 25
  ident: b0320
  article-title: Reliable asynchronous sampled-data filtering of t–s fuzzy uncertain delayed neural networks with stochastic switched topologies
  publication-title: Fuzzy Sets and Systems
– volume: 200
  start-page: 141
  year: 2017
  end-page: 154
  ident: b0285
  article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
  publication-title: Applied Energy
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: b0030
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 18
  start-page: 602
  year: 2013
  end-page: 622
  ident: b0165
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Ergezer, M., & Simon, D. (2011). Oppositional biogeography-based optimization for combinatorial problems, (pp. 1496–1503).
– volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: b0420
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evolutionary Computation
– volume: 387
  start-page: 241
  year: 2020
  ident: 10.1016/j.eswa.2020.113844_b0325
  article-title: Hybrid-driven finite-time h sampling synchronization control for coupling memory complex networks with stochastic cyber attacks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.022
– volume: 23
  start-page: 5469
  year: 2019
  ident: 10.1016/j.eswa.2020.113844_b0355
  article-title: Pso-based improved multi-flocks migrating birds optimization (imfmbo) algorithm for solution of discrete problems
  publication-title: Soft Computing
  doi: 10.1007/s00500-018-3199-5
– volume: 11
  start-page: 712
  year: 2007
  ident: 10.1016/j.eswa.2020.113844_b0395
  article-title: Moea/d: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.892759
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.eswa.2020.113844_b0255
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 10.1016/j.eswa.2020.113844_b0090
  doi: 10.1007/s11042-018-5840-9
– volume: 17
  start-page: 474
  year: 2012
  ident: 10.1016/j.eswa.2020.113844_b0365
  article-title: Preference-inspired coevolutionary algorithms for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2012.2204264
– start-page: 156
  year: 2017
  ident: 10.1016/j.eswa.2020.113844_b0160
  article-title: Feature selection based on improved runner-root algorithm using chaotic singer map and opposition-based learning
– volume: 194
  start-page: 3902
  year: 2005
  ident: 10.1016/j.eswa.2020.113844_b0185
  article-title: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2004.09.007
– volume: 1
  start-page: 67
  year: 1997
  ident: 10.1016/j.eswa.2020.113844_b0370
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– volume: vol. 1
  start-page: 695
  year: 2005
  ident: 10.1016/j.eswa.2020.113844_b0345
  article-title: Opposition-based learning: a new scheme for machine intelligence
– volume: 195
  start-page: 4303
  year: 2006
  ident: 10.1016/j.eswa.2020.113844_b0015
  article-title: Cultured differential evolution for constrained optimization
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2005.09.006
– year: 1989
  ident: 10.1016/j.eswa.2020.113844_b0150
– volume: 181
  start-page: 1653
  year: 2007
  ident: 10.1016/j.eswa.2020.113844_b0020
  article-title: Sms-emoa: Multiobjective selection based on dominated hypervolume
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.08.008
– volume: 381
  start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2020.113844_b0320
  article-title: Reliable asynchronous sampled-data filtering of t–s fuzzy uncertain delayed neural networks with stochastic switched topologies
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2018.11.017
– volume: 112
  start-page: 156
  year: 2018
  ident: 10.1016/j.eswa.2020.113844_b0125
  article-title: Improved grasshopper optimization algorithm using opposition-based learning
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.06.023
– ident: 10.1016/j.eswa.2020.113844_b0175
  doi: 10.1109/ICNN.1995.488968
– volume: 37
  start-page: 470
  year: 2010
  ident: 10.1016/j.eswa.2020.113844_b0315
  article-title: Demors: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2009.02.006
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.eswa.2020.113844_b0250
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 83
  start-page: 242
  year: 2017
  ident: 10.1016/j.eswa.2020.113844_b0085
  article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.04.023
– volume: 47
  start-page: 106
  year: 2016
  ident: 10.1016/j.eswa.2020.113844_b0260
  article-title: d. S. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.10.039
– start-page: 210
  year: 2009
  ident: 10.1016/j.eswa.2020.113844_b0380
  article-title: Cuckoo search via lévy flights
– volume: 74
  start-page: 760
  year: 2019
  ident: 10.1016/j.eswa.2020.113844_b0385
  article-title: An efficient metamodel-based multi-objective multidisciplinary design optimization framework
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.09.014
– volume: 46
  start-page: 79
  year: 2017
  ident: 10.1016/j.eswa.2020.113844_b0245
  article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-016-0825-8
– start-page: 519
  year: 2003
  ident: 10.1016/j.eswa.2020.113844_b0130
  article-title: The measure of pareto optima applications to multi-objective metaheuristics
– ident: 10.1016/j.eswa.2020.113844_b0270
  doi: 10.1109/MCDM.2009.4938830
– volume: 24
  start-page: 757
  year: 2014
  ident: 10.1016/j.eswa.2020.113844_b0220
  article-title: A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.08.026
– volume: 12
  start-page: 9774
  year: 2017
  ident: 10.1016/j.eswa.2020.113844_b0235
  article-title: Many-objective optimization: Problems and evolutionary algorithms-a short review
  publication-title: International Journal of Applied Engineering Research
– volume: 200
  start-page: 141
  year: 2017
  ident: 10.1016/j.eswa.2020.113844_b0285
  article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.05.029
– volume: 129
  start-page: 377
  year: 2019
  ident: 10.1016/j.eswa.2020.113844_b0425
  article-title: Multi-objective chicken swarm optimization: A novel algorithm for solving multi-objective optimization problems
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2019.01.055
– volume: 62
  start-page: 95
  year: 2015
  ident: 10.1016/j.eswa.2020.113844_b0215
  article-title: A novel hybrid multi-objective immune algorithm with adaptive differential evolution
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2015.04.003
– volume: 8
  start-page: 173
  year: 2000
  ident: 10.1016/j.eswa.2020.113844_b0420
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568202
– year: 2017
  ident: 10.1016/j.eswa.2020.113844_b0230
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– ident: 10.1016/j.eswa.2020.113844_b0025
– volume: 3
  start-page: 67
  year: 2017
  ident: 10.1016/j.eswa.2020.113844_b0035
  article-title: A benchmark test suite for evolutionary many-objective optimization
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-017-0039-7
– volume: 120
  start-page: 357
  year: 2019
  ident: 10.1016/j.eswa.2020.113844_b0390
  article-title: Multi-objective grey wolf optimizer based on decomposition
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.12.003
– volume: 15
  start-page: 645
  year: 2010
  ident: 10.1016/j.eswa.2020.113844_b0140
  article-title: De/bbo: A hybrid differential evolution with biogeography-based optimization for global numerical optimization
  publication-title: Soft Computing
  doi: 10.1007/s00500-010-0591-1
– start-page: 159
  year: 2017
  ident: 10.1016/j.eswa.2020.113844_b0280
  article-title: An emo improvement: Opposition-based electromagnetism-like for global optimization.
– volume: 20
  start-page: 773
  year: 2016
  ident: 10.1016/j.eswa.2020.113844_b0030
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2016.2519378
– volume: 18
  start-page: 909
  year: 2013
  ident: 10.1016/j.eswa.2020.113844_b0200
  article-title: Stable matching-based selection in evolutionary multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 42
  start-page: 8881
  year: 2015
  ident: 10.1016/j.eswa.2020.113844_b0205
  article-title: Ps-abc: A hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems
  publication-title: Expert Systems With Applications
  doi: 10.1016/j.eswa.2015.07.043
– volume: volume 16
  year: 2001
  ident: 10.1016/j.eswa.2020.113844_b0055
– volume: 46
  start-page: 104
  year: 2019
  ident: 10.1016/j.eswa.2020.113844_b0190
  article-title: Comparison between moea/d and nsga-iii on a set of novel many and multi-objective benchmark problems with challenging difficulties
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2019.02.003
– volume: 19
  start-page: 761
  year: 2014
  ident: 10.1016/j.eswa.2020.113844_b0415
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2014.2378512
– volume: volume 5
  year: 2007
  ident: 10.1016/j.eswa.2020.113844_b0040
– start-page: 280
  year: 2005
  ident: 10.1016/j.eswa.2020.113844_b0155
  article-title: A scalable multi-objective test problem toolkit
– start-page: 1051
  year: 2002
  ident: 10.1016/j.eswa.2020.113844_b0180
  article-title: Mopso: A proposal for multiple objective particle swarm optimizations
– start-page: 623
  year: 2011
  ident: 10.1016/j.eswa.2020.113844_b0105
  article-title: Survey of oppositional algorithms
– volume: 369
  year: 2020
  ident: 10.1016/j.eswa.2020.113844_b0300
  article-title: A novel optimal bipartite consensus control scheme for unknown multi-agent systems via model-free reinforcement learning
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2019.124821
– volume: 48
  start-page: 805
  year: 2018
  ident: 10.1016/j.eswa.2020.113844_b0265
  article-title: Grasshopper optimization algorithm for multi-objective optimization problems
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-017-1019-8
– volume: 60
  start-page: 1937
  year: 2019
  ident: 10.1016/j.eswa.2020.113844_b0295
  article-title: A novel self-adaptive hybrid multi-objective meta-heuristic for reliability design of trusses with simultaneous topology, shape and sizing optimisation design variables
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-019-02302-x
– start-page: 849
  year: 2000
  ident: 10.1016/j.eswa.2020.113844_b0060
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii
– volume: 14
  start-page: 456
  year: 2010
  ident: 10.1016/j.eswa.2020.113844_b0400
  article-title: Expensive multiobjective optimization by moea/d with gaussian process model
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2009.2033671
– volume: 20
  start-page: 711
  year: 2016
  ident: 10.1016/j.eswa.2020.113844_b0210
  article-title: A hybrid evolutionary immune algorithm for multiobjective optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 9
  start-page: 197
  year: 2001
  ident: 10.1016/j.eswa.2020.113844_b0065
  article-title: Self-adaptive genetic algorithms with simulated binary crossover
  publication-title: Evolutionary Computation
  doi: 10.1162/106365601750190406
– start-page: 23
  year: 2018
  ident: 10.1016/j.eswa.2020.113844_b0095
  article-title: Multi-objective whale optimization algorithm for multilevel thresholding segmentation
– volume: 168
  start-page: 48
  year: 2020
  ident: 10.1016/j.eswa.2020.113844_b0100
  article-title: Opposition-based moth-flame optimization improved by differential evolution for feature selection
  publication-title: Mathematics and Computers in Simulation
  doi: 10.1016/j.matcom.2019.06.017
– volume: 18
  start-page: 602
  year: 2013
  ident: 10.1016/j.eswa.2020.113844_b0165
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281534
– volume: 18
  start-page: 577
  year: 2014
  ident: 10.1016/j.eswa.2020.113844_b0070
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints
  publication-title: IEEE Trans. Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281535
– year: 2005
  ident: 10.1016/j.eswa.2020.113844_b0080
– volume: 88
  year: 2020
  ident: 10.1016/j.eswa.2020.113844_b0115
  article-title: Performance analysis of chaotic multi-verse harris hawks optimization: a case study on solving engineering problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2019.103370
– ident: 10.1016/j.eswa.2020.113844_b0305
  doi: 10.1109/CEC.2006.1688554
– volume: 38
  start-page: 218
  year: 2008
  ident: 10.1016/j.eswa.2020.113844_b0045
  article-title: Automatic clustering using an improved differential evolution algorithm
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
  doi: 10.1109/TSMCA.2007.909595
– volume: 134
  start-page: 50
  year: 2017
  ident: 10.1016/j.eswa.2020.113844_b0240
  article-title: Optimization of problems with multiple objectives using the multi-verse optimization algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.07.018
– start-page: 789
  year: 2007
  ident: 10.1016/j.eswa.2020.113844_b0170
  article-title: Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems
– ident: 10.1016/j.eswa.2020.113844_b0405
– volume: 17
  start-page: 721
  year: 2013
  ident: 10.1016/j.eswa.2020.113844_b0375
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2012.2227145
– volume: 12
  start-page: 64
  year: 2008
  ident: 10.1016/j.eswa.2020.113844_b0310
  article-title: Opposition-based differential evolution
  publication-title: IEEE Transactions on Evolutionary computation
  doi: 10.1109/TEVC.2007.894200
– ident: 10.1016/j.eswa.2020.113844_b0010
  doi: 10.1007/s11042-017-4803-x
– volume: 12
  start-page: 702
  year: 2008
  ident: 10.1016/j.eswa.2020.113844_b0330
  article-title: Biogeography-based optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.919004
– volume: volume 175
  year: 2009
  ident: 10.1016/j.eswa.2020.113844_b0290
– volume: 146
  start-page: 48
  year: 2014
  ident: 10.1016/j.eswa.2020.113844_b0225
  article-title: Moea/d with opposition-based learning for multiobjective optimization problem
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.04.068
– volume: 15
  start-page: 4
  year: 2011
  ident: 10.1016/j.eswa.2020.113844_b0050
  article-title: Differential evolution: A survey of the state-of-the-art
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2010.2059031
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.eswa.2020.113844_b0075
  article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 2
  start-page: 221
  year: 1994
  ident: 10.1016/j.eswa.2020.113844_b0335
  article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1994.2.3.221
– ident: 10.1016/j.eswa.2020.113844_b0110
  doi: 10.1109/CEC.2011.5949792
– volume: 145
  year: 2020
  ident: 10.1016/j.eswa.2020.113844_b0275
  article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.113103
– volume: 125
  start-page: 112
  year: 2019
  ident: 10.1016/j.eswa.2020.113844_b0005
  article-title: Multi-level thresholding-based grey scale image segmentation using multi-objective multi-verse optimizer
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.01.047
– volume: 19
  start-page: 201
  year: 2015
  ident: 10.1016/j.eswa.2020.113844_b0410
  article-title: An efficient approach to nondominated sorting for evolutionary multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2014.2308305
– volume: 13
  start-page: 284
  year: 2009
  ident: 10.1016/j.eswa.2020.113844_b0195
  article-title: Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.925798
– volume: 17
  start-page: 4831
  year: 2012
  ident: 10.1016/j.eswa.2020.113844_b0135
  article-title: Krill herd: a new bio-inspired optimization algorithm
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2012.05.010
– start-page: 305
  year: 2016
  ident: 10.1016/j.eswa.2020.113844_b0350
  article-title: B-spline curve knot estimation by using niched pareto genetic algorithm (npga)
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.eswa.2020.113844_b0340
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– ident: 10.1016/j.eswa.2020.113844_b0360
– volume: 8
  start-page: 26304
  year: 2020
  ident: 10.1016/j.eswa.2020.113844_b0120
  article-title: Improved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2971249
– volume: 43
  start-page: 7499
  year: 2018
  ident: 10.1016/j.eswa.2020.113844_b0145
  article-title: A comparative analysis of metaheuristic approaches for multidimensional two-way number partitioning problem
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-018-3155-9
SSID ssj0017007
Score 2.4984946
Snippet •A new multi-objective optimization method used OBL strategy, WOA and DE algorithms•It combines DE and the OBL to improve the performance of the WOA•The MWDEO...
The optimization problems are divided into a single objective and multi-objective. Single objective optimization has only one objective function; whereas,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113844
SubjectTerms Differential evolution
Evolutionary algorithms
Evolutionary computation
Machine learning
Multi-objective optimization
Multiple objective analysis
Opposition-based learning
Optimization algorithms
Pareto optimization
Whale optimization algorithm
Title A new multi-objective optimization algorithm combined with opposition-based learning
URI https://dx.doi.org/10.1016/j.eswa.2020.113844
https://www.proquest.com/docview/2487169815
Volume 165
WOSCitedRecordID wos000602359000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcuvBELC_KBW-Qqduw4PkaoCBCskChSb8FJnD7UJlUbuqv99WvHdlqKWAESlyiKkjjyfBnPjL-ZAeCNkNqoFbRCuGIMUSowkiLGJvUJx6rUHovqirh-4hcXyWQivgwG330uzG7J6zq5uhLr_ypqfU0L26TO_oW4-5fqC_pcC10ftdj18Y8En5ou4ZYoiJp8YRVa0GjVsHI5l4FcTpvNvJ2tDKNcu8aegt6sPYcLmdWt9D0lpj_F701x5NaVgPbJcQfb4L2NfqmsCkpnesUN0uF-p6kMRkt5Pe9i15-bmVy5DKsu2Dvf2S2ouZo2hzEJckDKsoEynyyzZybZiCNHFNumPENl9W3CIxRz2ySxV8i2e8Qvyt3GGRZDtb00FaNI15AmoXS_lPUEw69mMDMWMT4Ri8QdcEo4E1p1n6YfRpOP_U4TD21Kvf84l1hlOYDHI_3OeDlaxjvbZPwQ3HdOBUwtGB6Bgaofgwe-YQd0-vsJGKdQYwMeYQMeYgP22IAeG9CIGB5jA3psPAXf3o3Gb98j11YDFRFJWiSIVCTMcZzTpMSyyONQUqyYKsMijCKh4liSknNWcFwVWBEuuVbsMpdSu7NhET0DJ3VTq-cAVgnLSRVThcOEqiiWoaqwNjrLgrMyL6IzgP18ZYWrOW9anywzTy5cZGaOMzPHmZ3jMxD0z6xtxZVb72ZeDJmzGa0tmGnU3PrcuZdZ5n7ebUaoCR-IBLMX__jal-De_n84Byft5od6Be4Wu3a-3bx22LsB_6-csA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+multi-objective+optimization+algorithm+combined+with+opposition-based+learning&rft.jtitle=Expert+systems+with+applications&rft.au=Ewees%2C+Ahmed+A.&rft.au=Abd+Elaziz%2C+Mohamed&rft.au=Oliva%2C+Diego&rft.date=2021-03-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=165&rft_id=info:doi/10.1016%2Fj.eswa.2020.113844&rft.externalDocID=S0957417420306539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon