Numerical analysis of transport phenomena in solid oxide fuel cell gas channels
The gas channel geometry in solid oxide fuel cells (SOFCs) influences the reacting thermo-fluid process and, thus, overall cell performance. This paper presents a dimensionless approach to the study of the transport phenomena in the gas channels of planar anode-supported proton-conducting SOFC. Out-...
Uložené v:
| Vydané v: | Fuel (Guildford) Ročník 311; s. 122557 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Kidlington
Elsevier Ltd
01.03.2022
Elsevier BV |
| Predmet: | |
| ISSN: | 0016-2361, 1873-7153 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The gas channel geometry in solid oxide fuel cells (SOFCs) influences the reacting thermo-fluid process and, thus, overall cell performance. This paper presents a dimensionless approach to the study of the transport phenomena in the gas channels of planar anode-supported proton-conducting SOFC. Out-of-scale modeling reduces the number of variables that should be investigated and offers generalized results, giving insight into similar fuel cells. A 2D numerical model for the multiphysics process in SOFC is developed. A dimensionless form of the governing equations is derived in order to identify the dimensionless quantities that characterize the transport phenomena in SOFC. Reynolds, Peclet, and Sherwood are the important parameter groupings of flow channels that influence mass and temperature distribution. The efficacy of the computational fluid dynamic model is confirmed by comparing simulated results with experimental data from the literature. The effect of fuel and air channels’ dimensionless parameters on cell performance is discussed. Similar changes in fuel and air channels exert various influences on SOFC electrical performance. It is found that reducing Pe in the fuel channel improves power generation. However, Sh and Re reduction effect neutralize the increase in power generation due to Pe reduction in the air channel.
•Non-dimensional formulation is used to predict anode-supported SOFC electrical power.•SOFC reacts differently to an identical change in air and fuel channels parameters.•Decreasing Peclet in gas channels increases the cell’s electrical current generation. |
|---|---|
| AbstractList | The gas channel geometry in solid oxide fuel cells (SOFCs) influences the reacting thermo-fluid process and, thus, overall cell performance. This paper presents a dimensionless approach to the study of the transport phenomena in the gas channels of planar anode-supported proton-conducting SOFC. Out-of-scale modeling reduces the number of variables that should be investigated and offers generalized results, giving insight into similar fuel cells. A 2D numerical model for the multiphysics process in SOFC is developed. A dimensionless form of the governing equations is derived in order to identify the dimensionless quantities that characterize the transport phenomena in SOFC. Reynolds, Peclet, and Sherwood are the important parameter groupings of flow channels that influence mass and temperature distribution. The efficacy of the computational fluid dynamic model is confirmed by comparing simulated results with experimental data from the literature. The effect of fuel and air channels' dimensionless parameters on cell performance is discussed. Similar changes in fuel and air channels exert various influences on SOFC electrical performance. It is found that reducing Pe in the fuel channel improves power generation. However, Sh and Re reduction effect neutralize the increase in power generation due to Pe reduction in the air channel. The gas channel geometry in solid oxide fuel cells (SOFCs) influences the reacting thermo-fluid process and, thus, overall cell performance. This paper presents a dimensionless approach to the study of the transport phenomena in the gas channels of planar anode-supported proton-conducting SOFC. Out-of-scale modeling reduces the number of variables that should be investigated and offers generalized results, giving insight into similar fuel cells. A 2D numerical model for the multiphysics process in SOFC is developed. A dimensionless form of the governing equations is derived in order to identify the dimensionless quantities that characterize the transport phenomena in SOFC. Reynolds, Peclet, and Sherwood are the important parameter groupings of flow channels that influence mass and temperature distribution. The efficacy of the computational fluid dynamic model is confirmed by comparing simulated results with experimental data from the literature. The effect of fuel and air channels’ dimensionless parameters on cell performance is discussed. Similar changes in fuel and air channels exert various influences on SOFC electrical performance. It is found that reducing Pe in the fuel channel improves power generation. However, Sh and Re reduction effect neutralize the increase in power generation due to Pe reduction in the air channel. •Non-dimensional formulation is used to predict anode-supported SOFC electrical power.•SOFC reacts differently to an identical change in air and fuel channels parameters.•Decreasing Peclet in gas channels increases the cell’s electrical current generation. |
| ArticleNumber | 122557 |
| Author | Sayadian, Shahide Robinson, Anthony James Ahmadi, Sadegh Ghassemi, Majid |
| Author_xml | – sequence: 1 givenname: Shahide surname: Sayadian fullname: Sayadian, Shahide email: ssayadian@mail.kntu.ac.ir organization: Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran – sequence: 2 givenname: Majid surname: Ghassemi fullname: Ghassemi, Majid organization: Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran – sequence: 3 givenname: Sadegh orcidid: 0000-0001-5226-0259 surname: Ahmadi fullname: Ahmadi, Sadegh organization: Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland – sequence: 4 givenname: Anthony James surname: Robinson fullname: Robinson, Anthony James organization: Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland |
| BookMark | eNp9kDtPwzAUhS1UJNrCH2CyxJziR-wkEguqeEkVXWC2XPuGOnLtYieI_ntSlYmB6S7nO1fnm6FJiAEQuqZkQQmVt92iHcAvGGF0QRkTojpDU1pXvKio4BM0JWOqYFzSCzTLuSOEVLUop2j9OuwgOaM91kH7Q3YZxxb3SYe8j6nH-y2EuIOgsQs4R-8sjt_OAj4-xAa8xx86Y7PVIYDPl-i81T7D1e-do_fHh7flc7FaP70s71eF4azui9pWNTO6sRJazjiUojXUaC4a00ijhd1UpmScb0jJdFtumJWSbipZgq5aawmfo5tT7z7FzwFyr7o4pHFBVkxyIjihjRhT9SllUsw5QauM63XvYhgHOq8oUUd9qlPHNeqoT530jSj7g-6T2-l0-B-6O0GjCfhykFQ2DoIB6xKYXtno_sN_AAhYi88 |
| CitedBy_id | crossref_primary_10_1007_s12206_025_0852_7 crossref_primary_10_1016_j_cej_2025_164547 crossref_primary_10_1016_j_energy_2023_129665 crossref_primary_10_1016_j_ijhydene_2025_04_383 crossref_primary_10_1016_j_apenergy_2025_125592 crossref_primary_10_1038_s41467_024_48785_1 crossref_primary_10_1016_j_heliyon_2024_e40996 crossref_primary_10_1016_j_applthermaleng_2024_122706 |
| Cites_doi | 10.1021/cr020718s 10.1039/C7TA05245F 10.1016/j.jpowsour.2010.04.065 10.1016/j.ijhydene.2018.02.108 10.1016/j.ijhydene.2010.11.018 10.1016/j.ijheatmasstransfer.2004.04.010 10.1016/j.ces.2009.06.066 10.1016/j.ijheatmasstransfer.2011.10.032 10.1016/j.ijhydene.2014.12.088 10.1016/0017-9310(94)00346-W 10.1016/j.ijhydene.2012.12.055 10.1016/j.electacta.2005.09.041 10.1016/j.ijhydene.2016.02.045 10.1016/j.energy.2016.12.074 10.1016/j.ijhydene.2009.09.049 10.1016/S0378-7753(02)00724-3 10.1016/j.cej.2010.07.031 10.1016/j.ijhydene.2014.06.108 10.1016/j.jpowsour.2012.01.041 10.1016/j.ijhydene.2011.10.042 10.1002/fuce.201300160 10.1016/j.jpowsour.2020.228997 10.1016/j.apenergy.2015.03.037 10.1002/ep.13443 10.1016/S0167-2738(03)00222-4 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Mar 1, 2022 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Mar 1, 2022 |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
| DOI | 10.1016/j.fuel.2021.122557 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7153 |
| ExternalDocumentID | 10_1016_j_fuel_2021_122557 S001623612102425X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ACDAQ ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEIPS AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ WH7 ZMT ~02 ~G- 29H 8WZ 9DU A6W AAQXK AATTM AAYWO AAYXX ABDEX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SCB SEW VH1 WUQ XPP ZY4 ~HD 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
| ID | FETCH-LOGICAL-c328t-8d782ca9d6ef323e45fc1ca359c96ca5db7c4233b042af4b2d661b764ea7fdd03 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000743137400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0016-2361 |
| IngestDate | Wed Aug 13 06:40:30 EDT 2025 Sat Nov 29 05:34:41 EST 2025 Tue Nov 18 19:47:21 EST 2025 Sat Jan 18 16:09:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Computational fluid dynamics modeling Dimensionless parameters Proton-conducting electrolyte Gas channels Solid oxide fuel cell |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-8d782ca9d6ef323e45fc1ca359c96ca5db7c4233b042af4b2d661b764ea7fdd03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5226-0259 |
| PQID | 2630530195 |
| PQPubID | 2045474 |
| ParticipantIDs | proquest_journals_2630530195 crossref_citationtrail_10_1016_j_fuel_2021_122557 crossref_primary_10_1016_j_fuel_2021_122557 elsevier_sciencedirect_doi_10_1016_j_fuel_2021_122557 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 2022-03-00 20220301 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Fuel (Guildford) |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Fahs, Ghassemi (b1) 2020; 39 Arpornwichanop, Patcharavorachot, Assabumrungrat (b15) 2010; 65 Taylor, Krishna (b18) 1993 Sayadian, Ghassemi, Robinson (b14) 2021; 481 Wang (b19) 2004; 104 Ni (b26) 2009; 34 Kong, Li, Liu, Lin (b8) 2012; 204 Menon, Banerjee, Dailly, Deutschmann (b33) 2015; 149 Sayadian (b4) 2021 Ochoa-Tapia, Whitakeri (b35) 1995; 38 Ni (b25) 2012; 37 Reid, Prausnitz, Poling (b23) 1987 Kee, Coltrin, Glarborg (b22) 2003 Haberman, Young (b24) 2004; 47 Taherparvar, Kilner, Baker, Sahibzada (b34) 2003; 162 Andersson, Yuan, Sundén (b9) 2014; 14 Zheng, Li, Ni (b27) 2014; 39 Lin, Shi, Ni, Cai (b10) 2015; 40 Moreno-Blanco, Elizalde-Blancas, Riesco-Avila, Belman-Flores, Gallegos-Munoz (b13) 2019; 44 Nield, Bejan (b31) 2013 Sayadian, Ghassemi (b3) 2020 Qu, Aravind, Boksteen, Dekker, Janssen, Woudstra, Verkooijen (b7) 2011; 36 Shi, Xue (b6) 2010; 163 Bear, Bachmat (b30) 1990 Ni (b16) 2013; 38 Chen, Bi, Kong, Lin (b29) 2010; 195 Khazaee, Rava (b12) 2017; 119 Ghassemi, Kamvar, Stienberger-Wilkens (b2) 2020 Nam, Jeon (b28) 2006; 51 Andersson, Yuan, Sunden (b32) 2012; 55 Batchelor (b17) 2000 Canavar, Mat, Celik, Bora Timurkutluk and (b11) 2016; 41 Suwanwarangkul, Croiset, Fowler, Douglas, Entchev, Douglas (b20) 2003; 122 Baek, Liu, Su (b5) 2017; 5 Bird, Stewart, Lightfoot (b21) 2002 Sayadian (10.1016/j.fuel.2021.122557_b4) 2021 Batchelor (10.1016/j.fuel.2021.122557_b17) 2000 Chen (10.1016/j.fuel.2021.122557_b29) 2010; 195 Ochoa-Tapia (10.1016/j.fuel.2021.122557_b35) 1995; 38 Canavar (10.1016/j.fuel.2021.122557_b11) 2016; 41 Andersson (10.1016/j.fuel.2021.122557_b9) 2014; 14 Ni (10.1016/j.fuel.2021.122557_b16) 2013; 38 Wang (10.1016/j.fuel.2021.122557_b19) 2004; 104 Khazaee (10.1016/j.fuel.2021.122557_b12) 2017; 119 Kee (10.1016/j.fuel.2021.122557_b22) 2003 Zheng (10.1016/j.fuel.2021.122557_b27) 2014; 39 Suwanwarangkul (10.1016/j.fuel.2021.122557_b20) 2003; 122 Kong (10.1016/j.fuel.2021.122557_b8) 2012; 204 Reid (10.1016/j.fuel.2021.122557_b23) 1987 Andersson (10.1016/j.fuel.2021.122557_b32) 2012; 55 Arpornwichanop (10.1016/j.fuel.2021.122557_b15) 2010; 65 Ni (10.1016/j.fuel.2021.122557_b26) 2009; 34 Fahs (10.1016/j.fuel.2021.122557_b1) 2020; 39 Bird (10.1016/j.fuel.2021.122557_b21) 2002 Nield (10.1016/j.fuel.2021.122557_b31) 2013 Sayadian (10.1016/j.fuel.2021.122557_b3) 2020 Sayadian (10.1016/j.fuel.2021.122557_b14) 2021; 481 Baek (10.1016/j.fuel.2021.122557_b5) 2017; 5 Haberman (10.1016/j.fuel.2021.122557_b24) 2004; 47 Menon (10.1016/j.fuel.2021.122557_b33) 2015; 149 Taherparvar (10.1016/j.fuel.2021.122557_b34) 2003; 162 Qu (10.1016/j.fuel.2021.122557_b7) 2011; 36 Bear (10.1016/j.fuel.2021.122557_b30) 1990 Moreno-Blanco (10.1016/j.fuel.2021.122557_b13) 2019; 44 Ghassemi (10.1016/j.fuel.2021.122557_b2) 2020 Shi (10.1016/j.fuel.2021.122557_b6) 2010; 163 Ni (10.1016/j.fuel.2021.122557_b25) 2012; 37 Taylor (10.1016/j.fuel.2021.122557_b18) 1993 Lin (10.1016/j.fuel.2021.122557_b10) 2015; 40 Nam (10.1016/j.fuel.2021.122557_b28) 2006; 51 |
| References_xml | – volume: 65 start-page: 581 year: 2010 end-page: 589 ident: b15 article-title: Analysis of a proton-conducting SOFC with direct internal reforming publication-title: Chem Eng Sci – volume: 14 start-page: 177 year: 2014 end-page: 188 ident: b9 article-title: SOFC cell design optimization using the finite element method based CFD approach publication-title: Fuel Cells – year: 2003 ident: b22 article-title: Chemically reacting flow – volume: 44 start-page: 446 year: 2019 end-page: 456 ident: b13 article-title: On the effect of gas channels-electrode interface area on SOFCs performance publication-title: Int J Hydrogen Energy – volume: 195 start-page: 6598 year: 2010 end-page: 6610 ident: b29 article-title: Combined micro-scale and macro-scale modeling of the composite electrode of a solid oxide fuel cell publication-title: J Power Sources – volume: 149 start-page: 161 year: 2015 end-page: 175 ident: b33 article-title: Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming publication-title: Appl Energy – volume: 481 year: 2021 ident: b14 article-title: Multi-physics simulation of transport phenomena in planar proton-conducting solid oxide fuel cell publication-title: J Power Sources – year: 1993 ident: b18 article-title: Multicomponent mass transfer – volume: 38 start-page: 2635 year: 1995 end-page: 2646 ident: b35 article-title: Momentum transfer at the boundary between a porous medium and a homogeneous fluid publication-title: Int J Heat Mass Transfer – volume: 36 start-page: 10209 year: 2011 end-page: 10220 ident: b7 article-title: Three-dimensional computational fluid dynamics modeling of anode-supported planar SOFC publication-title: Int J Hydrogen Energy – year: 2000 ident: b17 article-title: An introduction to fluid dynamics – volume: 39 start-page: 12904 year: 2014 end-page: 12912 ident: b27 article-title: Investigation of the electrochemical active thickness of solid oxide fuel cell anode publication-title: J Hydrog Energy – volume: 104 start-page: 4727 year: 2004 end-page: 4766 ident: b19 article-title: Fundamental models for fuel cell engineering publication-title: Chem Rev – volume: 39 year: 2020 ident: b1 article-title: Numerical study of detecting crack initiation in a planar solid oxide fuel cell publication-title: Environ Prog Sustain Energy – volume: 119 start-page: 235 year: 2017 end-page: 244 ident: b12 article-title: Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries publication-title: Energy – volume: 122 start-page: 9 year: 2003 end-page: 18 ident: b20 article-title: Performance comparison of fick’s, dusty-gas and stefane-maxwell models to predict the concentration overpotential of a SOFC anode publication-title: J Power Sources – volume: 51 start-page: 3446 year: 2006 end-page: 3460 ident: b28 article-title: A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells publication-title: Electrochim Acta – volume: 37 start-page: 1731 year: 2012 end-page: 1745 ident: b25 article-title: Modeling of SOFC running on partially pre-reformed gas mixture publication-title: Int J Hydrogen Energy – volume: 163 start-page: 119 year: 2010 end-page: 125 ident: b6 article-title: CFD analysis of a novel symmetrical planar SOFC design with micro-flow channels publication-title: Chem Eng J – year: 1987 ident: b23 article-title: The properties of gases and liquids – volume: 55 start-page: 773 year: 2012 end-page: 788 ident: b32 article-title: SOFC modeling considering electrochemical reactions at the active three phase boundaries publication-title: Int J Heat Mass Transfer – volume: 162 start-page: 297 year: 2003 end-page: 303 ident: b34 article-title: Effect of humidification at anode and cathode in proton-conducting SOFCs publication-title: Solid State Ion – volume: 47 start-page: 3617 year: 2004 end-page: 3629 ident: b24 article-title: Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell publication-title: Int J Heat Mass Transfer – year: 2002 ident: b21 article-title: Transport phenomena – volume: 5 start-page: 18414 year: 2017 end-page: 18419 ident: b5 article-title: A functional micro-solid oxide fuel cell with a 10 nm-thick freestanding electrolyte publication-title: J Mater Chem A – start-page: 1 year: 2020 end-page: 13 ident: b3 article-title: Thermal analysis of a micro-scale proton-conducting solid oxide fuel cell publication-title: Energy Sources A – volume: 40 start-page: 3035 year: 2015 end-page: 3047 ident: b10 article-title: Numerical investigation on impacts on fuel velocity distribution nonuniformity among solid oxide fuel cell unit channels publication-title: Int J Hydrogen Energy – volume: 38 start-page: 2846 year: 2013 end-page: 2858 ident: b16 article-title: The effect of electrolyte type on performance of solid oxide fuel cells running on hydrocarbon fuels publication-title: Int J Hydrogen Energy – year: 2013 ident: b31 article-title: Convection in porous media – year: 2020 ident: b2 article-title: Fundamentals of heat and fluid flow in high temperature fuel cells – volume: 41 start-page: 10030 year: 2016 end-page: 10036 ident: b11 article-title: Investigation of temperature distribution and performance of SOFC short stack with/without machined gas channels publication-title: Int J Hydrogen Energy – year: 2021 ident: b4 article-title: Numerical investigation of unsteady operation of micro-planar proton-conducting solid oxide fuel cell – volume: 34 start-page: 9543 year: 2009 end-page: 9544 ident: b26 article-title: On the source terms of species equations in fuel cell modeling publication-title: Int J Hydrogen Energy – year: 1990 ident: b30 article-title: Introduction to modeling of transport phenomena in porous media – volume: 204 start-page: 106 year: 2012 end-page: 115 ident: b8 article-title: The influence of interconnect ribs on the performance of planar solid oxide fuel cell and formulae for optimal rib sizes publication-title: J Power Sources – year: 2002 ident: 10.1016/j.fuel.2021.122557_b21 – year: 1990 ident: 10.1016/j.fuel.2021.122557_b30 – year: 2020 ident: 10.1016/j.fuel.2021.122557_b2 – volume: 104 start-page: 4727 issue: 10 year: 2004 ident: 10.1016/j.fuel.2021.122557_b19 article-title: Fundamental models for fuel cell engineering publication-title: Chem Rev doi: 10.1021/cr020718s – year: 2000 ident: 10.1016/j.fuel.2021.122557_b17 – volume: 5 start-page: 18414 year: 2017 ident: 10.1016/j.fuel.2021.122557_b5 article-title: A functional micro-solid oxide fuel cell with a 10 nm-thick freestanding electrolyte publication-title: J Mater Chem A doi: 10.1039/C7TA05245F – volume: 195 start-page: 6598 year: 2010 ident: 10.1016/j.fuel.2021.122557_b29 article-title: Combined micro-scale and macro-scale modeling of the composite electrode of a solid oxide fuel cell publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.04.065 – volume: 44 start-page: 446 year: 2019 ident: 10.1016/j.fuel.2021.122557_b13 article-title: On the effect of gas channels-electrode interface area on SOFCs performance publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.02.108 – volume: 36 start-page: 10209 year: 2011 ident: 10.1016/j.fuel.2021.122557_b7 article-title: Three-dimensional computational fluid dynamics modeling of anode-supported planar SOFC publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.11.018 – year: 2003 ident: 10.1016/j.fuel.2021.122557_b22 – year: 1987 ident: 10.1016/j.fuel.2021.122557_b23 – volume: 47 start-page: 3617 issue: 17 year: 2004 ident: 10.1016/j.fuel.2021.122557_b24 article-title: Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell publication-title: Int J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2004.04.010 – volume: 65 start-page: 581 year: 2010 ident: 10.1016/j.fuel.2021.122557_b15 article-title: Analysis of a proton-conducting SOFC with direct internal reforming publication-title: Chem Eng Sci doi: 10.1016/j.ces.2009.06.066 – year: 1993 ident: 10.1016/j.fuel.2021.122557_b18 – year: 2021 ident: 10.1016/j.fuel.2021.122557_b4 – volume: 55 start-page: 773 year: 2012 ident: 10.1016/j.fuel.2021.122557_b32 article-title: SOFC modeling considering electrochemical reactions at the active three phase boundaries publication-title: Int J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2011.10.032 – volume: 40 start-page: 3035 year: 2015 ident: 10.1016/j.fuel.2021.122557_b10 article-title: Numerical investigation on impacts on fuel velocity distribution nonuniformity among solid oxide fuel cell unit channels publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.12.088 – volume: 38 start-page: 2635 year: 1995 ident: 10.1016/j.fuel.2021.122557_b35 article-title: Momentum transfer at the boundary between a porous medium and a homogeneous fluid publication-title: Int J Heat Mass Transfer doi: 10.1016/0017-9310(94)00346-W – volume: 38 start-page: 2846 year: 2013 ident: 10.1016/j.fuel.2021.122557_b16 article-title: The effect of electrolyte type on performance of solid oxide fuel cells running on hydrocarbon fuels publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.12.055 – volume: 51 start-page: 3446 year: 2006 ident: 10.1016/j.fuel.2021.122557_b28 article-title: A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells publication-title: Electrochim Acta doi: 10.1016/j.electacta.2005.09.041 – start-page: 1 year: 2020 ident: 10.1016/j.fuel.2021.122557_b3 article-title: Thermal analysis of a micro-scale proton-conducting solid oxide fuel cell publication-title: Energy Sources A – volume: 41 start-page: 10030 year: 2016 ident: 10.1016/j.fuel.2021.122557_b11 article-title: Investigation of temperature distribution and performance of SOFC short stack with/without machined gas channels publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.02.045 – volume: 119 start-page: 235 year: 2017 ident: 10.1016/j.fuel.2021.122557_b12 article-title: Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries publication-title: Energy doi: 10.1016/j.energy.2016.12.074 – volume: 34 start-page: 9543 issue: 23 year: 2009 ident: 10.1016/j.fuel.2021.122557_b26 article-title: On the source terms of species equations in fuel cell modeling publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2009.09.049 – volume: 122 start-page: 9 year: 2003 ident: 10.1016/j.fuel.2021.122557_b20 article-title: Performance comparison of fick’s, dusty-gas and stefane-maxwell models to predict the concentration overpotential of a SOFC anode publication-title: J Power Sources doi: 10.1016/S0378-7753(02)00724-3 – volume: 163 start-page: 119 year: 2010 ident: 10.1016/j.fuel.2021.122557_b6 article-title: CFD analysis of a novel symmetrical planar SOFC design with micro-flow channels publication-title: Chem Eng J doi: 10.1016/j.cej.2010.07.031 – year: 2013 ident: 10.1016/j.fuel.2021.122557_b31 – volume: 39 start-page: 12904 year: 2014 ident: 10.1016/j.fuel.2021.122557_b27 article-title: Investigation of the electrochemical active thickness of solid oxide fuel cell anode publication-title: J Hydrog Energy doi: 10.1016/j.ijhydene.2014.06.108 – volume: 204 start-page: 106 year: 2012 ident: 10.1016/j.fuel.2021.122557_b8 article-title: The influence of interconnect ribs on the performance of planar solid oxide fuel cell and formulae for optimal rib sizes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.01.041 – volume: 37 start-page: 1731 year: 2012 ident: 10.1016/j.fuel.2021.122557_b25 article-title: Modeling of SOFC running on partially pre-reformed gas mixture publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.10.042 – volume: 14 start-page: 177 year: 2014 ident: 10.1016/j.fuel.2021.122557_b9 article-title: SOFC cell design optimization using the finite element method based CFD approach publication-title: Fuel Cells doi: 10.1002/fuce.201300160 – volume: 481 year: 2021 ident: 10.1016/j.fuel.2021.122557_b14 article-title: Multi-physics simulation of transport phenomena in planar proton-conducting solid oxide fuel cell publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.228997 – volume: 149 start-page: 161 year: 2015 ident: 10.1016/j.fuel.2021.122557_b33 article-title: Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.03.037 – volume: 39 issue: 6 year: 2020 ident: 10.1016/j.fuel.2021.122557_b1 article-title: Numerical study of detecting crack initiation in a planar solid oxide fuel cell publication-title: Environ Prog Sustain Energy doi: 10.1002/ep.13443 – volume: 162 start-page: 297 year: 2003 ident: 10.1016/j.fuel.2021.122557_b34 article-title: Effect of humidification at anode and cathode in proton-conducting SOFCs publication-title: Solid State Ion doi: 10.1016/S0167-2738(03)00222-4 |
| SSID | ssj0007854 |
| Score | 2.4142473 |
| Snippet | The gas channel geometry in solid oxide fuel cells (SOFCs) influences the reacting thermo-fluid process and, thus, overall cell performance. This paper... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 122557 |
| SubjectTerms | Channels Computational fluid dynamics modeling Computer applications Dimensionless parameters Dynamic models Flow channels Fuel cells Fuel technology Gas channels Mathematical models Numerical analysis Numerical models Parameters Proton-conducting electrolyte Reduction Solid oxide fuel cell Solid oxide fuel cells Temperature distribution Transport phenomena Two dimensional models |
| Title | Numerical analysis of transport phenomena in solid oxide fuel cell gas channels |
| URI | https://dx.doi.org/10.1016/j.fuel.2021.122557 https://www.proquest.com/docview/2630530195 |
| Volume | 311 |
| WOSCitedRecordID | wos000743137400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg4wEeEJ9iMJAfeIsyLXGcxI8TGl9CBWkD9S1y_LGm2tJpbVH577mzHbcqYgIkXqIqil3r7pfz-XL3O0JeS2syXZQ21aziKZZWpq0uy9RYxW1eMMldFf-3T9V4XE8m4kvI0124dgJV39frtbj6r6qGe6BsLJ39C3XHSeEG_AalwxXUDtc_Uvx45T_CIAfAhnBkOZCYJ5jUhbQLEkMdsJROJ_N1p01iV-YiwUB-ci4XriK491zLmz6e-ATGFbCXts-Kj3GEU_nD0Ry4cOpUTjsdIfNuCh66uex8bdBsyKEHlE0vYYwPTGtzHiPT20Vpgd3Ap_NuxyjgeBuTtHzgbCie2WQqOWOclSlyv2wbY-ZN7y-G3ccYZocoCjjV59lhBpbIc1vvEGaf4sQ4L55mwSRNbpO9vOKiHpG94w8nk49xp65q7lm6w0JCUZXP_9v9p985LjtbuPNLzh6Q--FAQY89EB6SW6Z_RO5t0Uw-Jp8jJOgACTq3NEKCRkjQrqcOEtRBguLqKEKCAiToAIkn5Ovbk7M379PQSCNVLK-Xaa3BD1RS6NJYljNTcKsyJRkXSpRKct1WCtxq1oIFl7Zoc3hbs7YqCyMrq_URe0pG_bw3zwjNxZFkrdZamRp9fSG4kbk1ota80rXeJ9kgpUYFlnlsdnLRDOmEswbX3qBkGy_ZfZLEMVeeY-XGp_kg_CZ4id77awArN447GDTVhNd10eQl7HcMi2af_-O0L8jdDeIPyGh5vTIvyR31fdktrl8FxP0Ev7WX9g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+transport+phenomena+in+solid+oxide+fuel+cell+gas+channels&rft.jtitle=Fuel+%28Guildford%29&rft.au=Sayadian%2C+Shahide&rft.au=Ghassemi%2C+Majid&rft.au=Ahmadi%2C+Sadegh&rft.au=Robinson%2C+Anthony+James&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=0016-2361&rft.volume=311&rft_id=info:doi/10.1016%2Fj.fuel.2021.122557&rft.externalDocID=S001623612102425X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |