An effective multi-start iterated greedy algorithm to minimize makespan for the distributed permutation flowshop scheduling problem with preventive maintenance

•We study a distributed flowshop problem with preventive maintenance.•We present a novel multi-start iterated greedy algorithm.•An improved NEH with dropout is proposed to generate searching starting-point.•A destruction with the tournament selection is well designed.•The effective of the iterated g...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 169; p. 114495
Main Authors: Mao, Jia-yang, Pan, Quan-ke, Miao, Zhong-hua, Gao, Liang
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01.05.2021
Elsevier BV
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •We study a distributed flowshop problem with preventive maintenance.•We present a novel multi-start iterated greedy algorithm.•An improved NEH with dropout is proposed to generate searching starting-point.•A destruction with the tournament selection is well designed.•The effective of the iterated greedy is proved by extensive experiments. In recent years, distributed scheduling problems have been well studied for their close connection with multi-factory production networks. However, the maintenance operations that are commonly carried out on a system to restore it to a specific state are seldom taken into consideration. In this paper, we study a distributed permutation flowshop scheduling problem with preventive maintenance operation (PM/DPFSP). A multi-start iterated greedy (MSIG) algorithm is proposed to minimize the makespan. An improved heuristic is presented for the initialization and re-initialization by adding a dropout operation to NEH2 to generate solutions with a high level of quality and disperstiveness. A destruction phase with the tournament selection and a construction phase with an enhanced strategy are introduced to avoid local optima. A local search based on three effective operators is integrated into the MSIG to reinforce local neighborhood solution exploitation. In addition, a restart strategy is adpoted if a solution has not been improved in a certain number of consecutive iterations. We conducted extensive experiments to test the performance of the presented MSIG. The computational results indicate that the presented MSIG has many promising advantages in solving the PM/DPFSP under consideration.
AbstractList In recent years, distributed scheduling problems have been well studied for their close connection with multi-factory production networks. However, the maintenance operations that are commonly carried out on a system to restore it to a specific state are seldom taken into consideration. In this paper, we study a distributed permutation flowshop scheduling problem with preventive maintenance operation (PM/DPFSP). A multi-start iterated greedy (MSIG) algorithm is proposed to minimize the makespan. An improved heuristic is presented for the initialization and re-initialization by adding a dropout operation to NEH2 to generate solutions with a high level of quality and disperstiveness. A destruction phase with the tournament selection and a construction phase with an enhanced strategy are introduced to avoid local optima. A local search based on three effective operators is integrated into the MSIG to reinforce local neighborhood solution exploitation. In addition, a restart strategy is adpoted if a solution has not been improved in a certain number of consecutive iterations. We conducted extensive experiments to test the performance of the presented MSIG. The computational results indicate that the presented MSIG has many promising advantages in solving the PM/DPFSP under consideration.
•We study a distributed flowshop problem with preventive maintenance.•We present a novel multi-start iterated greedy algorithm.•An improved NEH with dropout is proposed to generate searching starting-point.•A destruction with the tournament selection is well designed.•The effective of the iterated greedy is proved by extensive experiments. In recent years, distributed scheduling problems have been well studied for their close connection with multi-factory production networks. However, the maintenance operations that are commonly carried out on a system to restore it to a specific state are seldom taken into consideration. In this paper, we study a distributed permutation flowshop scheduling problem with preventive maintenance operation (PM/DPFSP). A multi-start iterated greedy (MSIG) algorithm is proposed to minimize the makespan. An improved heuristic is presented for the initialization and re-initialization by adding a dropout operation to NEH2 to generate solutions with a high level of quality and disperstiveness. A destruction phase with the tournament selection and a construction phase with an enhanced strategy are introduced to avoid local optima. A local search based on three effective operators is integrated into the MSIG to reinforce local neighborhood solution exploitation. In addition, a restart strategy is adpoted if a solution has not been improved in a certain number of consecutive iterations. We conducted extensive experiments to test the performance of the presented MSIG. The computational results indicate that the presented MSIG has many promising advantages in solving the PM/DPFSP under consideration.
ArticleNumber 114495
Author Miao, Zhong-hua
Gao, Liang
Pan, Quan-ke
Mao, Jia-yang
Author_xml – sequence: 1
  givenname: Jia-yang
  surname: Mao
  fullname: Mao, Jia-yang
  email: maojy1996@qq.com
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, PR China
– sequence: 2
  givenname: Quan-ke
  surname: Pan
  fullname: Pan, Quan-ke
  email: panquanke@shu.edu.cn
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, PR China
– sequence: 3
  givenname: Zhong-hua
  surname: Miao
  fullname: Miao, Zhong-hua
  email: zhhmiao@shu.edu.cn
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, PR China
– sequence: 4
  givenname: Liang
  surname: Gao
  fullname: Gao, Liang
  email: gaoliang@mai.hust.edu.cn
  organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science & Technology, Wuhan, PR China
BookMark eNp9kU2P1CAYgIlZE2dX_4AnEs8doaWlTbxsNn4lm3jRM6HwMvOOLVSgM1n_jH9VJvXkYcOBAO_zfvDckhsfPBDylrM9Z7x7f9pDuuh9zepywYUY2hdkx3vZVJ0cmhuyY0MrK8GleEVuUzoxxiVjckf-3HsKzoHJeAY6r1PGKmUdM8UMUWew9BAB7BPV0yFEzMeZ5kBn9Djj70Lon5AW7akLkeYjUIspRxzXK7lAnNesM4byPoVLOoaFJnMEu07oD3SJYZxgppeSthzgDH5rQ6PP4LU38Jq8dHpK8Obffkd-fPr4_eFL9fjt89eH-8fKNHWfq951Q9eOnR1r46BuHdMAfGjLcqMVICzjfS9kPUpwMBon2xYa1ohaaOGgb-7Iuy1v6enXCimrU1ijLyVV3Ra2HQbGSlS_RZkYUorglMFtvhw1ToozddWhTuqqQ111qE1HQev_0CXirOPT89CHDYIy-hkhqmQQyrdYjEWZsgGfw_8Ctrmrwg
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124223
crossref_primary_10_1016_j_knosys_2022_108413
crossref_primary_10_1016_j_swevo_2025_102134
crossref_primary_10_1080_01605682_2024_2337703
crossref_primary_10_1016_j_eswa_2021_115903
crossref_primary_10_26599_TST_2023_9010075
crossref_primary_10_3390_math10193446
crossref_primary_10_23919_CSMS_2025_0001
crossref_primary_10_1016_j_ejor_2023_02_001
crossref_primary_10_1016_j_knosys_2022_108334
crossref_primary_10_26599_TST_2024_9010174
crossref_primary_10_1007_s11356_021_16234_x
crossref_primary_10_1016_j_cor_2021_105482
crossref_primary_10_1016_j_jmsy_2023_12_006
crossref_primary_10_32604_cmes_2022_020656
crossref_primary_10_3390_info14020066
crossref_primary_10_1016_j_engappai_2025_111197
crossref_primary_10_1016_j_eswa_2022_116921
crossref_primary_10_1080_23302674_2025_2467782
crossref_primary_10_1080_0305215X_2022_2124406
crossref_primary_10_1016_j_swevo_2025_101910
crossref_primary_10_1016_j_swevo_2023_101353
crossref_primary_10_1016_j_asoc_2025_112738
crossref_primary_10_1016_j_asoc_2021_107830
crossref_primary_10_1016_j_eswa_2023_121790
crossref_primary_10_3390_app112311240
crossref_primary_10_1016_j_swevo_2025_102066
crossref_primary_10_1016_j_ifacol_2022_09_556
crossref_primary_10_1016_j_knosys_2022_108328
crossref_primary_10_1016_j_cie_2021_107337
crossref_primary_10_1016_j_cie_2023_109716
crossref_primary_10_1080_0305215X_2024_2425724
crossref_primary_10_1016_j_aei_2024_102401
crossref_primary_10_1016_j_eswa_2023_120837
crossref_primary_10_1016_j_swevo_2021_100874
crossref_primary_10_1007_s00500_022_07436_7
crossref_primary_10_3390_math9222955
crossref_primary_10_1016_j_eswa_2023_120830
crossref_primary_10_1080_00207543_2021_2002968
crossref_primary_10_1007_s10479_022_04537_2
crossref_primary_10_1016_j_future_2022_11_031
crossref_primary_10_1109_TCYB_2022_3151855
crossref_primary_10_1038_s41598_025_06512_w
crossref_primary_10_1080_01490419_2021_1993386
crossref_primary_10_1016_j_swevo_2023_101320
crossref_primary_10_1016_j_asoc_2021_107247
crossref_primary_10_1016_j_cie_2023_109760
crossref_primary_10_1016_j_eswa_2024_126234
crossref_primary_10_1007_s10462_021_10081_5
crossref_primary_10_1016_j_eswa_2024_124200
crossref_primary_10_1016_j_engappai_2023_106347
crossref_primary_10_1016_j_jmsy_2023_09_002
crossref_primary_10_3390_sym13081483
crossref_primary_10_1007_s12351_022_00733_x
crossref_primary_10_3390_machines10030210
crossref_primary_10_1016_j_knosys_2021_108036
crossref_primary_10_1007_s00521_022_08012_8
crossref_primary_10_1080_0305215X_2024_2437004
crossref_primary_10_1016_j_swevo_2024_101537
crossref_primary_10_3390_math12121881
crossref_primary_10_1109_TAES_2022_3211247
crossref_primary_10_3390_math11030581
crossref_primary_10_1016_j_jmapro_2024_01_016
crossref_primary_10_1016_j_swevo_2024_101772
crossref_primary_10_1016_j_cie_2024_110813
crossref_primary_10_1016_j_knosys_2023_110880
crossref_primary_10_1016_j_cie_2021_107791
crossref_primary_10_1016_j_eswa_2024_125722
crossref_primary_10_1080_23335777_2021_2022765
crossref_primary_10_32604_cmc_2024_058885
crossref_primary_10_1016_j_cor_2022_106009
crossref_primary_10_1080_00207543_2024_2396512
crossref_primary_10_1080_0305215X_2023_2198768
crossref_primary_10_1080_00207543_2022_2031331
crossref_primary_10_1080_00207543_2022_2047238
crossref_primary_10_1016_j_jnca_2022_103520
crossref_primary_10_1016_j_eswa_2022_117984
crossref_primary_10_1016_j_eswa_2023_120899
crossref_primary_10_1016_j_eswa_2023_119548
crossref_primary_10_1007_s10479_023_05398_z
crossref_primary_10_1016_j_eswa_2023_120732
crossref_primary_10_1016_j_eswa_2023_122875
crossref_primary_10_1080_0305215X_2022_2032017
Cites_doi 10.1080/00207543.2014.948578
10.1016/j.engappai.2020.104016
10.1016/j.apm.2013.03.001
10.1016/j.engappai.2018.10.012
10.1016/j.eswa.2020.113678
10.1080/0305215X.2013.827673
10.1016/j.cor.2009.06.019
10.1057/jors.2015.50
10.1016/j.knosys.2019.104894
10.1016/0377-2217(93)90182-M
10.1016/j.cie.2016.07.027
10.1080/00207543.2011.644819
10.1016/j.swevo.2016.06.002
10.1088/1757-899X/646/1/012037
10.1016/j.asoc.2010.07.008
10.1016/j.amc.2018.12.067
10.1080/00207549308956713
10.1016/j.ijpe.2013.05.004
10.23919/CCC50068.2020.9189642
10.1016/j.ejor.2004.04.017
10.1080/00207543.2013.790571
10.1016/j.cor.2005.12.007
10.1016/j.ejor.2014.05.024
10.1016/j.cie.2020.106320
10.1016/j.ejor.2005.12.009
10.1016/j.engappai.2018.09.005
10.23919/CCC50068.2020.9188697
10.1016/j.ejor.2012.10.012
10.1016/0305-0483(83)90088-9
10.1016/j.eswa.2020.113675
10.1016/j.swevo.2020.100804
10.1016/j.cie.2010.05.016
10.1016/j.swevo.2020.100742
10.1016/j.cie.2018.03.014
10.1016/j.swevo.2020.100803
10.1016/j.ijpe.2011.01.004
10.1016/j.asoc.2015.11.034
10.1080/00207543.2012.677070
10.1016/j.eswa.2017.10.050
10.1109/TSMC.2017.2788879
10.1016/j.cor.2006.04.007
10.1016/j.cie.2017.07.020
10.1109/TSMC.2015.2416127
10.1016/j.omega.2018.03.004
10.1007/s10845-014-0890-y
10.1016/j.asoc.2020.106629
10.1016/j.asoc.2019.105492
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV May 1, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV May 1, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.114495
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_114495
S0957417420311398
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-8f6965b6db2cfe25f0aee195959fbd4e4d0188472b7efebcf755e303424a4fe83
ISICitedReferencesCount 102
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000623569100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Fri Jul 25 05:46:57 EDT 2025
Sat Nov 29 07:08:10 EST 2025
Tue Nov 18 19:37:12 EST 2025
Fri Feb 23 02:49:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Iterated greedy algorithm
Makespan
Distributed permutation flowshop scheduling problem
Heuristic methods
Preventive maintenance
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-8f6965b6db2cfe25f0aee195959fbd4e4d0188472b7efebcf755e303424a4fe83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2501859900
PQPubID 2045477
ParticipantIDs proquest_journals_2501859900
crossref_citationtrail_10_1016_j_eswa_2020_114495
crossref_primary_10_1016_j_eswa_2020_114495
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_114495
PublicationCentury 2000
PublicationDate 2021-05-01
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Maccarthy, Liu (b0095) 1993; 31
Mao, J., Hu, X. L., Pan, Q. K., Miao, Z., He, C. & Tasgetiren, M. F. (2020a). An improved discrete artificial bee colony algorithm for the distributed permutation flowshop scheduling problem with preventive maintenance. Chinese Control Conference, CCC, 2020-July, 1679–1684.
Huang, Pan, Gao (b0060) 2020; 59
Wang, Yu (b0210) 2010; 59
Rausand M, & Høyland A. (2003). System Reliability Theory: Models, Statistical Methods, and Applications. [S.l.]: John Wiley & Sons.
Taillard (b0185) 1993; 64
Naderi, Zandieh, Aminnayeri (b0135) 2011; 11
Nawaz, Enscore, Ham (b0140) 1983; 11
Behnamian, Ghomi (b0015) 2016; 27
Pan, Gao, Xin-Yu, Jose (b0150) 2019; 81
Wang, Wang, Liu, Xu (b0205) 2013; 145
Arroyo, Leung, Tavares (b0005) 2019; 77
Lin, Ying, Huang (b0080) 2013; 51
Naderi, Ruiz (b0130) 2010; 37
Wong, Chan, Chung (b0215) 2013; 51
Deng, Wang (b0025) 2017; 32
Gao, Chen (b0045) 2011; 4
Wang, Wang (b0195) 2020; 50
Meng, Pan (b0260) 2021; 60
Wang, Huang, Qin (b0190) 2016; 67
Martí, Resende, Ribeiro (b0110) 2013; 226
Xu, Yang (b0220) 2013; 37
Fernandez-Viagas, Perez-Gonzalez, Framinan (b0030) 2018; 118
Zhang, Tu, Wu (b0240) 2019; 349
Gao, Chen, Deng (b0050) 2013; 51
Huang, Pan, Chen (b0055) 2019; 646
Jing, Pan, Gao, Wang (b0070) 2020; 96
Ruiz, Carlos García-Díaz, Maroto (b0165) 2007; 34
Lin, Ying, Lu, Gupta (b0090) 2011; 130
Lei, Liu (b0075) 2020; 141
Naderi, Ruiz (b0125) 2014; 239
Huang, Pan, Miao, Gao (b0065) 2021; 97
Fernandez-Viagas, Framinan (b0035) 2015; 53
Lin, Ying (b0085) 2016; 99
Ruiz, Maroto (b0170) 2005; 165
Xu, Wang, Wang, Liu (b0225) 2014; 46
Meng, Pan, Wang (b0115) 2019; 184
Lu, Gao, Gong, Hu, Yan, Li (b0255) 2021; 60
Birolini (b0020) 2013
Osman, Potts (b0145) 1989; 124
Yang, Hsu, Kuo (b0230) 2008; 35
Zhang, Xing, Cao (b0235) 2018; 76
Ruiz, Stützle (b0180) 2007; 177
Wang, Wang (b0200) 2016; 46
Zou, Pan, Meng, Gao, Wang (b0250) 2020; 161
Bargaoui, Belkahla Driss, Ghédira (b0010) 2017; 111
Ruiz, Pan, Naderi (b0175) 2019; 83
Mao, J., Hu, X. L., Pan, Q. K., Miao, Z., He, C & Tasgetiren, M. F. (2020b). An iterated greedy algorithm for the distributed permutation flowshop scheduling problem with preventive maintenance to minimize total flowtime. Chinese Control Conference, CCC, 2020-July, 1507–1512.
Rifai, Nguyen, Dawal (b0160) 2016; 40
Fernandez-Viagas, Valente, Framinan (b0040) 2018; 94
Zhao, Zhao, Wang, Song (b0245) 2020; 160
Birolini (10.1016/j.eswa.2020.114495_b0020) 2013
Jing (10.1016/j.eswa.2020.114495_b0070) 2020; 96
Meng (10.1016/j.eswa.2020.114495_b0260) 2021; 60
Ruiz (10.1016/j.eswa.2020.114495_b0165) 2007; 34
Naderi (10.1016/j.eswa.2020.114495_b0125) 2014; 239
Fernandez-Viagas (10.1016/j.eswa.2020.114495_b0040) 2018; 94
Arroyo (10.1016/j.eswa.2020.114495_b0005) 2019; 77
Wang (10.1016/j.eswa.2020.114495_b0190) 2016; 67
Naderi (10.1016/j.eswa.2020.114495_b0130) 2010; 37
10.1016/j.eswa.2020.114495_b0100
Naderi (10.1016/j.eswa.2020.114495_b0135) 2011; 11
Taillard (10.1016/j.eswa.2020.114495_b0185) 1993; 64
Osman (10.1016/j.eswa.2020.114495_b0145) 1989; 124
Lei (10.1016/j.eswa.2020.114495_b0075) 2020; 141
Ruiz (10.1016/j.eswa.2020.114495_b0175) 2019; 83
Gao (10.1016/j.eswa.2020.114495_b0045) 2011; 4
Ruiz (10.1016/j.eswa.2020.114495_b0180) 2007; 177
Lu (10.1016/j.eswa.2020.114495_b0255) 2021; 60
Huang (10.1016/j.eswa.2020.114495_b0065) 2021; 97
Xu (10.1016/j.eswa.2020.114495_b0225) 2014; 46
Zhao (10.1016/j.eswa.2020.114495_b0245) 2020; 160
Pan (10.1016/j.eswa.2020.114495_b0150) 2019; 81
Lin (10.1016/j.eswa.2020.114495_b0090) 2011; 130
Wang (10.1016/j.eswa.2020.114495_b0205) 2013; 145
Martí (10.1016/j.eswa.2020.114495_b0110) 2013; 226
Yang (10.1016/j.eswa.2020.114495_b0230) 2008; 35
Zhang (10.1016/j.eswa.2020.114495_b0240) 2019; 349
Fernandez-Viagas (10.1016/j.eswa.2020.114495_b0035) 2015; 53
Huang (10.1016/j.eswa.2020.114495_b0055) 2019; 646
Wang (10.1016/j.eswa.2020.114495_b0200) 2016; 46
Xu (10.1016/j.eswa.2020.114495_b0220) 2013; 37
Fernandez-Viagas (10.1016/j.eswa.2020.114495_b0030) 2018; 118
Zou (10.1016/j.eswa.2020.114495_b0250) 2020; 161
Lin (10.1016/j.eswa.2020.114495_b0085) 2016; 99
Behnamian (10.1016/j.eswa.2020.114495_b0015) 2016; 27
Gao (10.1016/j.eswa.2020.114495_b0050) 2013; 51
Deng (10.1016/j.eswa.2020.114495_b0025) 2017; 32
Ruiz (10.1016/j.eswa.2020.114495_b0170) 2005; 165
Huang (10.1016/j.eswa.2020.114495_b0060) 2020; 59
10.1016/j.eswa.2020.114495_b0105
Wong (10.1016/j.eswa.2020.114495_b0215) 2013; 51
Rifai (10.1016/j.eswa.2020.114495_b0160) 2016; 40
Wang (10.1016/j.eswa.2020.114495_b0210) 2010; 59
Lin (10.1016/j.eswa.2020.114495_b0080) 2013; 51
Wang (10.1016/j.eswa.2020.114495_b0195) 2020; 50
Meng (10.1016/j.eswa.2020.114495_b0115) 2019; 184
Zhang (10.1016/j.eswa.2020.114495_b0235) 2018; 76
10.1016/j.eswa.2020.114495_b0155
Bargaoui (10.1016/j.eswa.2020.114495_b0010) 2017; 111
Maccarthy (10.1016/j.eswa.2020.114495_b0095) 1993; 31
Nawaz (10.1016/j.eswa.2020.114495_b0140) 1983; 11
References_xml – volume: 50
  start-page: 1805
  year: 2020
  end-page: 1819
  ident: b0195
  article-title: A knowledge-based cooperative algorithm for energy-efficient scheduling of distributed flow-shop
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 124
  start-page: 309
  year: 1989
  end-page: 324
  ident: b0145
  article-title: Simulated Annealing for Permutation Flow-shop Scheduling.
  publication-title: Expert Systems with Applications
– volume: 646
  year: 2019
  ident: b0055
  article-title: A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: IOP Conference Series: Materials Science and Engineering
– volume: 118
  start-page: 464
  year: 2018
  end-page: 477
  ident: b0030
  article-title: The distributed permutation flow shop to minimise the total flowtime
  publication-title: Computers & Industrial Engineering
– volume: 96
  start-page: 106629
  year: 2020
  ident: b0070
  article-title: An effective Iterated Greedy algorithm for the distributed permutation flowshop scheduling with due windows
  publication-title: Applied Soft Computing
– volume: 130
  start-page: 246
  year: 2011
  end-page: 254
  ident: b0090
  article-title: Applying multi-start simulated annealing to schedule a flowline manufacturing cell with sequence dependent family setup times
  publication-title: International Journal of Production Economics
– volume: 51
  start-page: 641
  year: 2013
  end-page: 651
  ident: b0050
  article-title: An efficient tabu search algorithm for the distributed permutation flowshop scheduling problem
  publication-title: International Journal of Production Research
– volume: 59
  start-page: 100742
  year: 2020
  ident: b0060
  article-title: An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Swarm and Evolutionary Computation
– reference: Mao, J., Hu, X. L., Pan, Q. K., Miao, Z., He, C & Tasgetiren, M. F. (2020b). An iterated greedy algorithm for the distributed permutation flowshop scheduling problem with preventive maintenance to minimize total flowtime. Chinese Control Conference, CCC, 2020-July, 1507–1512.
– volume: 37
  start-page: 7561
  year: 2013
  end-page: 7567
  ident: b0220
  article-title: Makespan minimization for two parallel machines scheduling with a periodic availability constraint: Mathematical programming model, average-case analysis, and anomalies
  publication-title: Applied Mathematical Modelling
– volume: 83
  start-page: 213
  year: 2019
  end-page: 222
  ident: b0175
  article-title: Iterated Greedy methods for the distributed permutation flowshop scheduling problem
  publication-title: Omega
– volume: 51
  start-page: 883
  year: 2013
  end-page: 896
  ident: b0215
  article-title: A joint production scheduling approach considering multiple resources and preventive maintenance tasks
  publication-title: International Journal of Production Research
– volume: 60
  start-page: 100804
  year: 2021
  ident: b0260
  article-title: A distributed heterogeneous permutation flowshop scheduling problem with lot-streaming and carryover sequence-dependent setup time
  publication-title: Swarm and Evolutionary Computation
– year: 2013
  ident: b0020
  article-title: Reliability engineering: Theory and practice
– volume: 60
  start-page: 100803
  year: 2021
  ident: b0255
  article-title: Sustainable scheduling of distributed permutation flow-shop with non-identical factory using a knowledge-based multi-objective memetic optimization algorithm
  publication-title: Swarm and Evolutionary Computation
– volume: 239
  start-page: 323
  year: 2014
  end-page: 334
  ident: b0125
  article-title: A scatter search algorithm for the distributed permutation flowshop scheduling problem
  publication-title: European Journal of Operational Research
– volume: 34
  start-page: 3314
  year: 2007
  end-page: 3330
  ident: b0165
  article-title: Considering scheduling and preventive maintenance in the flowshop sequencing problem
  publication-title: Computers & Operations Research
– reference: Rausand M, & Høyland A. (2003). System Reliability Theory: Models, Statistical Methods, and Applications. [S.l.]: John Wiley & Sons.
– volume: 46
  start-page: 139
  year: 2016
  end-page: 149
  ident: b0200
  article-title: An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 27
  start-page: 231
  year: 2016
  end-page: 249
  ident: b0015
  article-title: A survey of multi-factory scheduling
  publication-title: Journal of Intelligent Manufacturing
– volume: 32
  start-page: 121
  year: 2017
  end-page: 131
  ident: b0025
  article-title: A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem
  publication-title: Swarm and Evolutionary Computation
– volume: 161
  start-page: 113675
  year: 2020
  ident: b0250
  article-title: An effective discrete artificial bee colony algorithm for multi-AGVs dispatching problem in a matrix manufacturing workshop
  publication-title: Expert Systems with Applications
– volume: 67
  start-page: 68
  year: 2016
  end-page: 82
  ident: b0190
  article-title: A fuzzy logic-based hybrid estimation of distribution algorithm for distributed permutation flowshop scheduling problems under machine breakdown
  publication-title: Journal of the Operational Research Society
– volume: 77
  start-page: 239
  year: 2019
  end-page: 254
  ident: b0005
  article-title: An iterated greedy algorithm for total flow time minimization in unrelated parallel batch machines with unequal job release times
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 11
  start-page: 2094
  year: 2011
  end-page: 2101
  ident: b0135
  article-title: Incorporating periodic preventive maintenance into flexible flowshop scheduling problems
  publication-title: Applied Soft Computing
– volume: 177
  start-page: 2033
  year: 2007
  end-page: 2049
  ident: b0180
  article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem
  publication-title: European Journal of Operational Research
– volume: 184
  start-page: 104894
  year: 2019
  ident: b0115
  article-title: A distributed permutation flowshop scheduling problem with the customer order constraint
  publication-title: Knowledge-Based Systems
– volume: 141
  start-page: 106320
  year: 2020
  ident: b0075
  article-title: An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive maintenance
  publication-title: Computers & Industrial Engineering
– volume: 40
  start-page: 42
  year: 2016
  end-page: 57
  ident: b0160
  article-title: Multi-objective adaptive large neighborhood search for distributed reentrant permutation flow shop scheduling
  publication-title: Applied Soft Computing
– volume: 99
  start-page: 202
  year: 2016
  end-page: 209
  ident: b0085
  article-title: Minimizing makespan for solving the distributed no-wait flowshop scheduling problem
  publication-title: Computers & Industrial Engineering
– volume: 37
  start-page: 754
  year: 2010
  end-page: 768
  ident: b0130
  article-title: The distributed permutation flowshop scheduling problem
  publication-title: Computers & Operations Research
– volume: 51
  start-page: 5029
  year: 2013
  end-page: 5038
  ident: b0080
  article-title: Minimising makespan in distributed permutation flowshops using a modified iterated greedy algorithm
  publication-title: International Journal of Production Research
– volume: 76
  start-page: 96
  year: 2018
  end-page: 107
  ident: b0235
  article-title: Discrete differential evolution algorithm for distributed blocking flowshop scheduling with makespan criterion
  publication-title: Engineering Applications of Artificial Intelligence
– reference: Mao, J., Hu, X. L., Pan, Q. K., Miao, Z., He, C. & Tasgetiren, M. F. (2020a). An improved discrete artificial bee colony algorithm for the distributed permutation flowshop scheduling problem with preventive maintenance. Chinese Control Conference, CCC, 2020-July, 1679–1684.
– volume: 31
  start-page: 59
  year: 1993
  end-page: 79
  ident: b0095
  article-title: Addressing the gap in scheduling research: A review of optimization and heuristic methods in production scheduling
  publication-title: International Journal of Production Research
– volume: 46
  start-page: 1269
  year: 2014
  end-page: 1283
  ident: b0225
  article-title: An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem
  publication-title: Engineering Optimization
– volume: 160
  start-page: 113678
  year: 2020
  ident: b0245
  article-title: An ensemble discrete differential evolution for the distributed blocking flowshop scheduling with minimizing makespan criterion
  publication-title: Expert Systems with Applications
– volume: 53
  start-page: 1111
  year: 2015
  end-page: 1123
  ident: b0035
  article-title: A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem
  publication-title: International Journal of Production Research
– volume: 165
  start-page: 479
  year: 2005
  end-page: 494
  ident: b0170
  article-title: A comprehensive review and evaluation of permutation flowshop heuristics
  publication-title: European Journal of Operational Research
– volume: 81
  start-page: 105492
  year: 2019
  ident: b0150
  article-title: Effective constructive heuristics and meta-heuristics for the distributed assembly permutation flowshop scheduling problem
  publication-title: Applied Soft Computing
– volume: 145
  start-page: 387
  year: 2013
  end-page: 396
  ident: b0205
  article-title: An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem
  publication-title: International Journal of Production Economics
– volume: 94
  start-page: 58
  year: 2018
  end-page: 69
  ident: b0040
  article-title: Iterated-greedy-based algorithms with beam search initialization for the permutation flowshop to minimise total tardiness
  publication-title: Expert Systems with Applications
– volume: 4
  start-page: 497
  year: 2011
  end-page: 508
  ident: b0045
  article-title: A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem
  publication-title: International Journal of Computational Intelligence Systems
– volume: 111
  start-page: 239
  year: 2017
  end-page: 250
  ident: b0010
  article-title: A novel chemical reaction optimization for the distributed permutation flowshop scheduling problem with makespan criterion
  publication-title: Computers & Industrial Engineering
– volume: 11
  start-page: 91
  year: 1983
  end-page: 95
  ident: b0140
  article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem
  publication-title: Omega
– volume: 226
  start-page: 1
  year: 2013
  end-page: 8
  ident: b0110
  article-title: Multi-start methods for combinatorial optimization
  publication-title: European Journal of Operational Research
– volume: 35
  start-page: 876
  year: 2008
  end-page: 883
  ident: b0230
  article-title: A two-machine flowshop scheduling problem with a separated maintenance constraint
  publication-title: Computers & Operations Research
– volume: 97
  start-page: 104016
  year: 2021
  ident: b0065
  article-title: Effective constructive heuristics and discrete bee colony optimization for distributed flowshop with setup times
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 64
  start-page: 278
  year: 1993
  end-page: 285
  ident: b0185
  article-title: Benchmarks for basic scheduling problems
  publication-title: European Journal of Operational Research
– volume: 59
  start-page: 436
  year: 2010
  end-page: 447
  ident: b0210
  article-title: An effective heuristic for flexible job-shop scheduling problem with maintenance activities
  publication-title: Computers & Industrial Engineering
– volume: 349
  start-page: 359
  year: 2019
  end-page: 366
  ident: b0240
  article-title: A multi-start iterated greedy algorithm for the minimum weight vertex cover P3 problem
  publication-title: Applied Mathematics and Computation
– volume: 53
  start-page: 1111
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2020.114495_b0035
  article-title: A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2014.948578
– volume: 97
  start-page: 104016
  year: 2021
  ident: 10.1016/j.eswa.2020.114495_b0065
  article-title: Effective constructive heuristics and discrete bee colony optimization for distributed flowshop with setup times
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.104016
– volume: 37
  start-page: 7561
  issue: 14–15
  year: 2013
  ident: 10.1016/j.eswa.2020.114495_b0220
  article-title: Makespan minimization for two parallel machines scheduling with a periodic availability constraint: Mathematical programming model, average-case analysis, and anomalies
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2013.03.001
– volume: 77
  start-page: 239
  year: 2019
  ident: 10.1016/j.eswa.2020.114495_b0005
  article-title: An iterated greedy algorithm for total flow time minimization in unrelated parallel batch machines with unequal job release times
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2018.10.012
– volume: 160
  start-page: 113678
  year: 2020
  ident: 10.1016/j.eswa.2020.114495_b0245
  article-title: An ensemble discrete differential evolution for the distributed blocking flowshop scheduling with minimizing makespan criterion
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113678
– volume: 46
  start-page: 1269
  issue: 9
  year: 2014
  ident: 10.1016/j.eswa.2020.114495_b0225
  article-title: An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2013.827673
– volume: 37
  start-page: 754
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2020.114495_b0130
  article-title: The distributed permutation flowshop scheduling problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2009.06.019
– volume: 67
  start-page: 68
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2020.114495_b0190
  article-title: A fuzzy logic-based hybrid estimation of distribution algorithm for distributed permutation flowshop scheduling problems under machine breakdown
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/jors.2015.50
– volume: 184
  start-page: 104894
  year: 2019
  ident: 10.1016/j.eswa.2020.114495_b0115
  article-title: A distributed permutation flowshop scheduling problem with the customer order constraint
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.104894
– volume: 64
  start-page: 278
  issue: 2
  year: 1993
  ident: 10.1016/j.eswa.2020.114495_b0185
  article-title: Benchmarks for basic scheduling problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(93)90182-M
– volume: 99
  start-page: 202
  year: 2016
  ident: 10.1016/j.eswa.2020.114495_b0085
  article-title: Minimizing makespan for solving the distributed no-wait flowshop scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2016.07.027
– volume: 51
  start-page: 641
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2020.114495_b0050
  article-title: An efficient tabu search algorithm for the distributed permutation flowshop scheduling problem
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2011.644819
– volume: 32
  start-page: 121
  year: 2017
  ident: 10.1016/j.eswa.2020.114495_b0025
  article-title: A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2016.06.002
– volume: 646
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2020.114495_b0055
  article-title: A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: IOP Conference Series: Materials Science and Engineering
  doi: 10.1088/1757-899X/646/1/012037
– volume: 11
  start-page: 2094
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2020.114495_b0135
  article-title: Incorporating periodic preventive maintenance into flexible flowshop scheduling problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2010.07.008
– volume: 349
  start-page: 359
  year: 2019
  ident: 10.1016/j.eswa.2020.114495_b0240
  article-title: A multi-start iterated greedy algorithm for the minimum weight vertex cover P3 problem
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2018.12.067
– volume: 31
  start-page: 59
  issue: 1
  year: 1993
  ident: 10.1016/j.eswa.2020.114495_b0095
  article-title: Addressing the gap in scheduling research: A review of optimization and heuristic methods in production scheduling
  publication-title: International Journal of Production Research
  doi: 10.1080/00207549308956713
– volume: 145
  start-page: 387
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2020.114495_b0205
  article-title: An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2013.05.004
– ident: 10.1016/j.eswa.2020.114495_b0105
  doi: 10.23919/CCC50068.2020.9189642
– volume: 165
  start-page: 479
  issue: 2
  year: 2005
  ident: 10.1016/j.eswa.2020.114495_b0170
  article-title: A comprehensive review and evaluation of permutation flowshop heuristics
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2004.04.017
– volume: 51
  start-page: 5029
  issue: 16
  year: 2013
  ident: 10.1016/j.eswa.2020.114495_b0080
  article-title: Minimising makespan in distributed permutation flowshops using a modified iterated greedy algorithm
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2013.790571
– volume: 34
  start-page: 3314
  issue: 11
  year: 2007
  ident: 10.1016/j.eswa.2020.114495_b0165
  article-title: Considering scheduling and preventive maintenance in the flowshop sequencing problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2005.12.007
– volume: 239
  start-page: 323
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2020.114495_b0125
  article-title: A scatter search algorithm for the distributed permutation flowshop scheduling problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.05.024
– volume: 141
  start-page: 106320
  year: 2020
  ident: 10.1016/j.eswa.2020.114495_b0075
  article-title: An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive maintenance
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106320
– volume: 177
  start-page: 2033
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2020.114495_b0180
  article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.12.009
– year: 2013
  ident: 10.1016/j.eswa.2020.114495_b0020
– volume: 76
  start-page: 96
  year: 2018
  ident: 10.1016/j.eswa.2020.114495_b0235
  article-title: Discrete differential evolution algorithm for distributed blocking flowshop scheduling with makespan criterion
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2018.09.005
– ident: 10.1016/j.eswa.2020.114495_b0100
  doi: 10.23919/CCC50068.2020.9188697
– volume: 226
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2020.114495_b0110
  article-title: Multi-start methods for combinatorial optimization
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2012.10.012
– volume: 11
  start-page: 91
  issue: 1
  year: 1983
  ident: 10.1016/j.eswa.2020.114495_b0140
  article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem
  publication-title: Omega
  doi: 10.1016/0305-0483(83)90088-9
– volume: 161
  start-page: 113675
  year: 2020
  ident: 10.1016/j.eswa.2020.114495_b0250
  article-title: An effective discrete artificial bee colony algorithm for multi-AGVs dispatching problem in a matrix manufacturing workshop
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113675
– volume: 60
  start-page: 100804
  year: 2021
  ident: 10.1016/j.eswa.2020.114495_b0260
  article-title: A distributed heterogeneous permutation flowshop scheduling problem with lot-streaming and carryover sequence-dependent setup time
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2020.100804
– volume: 59
  start-page: 436
  issue: 3
  year: 2010
  ident: 10.1016/j.eswa.2020.114495_b0210
  article-title: An effective heuristic for flexible job-shop scheduling problem with maintenance activities
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2010.05.016
– volume: 59
  start-page: 100742
  year: 2020
  ident: 10.1016/j.eswa.2020.114495_b0060
  article-title: An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2020.100742
– volume: 118
  start-page: 464
  year: 2018
  ident: 10.1016/j.eswa.2020.114495_b0030
  article-title: The distributed permutation flow shop to minimise the total flowtime
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.03.014
– volume: 124
  start-page: 309
  year: 1989
  ident: 10.1016/j.eswa.2020.114495_b0145
  article-title: Simulated Annealing for Permutation Flow-shop Scheduling. Omega, 17(6), 551–557. Pan Q, Gao L, Wang L, Liang JJ, & Li X. (2019). Effective Heuristics and Metaheuristics to Minimize Total Flowtime for the Distributed Permutation Flowshop Problem
  publication-title: Expert Systems with Applications
– volume: 60
  start-page: 100803
  year: 2021
  ident: 10.1016/j.eswa.2020.114495_b0255
  article-title: Sustainable scheduling of distributed permutation flow-shop with non-identical factory using a knowledge-based multi-objective memetic optimization algorithm
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2020.100803
– volume: 130
  start-page: 246
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2020.114495_b0090
  article-title: Applying multi-start simulated annealing to schedule a flowline manufacturing cell with sequence dependent family setup times
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2011.01.004
– volume: 40
  start-page: 42
  year: 2016
  ident: 10.1016/j.eswa.2020.114495_b0160
  article-title: Multi-objective adaptive large neighborhood search for distributed reentrant permutation flow shop scheduling
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.11.034
– volume: 51
  start-page: 883
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2020.114495_b0215
  article-title: A joint production scheduling approach considering multiple resources and preventive maintenance tasks
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2012.677070
– volume: 94
  start-page: 58
  year: 2018
  ident: 10.1016/j.eswa.2020.114495_b0040
  article-title: Iterated-greedy-based algorithms with beam search initialization for the permutation flowshop to minimise total tardiness
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.10.050
– volume: 4
  start-page: 497
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2020.114495_b0045
  article-title: A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem
  publication-title: International Journal of Computational Intelligence Systems
– volume: 50
  start-page: 1805
  issue: 5
  year: 2020
  ident: 10.1016/j.eswa.2020.114495_b0195
  article-title: A knowledge-based cooperative algorithm for energy-efficient scheduling of distributed flow-shop
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2017.2788879
– volume: 35
  start-page: 876
  issue: 3
  year: 2008
  ident: 10.1016/j.eswa.2020.114495_b0230
  article-title: A two-machine flowshop scheduling problem with a separated maintenance constraint
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2006.04.007
– ident: 10.1016/j.eswa.2020.114495_b0155
– volume: 111
  start-page: 239
  year: 2017
  ident: 10.1016/j.eswa.2020.114495_b0010
  article-title: A novel chemical reaction optimization for the distributed permutation flowshop scheduling problem with makespan criterion
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2017.07.020
– volume: 46
  start-page: 139
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2020.114495_b0200
  article-title: An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2015.2416127
– volume: 83
  start-page: 213
  year: 2019
  ident: 10.1016/j.eswa.2020.114495_b0175
  article-title: Iterated Greedy methods for the distributed permutation flowshop scheduling problem
  publication-title: Omega
  doi: 10.1016/j.omega.2018.03.004
– volume: 27
  start-page: 231
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2020.114495_b0015
  article-title: A survey of multi-factory scheduling
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-014-0890-y
– volume: 96
  start-page: 106629
  year: 2020
  ident: 10.1016/j.eswa.2020.114495_b0070
  article-title: An effective Iterated Greedy algorithm for the distributed permutation flowshop scheduling with due windows
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106629
– volume: 81
  start-page: 105492
  year: 2019
  ident: 10.1016/j.eswa.2020.114495_b0150
  article-title: Effective constructive heuristics and meta-heuristics for the distributed assembly permutation flowshop scheduling problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105492
SSID ssj0017007
Score 2.6107442
Snippet •We study a distributed flowshop problem with preventive maintenance.•We present a novel multi-start iterated greedy algorithm.•An improved NEH with dropout is...
In recent years, distributed scheduling problems have been well studied for their close connection with multi-factory production networks. However, the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114495
SubjectTerms Distributed permutation flowshop scheduling problem
Greedy algorithms
Heuristic methods
Iterated greedy algorithm
Job shops
Makespan
Permutations
Preventive maintenance
Scheduling
Title An effective multi-start iterated greedy algorithm to minimize makespan for the distributed permutation flowshop scheduling problem with preventive maintenance
URI https://dx.doi.org/10.1016/j.eswa.2020.114495
https://www.proquest.com/docview/2501859900
Volume 169
WOSCitedRecordID wos000623569100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3ohCQXtAXKKt7M36dYxQykNRACmtIi6WH-vGaWqbxGkLf4bfxD9ixrtrpxVUcOBiRY4fq8yX2dnZme8j5JXwBq6Ujsu4KyMm_ChmgRvAmgfJwkWcpFmTGjgee5OJP5sFn3q9n6YX5nzpFYV_eRlU_9XUcA6Mja2z_2Du9qFwAj6D0eEIZofjXxl-WOgiDawJauoFGUSAq7qvCJQhwIQlNvjWfrQ8KVd5PT_D-BMpRs7y71jOeirBy3T1hylS66IqFtxZgR_fmPrEZXmxnpdVH9bHMF_ptvZGnkZldyvNDoXDiJCWomgRtmgLACUMTLFJmz67rR31Ll2u9ofyiH2L9FTbbHs1LvPzJirYaVfDm6urv8zL4oTNN-2881adH-fmETrZwe2utFBl4NounOMrmUyPCVuJ_RxI5cd9b8BcT4kvto5eicJoV23_dgJRuYzFgVxfICsVb8iUhdIBvcrWPfkYHh6Nx-F0NJu-rr4yFDLDDX-t6nKL7HLPCcDR7g7fj2Yf2q0tz1I9_GbUupNLFR1ef-2foqVrcUMTDE3vk7t6FUOHCn0PSE8WD8k9oxBC9YTxiPwYFrQFI90CIzVgpAqMtAUjrUtqwEgNGCmAkQIY6RYY6RYYqQEj7cBINRgpwop2YKRbYHxMjg5H0zfvmJYEYcmA-zXzMzdwnRhF0JJMciezIimRH8kJsjgVUqSW7UPAxWNPZjJOMs9x5ABpLkUkMukPnpCdoizkU0Jlkjo8wuWOEwl0ZDa33NTiWRDHInHdPWKbnz5MNF8-yrYsQ1MYuQjRXCGaK1Tm2iP99p5KscXceLVjLBrqeFfFsSGg8cb79o35Q-141iFHZk7Am2U9u_nr5-RO98_aJzv1aiNfkNvJeZ2vVy81Wn8BeADfmA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+multi-start+iterated+greedy+algorithm+to+minimize+makespan+for+the+distributed+permutation+flowshop+scheduling+problem+with+preventive+maintenance&rft.jtitle=Expert+systems+with+applications&rft.au=Mao%2C+Jia-yang&rft.au=Pan%2C+Quan-ke&rft.au=Miao%2C+Zhong-hua&rft.au=Gao%2C+Liang&rft.date=2021-05-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=169&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2020.114495&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon