Numerical analysis of transport phenomena in solid oxide fuel cell gas channels

The gas channel geometry in solid oxide fuel cells (SOFCs) influences the reacting thermo-fluid process and, thus, overall cell performance. This paper presents a dimensionless approach to the study of the transport phenomena in the gas channels of planar anode-supported proton-conducting SOFC. Out-...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fuel (Guildford) Ročník 311; s. 122557
Hlavní autoři: Sayadian, Shahide, Ghassemi, Majid, Ahmadi, Sadegh, Robinson, Anthony James
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.03.2022
Elsevier BV
Témata:
ISSN:0016-2361, 1873-7153
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The gas channel geometry in solid oxide fuel cells (SOFCs) influences the reacting thermo-fluid process and, thus, overall cell performance. This paper presents a dimensionless approach to the study of the transport phenomena in the gas channels of planar anode-supported proton-conducting SOFC. Out-of-scale modeling reduces the number of variables that should be investigated and offers generalized results, giving insight into similar fuel cells. A 2D numerical model for the multiphysics process in SOFC is developed. A dimensionless form of the governing equations is derived in order to identify the dimensionless quantities that characterize the transport phenomena in SOFC. Reynolds, Peclet, and Sherwood are the important parameter groupings of flow channels that influence mass and temperature distribution. The efficacy of the computational fluid dynamic model is confirmed by comparing simulated results with experimental data from the literature. The effect of fuel and air channels’ dimensionless parameters on cell performance is discussed. Similar changes in fuel and air channels exert various influences on SOFC electrical performance. It is found that reducing Pe in the fuel channel improves power generation. However, Sh and Re reduction effect neutralize the increase in power generation due to Pe reduction in the air channel. •Non-dimensional formulation is used to predict anode-supported SOFC electrical power.•SOFC reacts differently to an identical change in air and fuel channels parameters.•Decreasing Peclet in gas channels increases the cell’s electrical current generation.
AbstractList The gas channel geometry in solid oxide fuel cells (SOFCs) influences the reacting thermo-fluid process and, thus, overall cell performance. This paper presents a dimensionless approach to the study of the transport phenomena in the gas channels of planar anode-supported proton-conducting SOFC. Out-of-scale modeling reduces the number of variables that should be investigated and offers generalized results, giving insight into similar fuel cells. A 2D numerical model for the multiphysics process in SOFC is developed. A dimensionless form of the governing equations is derived in order to identify the dimensionless quantities that characterize the transport phenomena in SOFC. Reynolds, Peclet, and Sherwood are the important parameter groupings of flow channels that influence mass and temperature distribution. The efficacy of the computational fluid dynamic model is confirmed by comparing simulated results with experimental data from the literature. The effect of fuel and air channels' dimensionless parameters on cell performance is discussed. Similar changes in fuel and air channels exert various influences on SOFC electrical performance. It is found that reducing Pe in the fuel channel improves power generation. However, Sh and Re reduction effect neutralize the increase in power generation due to Pe reduction in the air channel.
The gas channel geometry in solid oxide fuel cells (SOFCs) influences the reacting thermo-fluid process and, thus, overall cell performance. This paper presents a dimensionless approach to the study of the transport phenomena in the gas channels of planar anode-supported proton-conducting SOFC. Out-of-scale modeling reduces the number of variables that should be investigated and offers generalized results, giving insight into similar fuel cells. A 2D numerical model for the multiphysics process in SOFC is developed. A dimensionless form of the governing equations is derived in order to identify the dimensionless quantities that characterize the transport phenomena in SOFC. Reynolds, Peclet, and Sherwood are the important parameter groupings of flow channels that influence mass and temperature distribution. The efficacy of the computational fluid dynamic model is confirmed by comparing simulated results with experimental data from the literature. The effect of fuel and air channels’ dimensionless parameters on cell performance is discussed. Similar changes in fuel and air channels exert various influences on SOFC electrical performance. It is found that reducing Pe in the fuel channel improves power generation. However, Sh and Re reduction effect neutralize the increase in power generation due to Pe reduction in the air channel. •Non-dimensional formulation is used to predict anode-supported SOFC electrical power.•SOFC reacts differently to an identical change in air and fuel channels parameters.•Decreasing Peclet in gas channels increases the cell’s electrical current generation.
ArticleNumber 122557
Author Sayadian, Shahide
Robinson, Anthony James
Ahmadi, Sadegh
Ghassemi, Majid
Author_xml – sequence: 1
  givenname: Shahide
  surname: Sayadian
  fullname: Sayadian, Shahide
  email: ssayadian@mail.kntu.ac.ir
  organization: Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran
– sequence: 2
  givenname: Majid
  surname: Ghassemi
  fullname: Ghassemi, Majid
  organization: Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran
– sequence: 3
  givenname: Sadegh
  orcidid: 0000-0001-5226-0259
  surname: Ahmadi
  fullname: Ahmadi, Sadegh
  organization: Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland
– sequence: 4
  givenname: Anthony James
  surname: Robinson
  fullname: Robinson, Anthony James
  organization: Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland
BookMark eNp9kDtPwzAUhS1UJNrCH2CyxJziR-wkEguqeEkVXWC2XPuGOnLtYieI_ntSlYmB6S7nO1fnm6FJiAEQuqZkQQmVt92iHcAvGGF0QRkTojpDU1pXvKio4BM0JWOqYFzSCzTLuSOEVLUop2j9OuwgOaM91kH7Q3YZxxb3SYe8j6nH-y2EuIOgsQs4R-8sjt_OAj4-xAa8xx86Y7PVIYDPl-i81T7D1e-do_fHh7flc7FaP70s71eF4azui9pWNTO6sRJazjiUojXUaC4a00ijhd1UpmScb0jJdFtumJWSbipZgq5aawmfo5tT7z7FzwFyr7o4pHFBVkxyIjihjRhT9SllUsw5QauM63XvYhgHOq8oUUd9qlPHNeqoT530jSj7g-6T2-l0-B-6O0GjCfhykFQ2DoIB6xKYXtno_sN_AAhYi88
CitedBy_id crossref_primary_10_1007_s12206_025_0852_7
crossref_primary_10_1016_j_cej_2025_164547
crossref_primary_10_1016_j_energy_2023_129665
crossref_primary_10_1016_j_ijhydene_2025_04_383
crossref_primary_10_1016_j_apenergy_2025_125592
crossref_primary_10_1038_s41467_024_48785_1
crossref_primary_10_1016_j_heliyon_2024_e40996
crossref_primary_10_1016_j_applthermaleng_2024_122706
Cites_doi 10.1021/cr020718s
10.1039/C7TA05245F
10.1016/j.jpowsour.2010.04.065
10.1016/j.ijhydene.2018.02.108
10.1016/j.ijhydene.2010.11.018
10.1016/j.ijheatmasstransfer.2004.04.010
10.1016/j.ces.2009.06.066
10.1016/j.ijheatmasstransfer.2011.10.032
10.1016/j.ijhydene.2014.12.088
10.1016/0017-9310(94)00346-W
10.1016/j.ijhydene.2012.12.055
10.1016/j.electacta.2005.09.041
10.1016/j.ijhydene.2016.02.045
10.1016/j.energy.2016.12.074
10.1016/j.ijhydene.2009.09.049
10.1016/S0378-7753(02)00724-3
10.1016/j.cej.2010.07.031
10.1016/j.ijhydene.2014.06.108
10.1016/j.jpowsour.2012.01.041
10.1016/j.ijhydene.2011.10.042
10.1002/fuce.201300160
10.1016/j.jpowsour.2020.228997
10.1016/j.apenergy.2015.03.037
10.1002/ep.13443
10.1016/S0167-2738(03)00222-4
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Mar 1, 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 1, 2022
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.fuel.2021.122557
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7153
ExternalDocumentID 10_1016_j_fuel_2021_122557
S001623612102425X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
9DU
A6W
AAQXK
AATTM
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
VH1
WUQ
XPP
ZY4
~HD
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c328t-8d782ca9d6ef323e45fc1ca359c96ca5db7c4233b042af4b2d661b764ea7fdd03
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000743137400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-2361
IngestDate Wed Aug 13 06:40:30 EDT 2025
Sat Nov 29 05:34:41 EST 2025
Tue Nov 18 19:47:21 EST 2025
Sat Jan 18 16:09:21 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Computational fluid dynamics modeling
Dimensionless parameters
Proton-conducting electrolyte
Gas channels
Solid oxide fuel cell
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-8d782ca9d6ef323e45fc1ca359c96ca5db7c4233b042af4b2d661b764ea7fdd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5226-0259
PQID 2630530195
PQPubID 2045474
ParticipantIDs proquest_journals_2630530195
crossref_citationtrail_10_1016_j_fuel_2021_122557
crossref_primary_10_1016_j_fuel_2021_122557
elsevier_sciencedirect_doi_10_1016_j_fuel_2021_122557
PublicationCentury 2000
PublicationDate 2022-03-01
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Fuel (Guildford)
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Fahs, Ghassemi (b1) 2020; 39
Arpornwichanop, Patcharavorachot, Assabumrungrat (b15) 2010; 65
Taylor, Krishna (b18) 1993
Sayadian, Ghassemi, Robinson (b14) 2021; 481
Wang (b19) 2004; 104
Ni (b26) 2009; 34
Kong, Li, Liu, Lin (b8) 2012; 204
Menon, Banerjee, Dailly, Deutschmann (b33) 2015; 149
Sayadian (b4) 2021
Ochoa-Tapia, Whitakeri (b35) 1995; 38
Ni (b25) 2012; 37
Reid, Prausnitz, Poling (b23) 1987
Kee, Coltrin, Glarborg (b22) 2003
Haberman, Young (b24) 2004; 47
Taherparvar, Kilner, Baker, Sahibzada (b34) 2003; 162
Andersson, Yuan, Sundén (b9) 2014; 14
Zheng, Li, Ni (b27) 2014; 39
Lin, Shi, Ni, Cai (b10) 2015; 40
Moreno-Blanco, Elizalde-Blancas, Riesco-Avila, Belman-Flores, Gallegos-Munoz (b13) 2019; 44
Nield, Bejan (b31) 2013
Sayadian, Ghassemi (b3) 2020
Qu, Aravind, Boksteen, Dekker, Janssen, Woudstra, Verkooijen (b7) 2011; 36
Shi, Xue (b6) 2010; 163
Bear, Bachmat (b30) 1990
Ni (b16) 2013; 38
Chen, Bi, Kong, Lin (b29) 2010; 195
Khazaee, Rava (b12) 2017; 119
Ghassemi, Kamvar, Stienberger-Wilkens (b2) 2020
Nam, Jeon (b28) 2006; 51
Andersson, Yuan, Sunden (b32) 2012; 55
Batchelor (b17) 2000
Canavar, Mat, Celik, Bora Timurkutluk and (b11) 2016; 41
Suwanwarangkul, Croiset, Fowler, Douglas, Entchev, Douglas (b20) 2003; 122
Baek, Liu, Su (b5) 2017; 5
Bird, Stewart, Lightfoot (b21) 2002
Sayadian (10.1016/j.fuel.2021.122557_b4) 2021
Batchelor (10.1016/j.fuel.2021.122557_b17) 2000
Chen (10.1016/j.fuel.2021.122557_b29) 2010; 195
Ochoa-Tapia (10.1016/j.fuel.2021.122557_b35) 1995; 38
Canavar (10.1016/j.fuel.2021.122557_b11) 2016; 41
Andersson (10.1016/j.fuel.2021.122557_b9) 2014; 14
Ni (10.1016/j.fuel.2021.122557_b16) 2013; 38
Wang (10.1016/j.fuel.2021.122557_b19) 2004; 104
Khazaee (10.1016/j.fuel.2021.122557_b12) 2017; 119
Kee (10.1016/j.fuel.2021.122557_b22) 2003
Zheng (10.1016/j.fuel.2021.122557_b27) 2014; 39
Suwanwarangkul (10.1016/j.fuel.2021.122557_b20) 2003; 122
Kong (10.1016/j.fuel.2021.122557_b8) 2012; 204
Reid (10.1016/j.fuel.2021.122557_b23) 1987
Andersson (10.1016/j.fuel.2021.122557_b32) 2012; 55
Arpornwichanop (10.1016/j.fuel.2021.122557_b15) 2010; 65
Ni (10.1016/j.fuel.2021.122557_b26) 2009; 34
Fahs (10.1016/j.fuel.2021.122557_b1) 2020; 39
Bird (10.1016/j.fuel.2021.122557_b21) 2002
Nield (10.1016/j.fuel.2021.122557_b31) 2013
Sayadian (10.1016/j.fuel.2021.122557_b3) 2020
Sayadian (10.1016/j.fuel.2021.122557_b14) 2021; 481
Baek (10.1016/j.fuel.2021.122557_b5) 2017; 5
Haberman (10.1016/j.fuel.2021.122557_b24) 2004; 47
Menon (10.1016/j.fuel.2021.122557_b33) 2015; 149
Taherparvar (10.1016/j.fuel.2021.122557_b34) 2003; 162
Qu (10.1016/j.fuel.2021.122557_b7) 2011; 36
Bear (10.1016/j.fuel.2021.122557_b30) 1990
Moreno-Blanco (10.1016/j.fuel.2021.122557_b13) 2019; 44
Ghassemi (10.1016/j.fuel.2021.122557_b2) 2020
Shi (10.1016/j.fuel.2021.122557_b6) 2010; 163
Ni (10.1016/j.fuel.2021.122557_b25) 2012; 37
Taylor (10.1016/j.fuel.2021.122557_b18) 1993
Lin (10.1016/j.fuel.2021.122557_b10) 2015; 40
Nam (10.1016/j.fuel.2021.122557_b28) 2006; 51
References_xml – volume: 65
  start-page: 581
  year: 2010
  end-page: 589
  ident: b15
  article-title: Analysis of a proton-conducting SOFC with direct internal reforming
  publication-title: Chem Eng Sci
– volume: 14
  start-page: 177
  year: 2014
  end-page: 188
  ident: b9
  article-title: SOFC cell design optimization using the finite element method based CFD approach
  publication-title: Fuel Cells
– year: 2003
  ident: b22
  article-title: Chemically reacting flow
– volume: 44
  start-page: 446
  year: 2019
  end-page: 456
  ident: b13
  article-title: On the effect of gas channels-electrode interface area on SOFCs performance
  publication-title: Int J Hydrogen Energy
– volume: 195
  start-page: 6598
  year: 2010
  end-page: 6610
  ident: b29
  article-title: Combined micro-scale and macro-scale modeling of the composite electrode of a solid oxide fuel cell
  publication-title: J Power Sources
– volume: 149
  start-page: 161
  year: 2015
  end-page: 175
  ident: b33
  article-title: Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming
  publication-title: Appl Energy
– volume: 481
  year: 2021
  ident: b14
  article-title: Multi-physics simulation of transport phenomena in planar proton-conducting solid oxide fuel cell
  publication-title: J Power Sources
– year: 1993
  ident: b18
  article-title: Multicomponent mass transfer
– volume: 38
  start-page: 2635
  year: 1995
  end-page: 2646
  ident: b35
  article-title: Momentum transfer at the boundary between a porous medium and a homogeneous fluid
  publication-title: Int J Heat Mass Transfer
– volume: 36
  start-page: 10209
  year: 2011
  end-page: 10220
  ident: b7
  article-title: Three-dimensional computational fluid dynamics modeling of anode-supported planar SOFC
  publication-title: Int J Hydrogen Energy
– year: 2000
  ident: b17
  article-title: An introduction to fluid dynamics
– volume: 39
  start-page: 12904
  year: 2014
  end-page: 12912
  ident: b27
  article-title: Investigation of the electrochemical active thickness of solid oxide fuel cell anode
  publication-title: J Hydrog Energy
– volume: 104
  start-page: 4727
  year: 2004
  end-page: 4766
  ident: b19
  article-title: Fundamental models for fuel cell engineering
  publication-title: Chem Rev
– volume: 39
  year: 2020
  ident: b1
  article-title: Numerical study of detecting crack initiation in a planar solid oxide fuel cell
  publication-title: Environ Prog Sustain Energy
– volume: 119
  start-page: 235
  year: 2017
  end-page: 244
  ident: b12
  article-title: Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries
  publication-title: Energy
– volume: 122
  start-page: 9
  year: 2003
  end-page: 18
  ident: b20
  article-title: Performance comparison of fick’s, dusty-gas and stefane-maxwell models to predict the concentration overpotential of a SOFC anode
  publication-title: J Power Sources
– volume: 51
  start-page: 3446
  year: 2006
  end-page: 3460
  ident: b28
  article-title: A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells
  publication-title: Electrochim Acta
– volume: 37
  start-page: 1731
  year: 2012
  end-page: 1745
  ident: b25
  article-title: Modeling of SOFC running on partially pre-reformed gas mixture
  publication-title: Int J Hydrogen Energy
– volume: 163
  start-page: 119
  year: 2010
  end-page: 125
  ident: b6
  article-title: CFD analysis of a novel symmetrical planar SOFC design with micro-flow channels
  publication-title: Chem Eng J
– year: 1987
  ident: b23
  article-title: The properties of gases and liquids
– volume: 55
  start-page: 773
  year: 2012
  end-page: 788
  ident: b32
  article-title: SOFC modeling considering electrochemical reactions at the active three phase boundaries
  publication-title: Int J Heat Mass Transfer
– volume: 162
  start-page: 297
  year: 2003
  end-page: 303
  ident: b34
  article-title: Effect of humidification at anode and cathode in proton-conducting SOFCs
  publication-title: Solid State Ion
– volume: 47
  start-page: 3617
  year: 2004
  end-page: 3629
  ident: b24
  article-title: Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell
  publication-title: Int J Heat Mass Transfer
– year: 2002
  ident: b21
  article-title: Transport phenomena
– volume: 5
  start-page: 18414
  year: 2017
  end-page: 18419
  ident: b5
  article-title: A functional micro-solid oxide fuel cell with a 10 nm-thick freestanding electrolyte
  publication-title: J Mater Chem A
– start-page: 1
  year: 2020
  end-page: 13
  ident: b3
  article-title: Thermal analysis of a micro-scale proton-conducting solid oxide fuel cell
  publication-title: Energy Sources A
– volume: 40
  start-page: 3035
  year: 2015
  end-page: 3047
  ident: b10
  article-title: Numerical investigation on impacts on fuel velocity distribution nonuniformity among solid oxide fuel cell unit channels
  publication-title: Int J Hydrogen Energy
– volume: 38
  start-page: 2846
  year: 2013
  end-page: 2858
  ident: b16
  article-title: The effect of electrolyte type on performance of solid oxide fuel cells running on hydrocarbon fuels
  publication-title: Int J Hydrogen Energy
– year: 2013
  ident: b31
  article-title: Convection in porous media
– year: 2020
  ident: b2
  article-title: Fundamentals of heat and fluid flow in high temperature fuel cells
– volume: 41
  start-page: 10030
  year: 2016
  end-page: 10036
  ident: b11
  article-title: Investigation of temperature distribution and performance of SOFC short stack with/without machined gas channels
  publication-title: Int J Hydrogen Energy
– year: 2021
  ident: b4
  article-title: Numerical investigation of unsteady operation of micro-planar proton-conducting solid oxide fuel cell
– volume: 34
  start-page: 9543
  year: 2009
  end-page: 9544
  ident: b26
  article-title: On the source terms of species equations in fuel cell modeling
  publication-title: Int J Hydrogen Energy
– year: 1990
  ident: b30
  article-title: Introduction to modeling of transport phenomena in porous media
– volume: 204
  start-page: 106
  year: 2012
  end-page: 115
  ident: b8
  article-title: The influence of interconnect ribs on the performance of planar solid oxide fuel cell and formulae for optimal rib sizes
  publication-title: J Power Sources
– year: 2002
  ident: 10.1016/j.fuel.2021.122557_b21
– year: 1990
  ident: 10.1016/j.fuel.2021.122557_b30
– year: 2020
  ident: 10.1016/j.fuel.2021.122557_b2
– volume: 104
  start-page: 4727
  issue: 10
  year: 2004
  ident: 10.1016/j.fuel.2021.122557_b19
  article-title: Fundamental models for fuel cell engineering
  publication-title: Chem Rev
  doi: 10.1021/cr020718s
– year: 2000
  ident: 10.1016/j.fuel.2021.122557_b17
– volume: 5
  start-page: 18414
  year: 2017
  ident: 10.1016/j.fuel.2021.122557_b5
  article-title: A functional micro-solid oxide fuel cell with a 10 nm-thick freestanding electrolyte
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA05245F
– volume: 195
  start-page: 6598
  year: 2010
  ident: 10.1016/j.fuel.2021.122557_b29
  article-title: Combined micro-scale and macro-scale modeling of the composite electrode of a solid oxide fuel cell
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2010.04.065
– volume: 44
  start-page: 446
  year: 2019
  ident: 10.1016/j.fuel.2021.122557_b13
  article-title: On the effect of gas channels-electrode interface area on SOFCs performance
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.02.108
– volume: 36
  start-page: 10209
  year: 2011
  ident: 10.1016/j.fuel.2021.122557_b7
  article-title: Three-dimensional computational fluid dynamics modeling of anode-supported planar SOFC
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.11.018
– year: 2003
  ident: 10.1016/j.fuel.2021.122557_b22
– year: 1987
  ident: 10.1016/j.fuel.2021.122557_b23
– volume: 47
  start-page: 3617
  issue: 17
  year: 2004
  ident: 10.1016/j.fuel.2021.122557_b24
  article-title: Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2004.04.010
– volume: 65
  start-page: 581
  year: 2010
  ident: 10.1016/j.fuel.2021.122557_b15
  article-title: Analysis of a proton-conducting SOFC with direct internal reforming
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2009.06.066
– year: 1993
  ident: 10.1016/j.fuel.2021.122557_b18
– year: 2021
  ident: 10.1016/j.fuel.2021.122557_b4
– volume: 55
  start-page: 773
  year: 2012
  ident: 10.1016/j.fuel.2021.122557_b32
  article-title: SOFC modeling considering electrochemical reactions at the active three phase boundaries
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2011.10.032
– volume: 40
  start-page: 3035
  year: 2015
  ident: 10.1016/j.fuel.2021.122557_b10
  article-title: Numerical investigation on impacts on fuel velocity distribution nonuniformity among solid oxide fuel cell unit channels
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.12.088
– volume: 38
  start-page: 2635
  year: 1995
  ident: 10.1016/j.fuel.2021.122557_b35
  article-title: Momentum transfer at the boundary between a porous medium and a homogeneous fluid
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/0017-9310(94)00346-W
– volume: 38
  start-page: 2846
  year: 2013
  ident: 10.1016/j.fuel.2021.122557_b16
  article-title: The effect of electrolyte type on performance of solid oxide fuel cells running on hydrocarbon fuels
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.12.055
– volume: 51
  start-page: 3446
  year: 2006
  ident: 10.1016/j.fuel.2021.122557_b28
  article-title: A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2005.09.041
– start-page: 1
  year: 2020
  ident: 10.1016/j.fuel.2021.122557_b3
  article-title: Thermal analysis of a micro-scale proton-conducting solid oxide fuel cell
  publication-title: Energy Sources A
– volume: 41
  start-page: 10030
  year: 2016
  ident: 10.1016/j.fuel.2021.122557_b11
  article-title: Investigation of temperature distribution and performance of SOFC short stack with/without machined gas channels
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.02.045
– volume: 119
  start-page: 235
  year: 2017
  ident: 10.1016/j.fuel.2021.122557_b12
  article-title: Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries
  publication-title: Energy
  doi: 10.1016/j.energy.2016.12.074
– volume: 34
  start-page: 9543
  issue: 23
  year: 2009
  ident: 10.1016/j.fuel.2021.122557_b26
  article-title: On the source terms of species equations in fuel cell modeling
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.09.049
– volume: 122
  start-page: 9
  year: 2003
  ident: 10.1016/j.fuel.2021.122557_b20
  article-title: Performance comparison of fick’s, dusty-gas and stefane-maxwell models to predict the concentration overpotential of a SOFC anode
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(02)00724-3
– volume: 163
  start-page: 119
  year: 2010
  ident: 10.1016/j.fuel.2021.122557_b6
  article-title: CFD analysis of a novel symmetrical planar SOFC design with micro-flow channels
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2010.07.031
– year: 2013
  ident: 10.1016/j.fuel.2021.122557_b31
– volume: 39
  start-page: 12904
  year: 2014
  ident: 10.1016/j.fuel.2021.122557_b27
  article-title: Investigation of the electrochemical active thickness of solid oxide fuel cell anode
  publication-title: J Hydrog Energy
  doi: 10.1016/j.ijhydene.2014.06.108
– volume: 204
  start-page: 106
  year: 2012
  ident: 10.1016/j.fuel.2021.122557_b8
  article-title: The influence of interconnect ribs on the performance of planar solid oxide fuel cell and formulae for optimal rib sizes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.01.041
– volume: 37
  start-page: 1731
  year: 2012
  ident: 10.1016/j.fuel.2021.122557_b25
  article-title: Modeling of SOFC running on partially pre-reformed gas mixture
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.10.042
– volume: 14
  start-page: 177
  year: 2014
  ident: 10.1016/j.fuel.2021.122557_b9
  article-title: SOFC cell design optimization using the finite element method based CFD approach
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201300160
– volume: 481
  year: 2021
  ident: 10.1016/j.fuel.2021.122557_b14
  article-title: Multi-physics simulation of transport phenomena in planar proton-conducting solid oxide fuel cell
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228997
– volume: 149
  start-page: 161
  year: 2015
  ident: 10.1016/j.fuel.2021.122557_b33
  article-title: Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.03.037
– volume: 39
  issue: 6
  year: 2020
  ident: 10.1016/j.fuel.2021.122557_b1
  article-title: Numerical study of detecting crack initiation in a planar solid oxide fuel cell
  publication-title: Environ Prog Sustain Energy
  doi: 10.1002/ep.13443
– volume: 162
  start-page: 297
  year: 2003
  ident: 10.1016/j.fuel.2021.122557_b34
  article-title: Effect of humidification at anode and cathode in proton-conducting SOFCs
  publication-title: Solid State Ion
  doi: 10.1016/S0167-2738(03)00222-4
SSID ssj0007854
Score 2.4141629
Snippet The gas channel geometry in solid oxide fuel cells (SOFCs) influences the reacting thermo-fluid process and, thus, overall cell performance. This paper...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122557
SubjectTerms Channels
Computational fluid dynamics modeling
Computer applications
Dimensionless parameters
Dynamic models
Flow channels
Fuel cells
Fuel technology
Gas channels
Mathematical models
Numerical analysis
Numerical models
Parameters
Proton-conducting electrolyte
Reduction
Solid oxide fuel cell
Solid oxide fuel cells
Temperature distribution
Transport phenomena
Two dimensional models
Title Numerical analysis of transport phenomena in solid oxide fuel cell gas channels
URI https://dx.doi.org/10.1016/j.fuel.2021.122557
https://www.proquest.com/docview/2630530195
Volume 311
WOSCitedRecordID wos000743137400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xsCAfEJcoqyaOm-S4Ql0eWnWR6KLeLNuxt6m6adm2q_IP-NmM40fLCio4cImqNG6tmc_j8WTmG4Te6F4iC9GjsSwFjTPFYUlxquDUqkVCYMPUxDabyIfDYjwuP3c6P3wtzM0sb5pisykX_1XVcA-UbUpn_0Hd4UfhBnwGpcMV1A7Xv1L8cG1fwhgOgC3hyMqTmEcmqcvQLnAT6oCp1FU039SVivRazSITyI8u-bKtCG4s1_K2j6d5wsQVTC9tmxUf4ghf-PeW5qANp074pK4CZN5PwENXV7WtDZr6HHpA2eQKxtjAdKUuQ2R6tyjNsRvYdN7dGAUcb0OSlg2cheKZr7u2OOnHhvrF7kTW_BY5ifPE0gd7-0ycNbYWNvmt3bchiOmxkRQc-tPkOAFDZamvfyXZHp6z04uzMzYajEdvF99i03_MvKd3zVjuoIM0p2XRRQcnHwfjT2FXzwtqGb3drF0Bls0VvP23f3Jybm33rQ8zeogeuMMHPrGgeYQ6qnmM7u9QUj5B5wE-2MMHzzUO8MEBPrhucAsf3MIHm9lhAx8M8MEePk_Rxelg9O5D7JpuxJKkxSouKvAZJS-rvtIkJSqjWiaSE1rKsi85rUQuwQUnAqw915lIK_DwRN6HZZ7rquqRZ6jbzBv1HOGMKK7LghsSw0wUKRea92ROWxK9RNBDlHgpMekY6U1jlBnzqYdTZubOjGSZlewhisKYheVj2fs09cJnzqO0niID4Owdd-Q1xdzSXrK0D3sjMQW2L_Z__RLd2y6CI9RdXa_VK3RX3qzq5fVrB6yfckSfHA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+transport+phenomena+in+solid+oxide+fuel+cell+gas+channels&rft.jtitle=Fuel+%28Guildford%29&rft.au=Sayadian%2C+Shahide&rft.au=Ghassemi%2C+Majid&rft.au=Ahmadi%2C+Sadegh&rft.au=Robinson%2C+Anthony+James&rft.date=2022-03-01&rft.pub=Elsevier+BV&rft.issn=0016-2361&rft.eissn=1873-7153&rft.volume=311&rft.spage=1&rft_id=info:doi/10.1016%2Fj.fuel.2021.122557&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon