ZeroNAS: Differentiable Generative Adversarial Networks Search for Zero-Shot Learning

In recent years, remarkable progress in zero-shot learning (ZSL) has been achieved by generative adversarial networks (GAN). To compensate for the lack of training samples in ZSL, a surge of GAN architectures have been developed by human experts through trial-and-error testing. Despite their efficac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 44; číslo 12; s. 9733 - 9740
Hlavní autoři: Yan, Caixia, Chang, Xiaojun, Li, Zhihui, Guan, Weili, Ge, Zongyuan, Zhu, Lei, Zheng, Qinghua
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent years, remarkable progress in zero-shot learning (ZSL) has been achieved by generative adversarial networks (GAN). To compensate for the lack of training samples in ZSL, a surge of GAN architectures have been developed by human experts through trial-and-error testing. Despite their efficacy, however, there is still no guarantee that these hand-crafted models can consistently achieve good performance across diversified datasets or scenarios. Accordingly, in this paper, we turn to neural architecture search (NAS) and make the first attempt to bring NAS techniques into the ZSL realm. Specifically, we propose a differentiable GAN architecture search method over a specifically designed search space for zero-shot learning, referred to as ZeroNAS. Considering the relevance and balance of the generator and discriminator, ZeroNAS jointly searches their architectures in a min-max player game via adversarial training. Extensive experiments conducted on four widely used benchmark datasets demonstrate that ZeroNAS is capable of discovering desirable architectures that perform favorably against state-of-the-art ZSL and generalized zero-shot learning (GZSL) approaches. Source code is at https://github.com/caixiay/ZeroNAS .
AbstractList In recent years, remarkable progress in zero-shot learning (ZSL) has been achieved by generative adversarial networks (GAN). To compensate for the lack of training samples in ZSL, a surge of GAN architectures have been developed by human experts through trial-and-error testing. Despite their efficacy, however, there is still no guarantee that these hand-crafted models can consistently achieve good performance across diversified datasets or scenarios. Accordingly, in this paper, we turn to neural architecture search (NAS) and make the first attempt to bring NAS techniques into the ZSL realm. Specifically, we propose a differentiable GAN architecture search method over a specifically designed search space for zero-shot learning, referred to as ZeroNAS. Considering the relevance and balance of the generator and discriminator, ZeroNAS jointly searches their architectures in a min-max player game via adversarial training. Extensive experiments conducted on four widely used benchmark datasets demonstrate that ZeroNAS is capable of discovering desirable architectures that perform favorably against state-of-the-art ZSL and generalized zero-shot learning (GZSL) approaches. Source code is at https://github.com/caixiay/ZeroNAS .
In recent years, remarkable progress in zero-shot learning (ZSL) has been achieved by generative adversarial networks (GAN). To compensate for the lack of training samples in ZSL, a surge of GAN architectures have been developed by human experts through trial-and-error testing. Despite their efficacy, however, there is still no guarantee that these hand-crafted models can consistently achieve good performance across diversified datasets or scenarios. Accordingly, in this paper, we turn to neural architecture search (NAS) and make the first attempt to bring NAS techniques into the ZSL realm. Specifically, we propose a differentiable GAN architecture search method over a specifically designed search space for zero-shot learning, referred to as ZeroNAS. Considering the relevance and balance of the generator and discriminator, ZeroNAS jointly searches their architectures in a min-max player game via adversarial training. Extensive experiments conducted on four widely used benchmark datasets demonstrate that ZeroNAS is capable of discovering desirable architectures that perform favorably against state-of-the-art ZSL and generalized zero-shot learning (GZSL) approaches. Source code is at https://github.com/caixiay/ZeroNAS.In recent years, remarkable progress in zero-shot learning (ZSL) has been achieved by generative adversarial networks (GAN). To compensate for the lack of training samples in ZSL, a surge of GAN architectures have been developed by human experts through trial-and-error testing. Despite their efficacy, however, there is still no guarantee that these hand-crafted models can consistently achieve good performance across diversified datasets or scenarios. Accordingly, in this paper, we turn to neural architecture search (NAS) and make the first attempt to bring NAS techniques into the ZSL realm. Specifically, we propose a differentiable GAN architecture search method over a specifically designed search space for zero-shot learning, referred to as ZeroNAS. Considering the relevance and balance of the generator and discriminator, ZeroNAS jointly searches their architectures in a min-max player game via adversarial training. Extensive experiments conducted on four widely used benchmark datasets demonstrate that ZeroNAS is capable of discovering desirable architectures that perform favorably against state-of-the-art ZSL and generalized zero-shot learning (GZSL) approaches. Source code is at https://github.com/caixiay/ZeroNAS.
Author Zhu, Lei
Chang, Xiaojun
Zheng, Qinghua
Yan, Caixia
Ge, Zongyuan
Li, Zhihui
Guan, Weili
Author_xml – sequence: 1
  givenname: Caixia
  orcidid: 0000-0003-2595-0398
  surname: Yan
  fullname: Yan, Caixia
  email: yancaixia@stu.xjtu.edu.cn
  organization: Department of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, China
– sequence: 2
  givenname: Xiaojun
  orcidid: 0000-0002-7778-8807
  surname: Chang
  fullname: Chang, Xiaojun
  email: cxj273@gmail.com
  organization: School of Computing Technologies, RMIT University, Melbourne, VIC, Australia
– sequence: 3
  givenname: Zhihui
  orcidid: 0000-0001-9642-8009
  surname: Li
  fullname: Li, Zhihui
  email: zhihuilics@gmail.com
  organization: Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
– sequence: 4
  givenname: Weili
  orcidid: 0000-0002-5658-5509
  surname: Guan
  fullname: Guan, Weili
  email: honeyguan@gmail.com
  organization: Faculty of Information Technology, Monash University, Melbourne, VIC, Australia
– sequence: 5
  givenname: Zongyuan
  orcidid: 0000-0002-5880-8673
  surname: Ge
  fullname: Ge, Zongyuan
  email: Zongyuan.Ge@monash.edu
  organization: Faculty of Information Technology, Monash University, Melbourne, VIC, Australia
– sequence: 6
  givenname: Lei
  orcidid: 0000-0002-2993-7142
  surname: Zhu
  fullname: Zhu, Lei
  email: leizhu0608@gmail.com
  organization: School of Information Science and Engineering, Shandong Normal University, Jinan, China
– sequence: 7
  givenname: Qinghua
  surname: Zheng
  fullname: Zheng, Qinghua
  email: qhzheng@mail.xjtu.edu.cn
  organization: Department of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, China
BookMark eNp9kE1PGzEQhi1EBQH6B-hlpV64bLDHjtfuLaJ8SeFDClx6sZz1GEwXm9obEP-eDUEcOPQ00uh93hk9O2QzpoiE7DM6Zozqw5vr6cX5GCiwMWfQcCE3yAiYpLUGDZtkRJmEWilQ22SnlAdKmZhQvkW2uWgkTJQYkds_mNPldP6r-h28x4yxD3bRYXWKEbPtwzNWU_eMudgcbFddYv-S8t9SzdHm9r7yKVerinp-n_pqNixjiHd75Ju3XcHvH3OX3J4c3xyd1bOr0_Oj6axuOai-VtZTTR3ShYKJluAaZ5kUAq12Qjgn7MIDWtp420jXLJTC1rUSGArbIvd8lxyse59y-rfE0pvHUFrsOhsxLYsZWhuhFQM5RH9-iT6kZY7Dd2aljqtJo_mQgnWqzamUjN485fBo86th1Kykm3fpZiXdfEgfIPUFakM_qEuxzzZ0_0d_rNGAiJ-3tGRAheBv-4qP_w
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TCSVT_2023_3293514
crossref_primary_10_1016_j_patcog_2023_110133
crossref_primary_10_1007_s11263_024_02014_w
crossref_primary_10_1007_s12652_023_04703_9
crossref_primary_10_1016_j_ins_2023_119883
crossref_primary_10_1007_s12652_022_03887_w
crossref_primary_10_1109_TII_2024_3363078
crossref_primary_10_1109_TNNLS_2024_3382724
crossref_primary_10_1109_TIM_2024_3470961
crossref_primary_10_3390_s23135774
crossref_primary_10_1016_j_knosys_2023_110785
crossref_primary_10_1109_TNNLS_2023_3331506
crossref_primary_10_1109_TMM_2023_3289755
crossref_primary_10_32604_cmc_2024_059715
crossref_primary_10_1007_s12652_024_04779_x
crossref_primary_10_1016_j_ins_2023_118960
crossref_primary_10_1109_TMM_2023_3318289
crossref_primary_10_1016_j_cviu_2023_103721
crossref_primary_10_1109_TIM_2023_3280503
crossref_primary_10_1109_TNNLS_2024_3442290
crossref_primary_10_1016_j_engappai_2023_105845
crossref_primary_10_1049_ell2_12916
crossref_primary_10_1109_TIP_2023_3305817
crossref_primary_10_1109_TNNLS_2023_3314451
crossref_primary_10_1109_TII_2025_3526478
crossref_primary_10_1109_TBDATA_2024_3414341
crossref_primary_10_3390_app13084836
crossref_primary_10_3389_fnins_2024_1519970
crossref_primary_10_1007_s11431_022_2197_y
crossref_primary_10_1109_TNNLS_2023_3347792
crossref_primary_10_1109_TMM_2023_3284591
crossref_primary_10_1145_3571285
crossref_primary_10_3390_diagnostics13101700
crossref_primary_10_1109_TMM_2023_3289729
crossref_primary_10_1109_TMM_2024_3371220
crossref_primary_10_1109_TII_2024_3423487
crossref_primary_10_1109_TKDE_2025_3543503
crossref_primary_10_1016_j_engappai_2024_109020
crossref_primary_10_1016_j_imavis_2025_105456
crossref_primary_10_1007_s12652_022_03766_4
crossref_primary_10_1109_TIP_2023_3308393
crossref_primary_10_1109_TII_2024_3383459
crossref_primary_10_1109_TNNLS_2024_3359657
crossref_primary_10_1016_j_patrec_2023_06_016
crossref_primary_10_1109_TC_2024_3365949
crossref_primary_10_1109_TNNLS_2023_3327103
crossref_primary_10_1109_TKDE_2024_3384270
crossref_primary_10_1109_ACCESS_2024_3397664
crossref_primary_10_1109_TCYB_2024_3455760
crossref_primary_10_1016_j_dsp_2024_104612
crossref_primary_10_1109_TMM_2023_3324588
crossref_primary_10_1109_TMM_2023_3294800
crossref_primary_10_1016_j_engappai_2023_106477
crossref_primary_10_1109_TNNLS_2023_3330475
crossref_primary_10_1007_s11633_022_1357_9
crossref_primary_10_1109_TSMC_2024_3374393
crossref_primary_10_3390_computers12120258
crossref_primary_10_1016_j_patcog_2023_109591
crossref_primary_10_26599_BDMA_2023_9020019
crossref_primary_10_1109_ACCESS_2023_3317883
crossref_primary_10_1016_j_cviu_2025_104468
crossref_primary_10_1016_j_knosys_2023_110991
crossref_primary_10_1007_s12652_024_04761_7
crossref_primary_10_1109_TIM_2025_3545713
crossref_primary_10_1109_TPAMI_2021_3137605
crossref_primary_10_1007_s11227_023_05625_1
crossref_primary_10_3390_rs17040725
crossref_primary_10_1016_j_inffus_2025_103640
crossref_primary_10_1109_TII_2022_3190554
crossref_primary_10_3233_JIFS_224297
crossref_primary_10_1007_s12652_023_04641_6
crossref_primary_10_3390_s23084102
crossref_primary_10_1016_j_image_2024_117128
crossref_primary_10_1109_TNNLS_2023_3319315
crossref_primary_10_1109_TNNLS_2023_3309104
crossref_primary_10_1016_j_knosys_2023_110982
crossref_primary_10_1109_ACCESS_2023_3325705
crossref_primary_10_1016_j_neunet_2025_107423
crossref_primary_10_3390_electronics10243103
crossref_primary_10_1109_TNNLS_2023_3326477
crossref_primary_10_1007_s12652_024_04777_z
crossref_primary_10_3390_s23104828
crossref_primary_10_1109_TIP_2023_3326691
crossref_primary_10_1109_TMM_2023_3340550
crossref_primary_10_3390_electronics10243183
crossref_primary_10_1007_s12652_023_04676_9
crossref_primary_10_1109_TMM_2024_3408048
crossref_primary_10_1109_TBDATA_2023_3313028
crossref_primary_10_1109_TPAMI_2023_3248041
crossref_primary_10_1016_j_knosys_2025_114017
crossref_primary_10_1109_TMM_2024_3521731
crossref_primary_10_1109_TMM_2023_3336576
crossref_primary_10_1109_TSMC_2024_3375456
crossref_primary_10_1109_TNNLS_2023_3339614
crossref_primary_10_1109_TNNLS_2023_3309632
crossref_primary_10_1109_TPAMI_2022_3229526
crossref_primary_10_3233_MGS_230132
crossref_primary_10_1016_j_knosys_2023_110452
crossref_primary_10_1016_j_neunet_2023_07_011
crossref_primary_10_1007_s12652_024_04764_4
crossref_primary_10_1109_TMM_2023_3303712
crossref_primary_10_1109_TNNLS_2023_3322390
crossref_primary_10_1016_j_jprocont_2024_103297
crossref_primary_10_1109_TMM_2023_3290479
crossref_primary_10_1109_TMM_2023_3321421
crossref_primary_10_1080_17509653_2025_2455964
crossref_primary_10_1016_j_patcog_2023_110038
crossref_primary_10_1109_TII_2024_3395648
crossref_primary_10_1109_TMM_2023_3276523
crossref_primary_10_1109_TCSII_2023_3310192
crossref_primary_10_1007_s11263_025_02394_7
crossref_primary_10_1016_j_ins_2023_119661
crossref_primary_10_1109_TKDE_2023_3327777
crossref_primary_10_1007_s12652_023_04691_w
crossref_primary_10_1109_TEVC_2022_3227562
crossref_primary_10_1109_TEVC_2023_3307245
crossref_primary_10_3390_electronics13040798
crossref_primary_10_1016_j_ins_2023_119157
crossref_primary_10_1109_TMM_2023_3256092
crossref_primary_10_1109_TII_2023_3306366
crossref_primary_10_1007_s12652_022_03788_y
crossref_primary_10_1109_TIM_2025_3565070
crossref_primary_10_1109_TNNLS_2023_3289209
crossref_primary_10_1109_TIP_2024_3354420
crossref_primary_10_1109_TMM_2023_3330524
crossref_primary_10_3390_e25101467
crossref_primary_10_1109_TII_2024_3384597
crossref_primary_10_1016_j_eswa_2023_120812
crossref_primary_10_1109_TNNLS_2023_3336765
crossref_primary_10_1109_TIP_2023_3286710
crossref_primary_10_1016_j_ins_2024_121005
crossref_primary_10_1109_TNNLS_2023_3278715
crossref_primary_10_1109_TCSVT_2023_3285046
crossref_primary_10_1109_TMM_2023_3327645
crossref_primary_10_1109_TCSS_2023_3306909
Cites_doi 10.1109/CVPR.2019.00089
10.1007/s00521-021-06309-8
10.1109/CVPR.2019.00017
10.1109/CVPR.2016.13
10.1109/CVPR.2018.00581
10.1109/CVPR.2009.5206848
10.1109/ICCV.2019.00994
10.1109/TPAMI.2022.3194044
10.1109/CVPR.2018.00907
10.1109/ICCV.2017.154
10.1109/ICCV.2019.00332
10.1007/978-3-030-58542-6_29
10.1109/CVPR.2017.328
10.1007/978-3-030-01231-1_2
10.1109/CVPR.2019.01052
10.1109/TPAMI.2020.3035351
10.1109/CVPR.2019.00758
10.1109/CVPR.2016.90
10.1016/j.neucom.2018.10.043
10.1109/ICVGIP.2008.47
10.1609/aaai.v34i04.6069
10.1109/TPAMI.2013.140
10.1109/CVPR.2015.7298594
10.1609/aaai.v33i01.33014780
10.1609/aaai.v34i04.6143
10.1145/3343031.3350901
10.1109/CVPR.2019.01022
10.1109/CVPR.2012.6247998
10.1109/CVPR.2018.00111
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2021.3127346
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 9740
ExternalDocumentID 10_1109_TPAMI_2021_3127346
9612044
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; National Nature Science Foundation of China
  grantid: 62137002; 61872287; 62050194; 61906109
  funderid: 10.13039/501100001809
– fundername: Consulting Research Project of Chinese Academy of Engineering
– fundername: Australian Research Council
  grantid: DE190100626
  funderid: 10.13039/501100000923
– fundername: China Knowledge Center for Engineering Science and Technology
– fundername: National Key Research and Development Program of China
  grantid: 2018AAA0101400
– fundername: National Natural Science Foundation of China
  grantid: 61721002
  funderid: 10.13039/501100001809
– fundername: Innovation Research Team of Ministry of Education
  grantid: IRT_17R86
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c328t-8af090de0b825962d7da1644ea9d44dd4abf2ea07fa76d7b88ecdc621e4ace3f3
IEDL.DBID RIE
ISICitedReferencesCount 154
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000880661400084&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Wed Oct 01 14:45:08 EDT 2025
Sun Nov 30 05:12:47 EST 2025
Sat Nov 29 02:58:18 EST 2025
Tue Nov 18 20:47:35 EST 2025
Wed Aug 27 02:18:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-8af090de0b825962d7da1644ea9d44dd4abf2ea07fa76d7b88ecdc621e4ace3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5658-5509
0000-0001-9642-8009
0000-0002-5880-8673
0000-0002-2993-7142
0000-0003-2595-0398
0000-0002-7778-8807
PMID 34762584
PQID 2734385793
PQPubID 85458
PageCount 8
ParticipantIDs crossref_primary_10_1109_TPAMI_2021_3127346
proquest_miscellaneous_2597498126
crossref_citationtrail_10_1109_TPAMI_2021_3127346
ieee_primary_9612044
proquest_journals_2734385793
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref37
ref15
wei (ref17) 2018
ref36
ref30
zhang (ref25) 2002
ref10
liu (ref11) 2019
goodfellow (ref1) 2014
ref39
ref38
ref16
ref19
baker (ref27) 2017
ref18
ren (ref22) 2021; 54
zoph (ref21) 2017
ref45
ref26
ref20
ref42
wang (ref14) 0
ref41
ref44
ref43
yao (ref32) 2020
ref28
zhang (ref24) 2020
jin (ref31) 0
ref29
ref8
chen (ref12) 2019
ref7
ref9
ref4
ref6
wah (ref34) 2011
ref5
arjovsky (ref2) 2017
cheng (ref23) 2020
ref40
denton (ref3) 2015
hundt (ref33) 0
maaten (ref46) 2008; 9
References_xml – year: 2017
  ident: ref27
  article-title: Designing neural network architectures using reinforcement learning
  publication-title: Proc ICLR
– volume: 54
  start-page: 76:1
  year: 2021
  ident: ref22
  article-title: A comprehensive survey of neural architecture search: Challenges and solutions
  publication-title: ACM Comput Surv
– year: 0
  ident: ref14
  article-title: AGAN: Towards automated design of generative adversarial networks
  publication-title: 2019 arXiv 1906 11080
– ident: ref6
  doi: 10.1109/CVPR.2019.00089
– year: 2019
  ident: ref11
  article-title: Darts: Differentiable architecture search
  publication-title: Proc ICLR
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref46
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– year: 0
  ident: ref31
  article-title: Auto-keras: Efficient neural architecture search with network morphism
  publication-title: 2018 arXiv 1806 10282
– ident: ref16
  doi: 10.1007/s00521-021-06309-8
– ident: ref26
  doi: 10.1109/CVPR.2019.00017
– ident: ref38
  doi: 10.1109/CVPR.2016.13
– ident: ref4
  doi: 10.1109/CVPR.2018.00581
– year: 0
  ident: ref33
  article-title: SharpDARTS: Faster and more accurate differentiable architecture search
  publication-title: 2019 arXiv 1903 09900
– ident: ref40
  doi: 10.1109/CVPR.2009.5206848
– start-page: 2672
  year: 2014
  ident: ref1
  article-title: Generative adversarial nets
  publication-title: Proc NIPS
– year: 2017
  ident: ref21
  article-title: Neural architecture search with reinforcement learning
  publication-title: Proc ICLR
– ident: ref20
  doi: 10.1109/ICCV.2019.00994
– start-page: 1884
  year: 2019
  ident: ref12
  article-title: DetNAS: Neural architecture search on object detection
  publication-title: Proc NIPS
– ident: ref10
  doi: 10.1109/TPAMI.2022.3194044
– ident: ref28
  doi: 10.1109/CVPR.2018.00907
– start-page: 7806
  year: 2002
  ident: ref25
  article-title: Overcoming multi-model forgetting in one-shot NAS with diversity maximization
  publication-title: Proc CVPR
– ident: ref29
  doi: 10.1109/ICCV.2017.154
– year: 2020
  ident: ref23
  article-title: Hierarchical neural architecture search for deep stereo matching
  publication-title: Proc NeurIPS
– year: 2015
  ident: ref3
  article-title: Deep generative image models using a laplacian pyramid of adversarial networks
  publication-title: Proc NIPS
– ident: ref13
  doi: 10.1109/ICCV.2019.00332
– ident: ref44
  doi: 10.1007/978-3-030-58542-6_29
– ident: ref45
  doi: 10.1109/CVPR.2017.328
– start-page: 214
  year: 2017
  ident: ref2
  article-title: Wasserstein generative adversarial networks
  publication-title: Proc ICML
– ident: ref18
  doi: 10.1007/978-3-030-01231-1_2
– ident: ref42
  doi: 10.1109/CVPR.2019.01052
– ident: ref9
  doi: 10.1109/TPAMI.2020.3035351
– year: 2018
  ident: ref17
  article-title: Improving the improved training of wasserstein GANs: A consistency term and its dual effect
  publication-title: Proc ICLR
– ident: ref7
  doi: 10.1109/CVPR.2019.00758
– ident: ref39
  doi: 10.1109/CVPR.2016.90
– ident: ref5
  doi: 10.1016/j.neucom.2018.10.043
– ident: ref35
  doi: 10.1109/ICVGIP.2008.47
– ident: ref43
  doi: 10.1609/aaai.v34i04.6069
– ident: ref37
  doi: 10.1109/TPAMI.2013.140
– year: 2011
  ident: ref34
  article-title: The caltech-UCSD birds-200-2011 dataset
– ident: ref15
  doi: 10.1109/CVPR.2015.7298594
– ident: ref30
  doi: 10.1609/aaai.v33i01.33014780
– year: 2020
  ident: ref24
  article-title: Differentiable neural architecture search in equivalent space with exploration enhancement
  publication-title: Proc NeurIPS
– start-page: 6664
  year: 2020
  ident: ref32
  article-title: Differentiable neural architecture search via proximal iterations
  publication-title: Proc AAAI
  doi: 10.1609/aaai.v34i04.6143
– ident: ref8
  doi: 10.1145/3343031.3350901
– ident: ref41
  doi: 10.1109/CVPR.2019.01022
– ident: ref36
  doi: 10.1109/CVPR.2012.6247998
– ident: ref19
  doi: 10.1109/CVPR.2018.00111
SSID ssj0014503
Score 2.7013772
Snippet In recent years, remarkable progress in zero-shot learning (ZSL) has been achieved by generative adversarial networks (GAN). To compensate for the lack of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9733
SubjectTerms Computer architecture
Datasets
Differentiable architecture search
Generative adversarial networks
Generators
Optimization
Search methods
Source code
Task analysis
Testing
Training
Zero-shot learning
Title ZeroNAS: Differentiable Generative Adversarial Networks Search for Zero-Shot Learning
URI https://ieeexplore.ieee.org/document/9612044
https://www.proquest.com/docview/2734385793
https://www.proquest.com/docview/2597498126
Volume 44
WOSCitedRecordID wos000880661400084&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB2S0EN6aL5asm0SVOgtcSPbsiX1tiQNKbRLIAksvRhZGrWBsC770d_fkaw1DS2F3gyWZOPRk-ZZM_MA3llvnFQ2hJXzKhPGE6Q84aothK2kQG15TBT-LCcTNZ3qmw04G3JhEDEGn-H7cBnP8l1nV-FX2bmm7ZgLsQmbUso-V2s4MRBVVEEmD4YQTjRinSDD9fndzfjLJ6KCRU4MNZRzCbpFpaBloFLiyX4UBVb-WJXjVnO1838vuQsvkkvJxv0c2IMNnO3DzlqugSX07sPz32oPHsD9V5x3k_HtB3aZNFII6-0jsr4QdVgFWVRrXpgwR9mkjxdfsD5AmZGzy8IQ2e33bslSmdZvL-H-6uPdxXWWNBYyWxZqmSnjueYOeUtUUdeFk84QgxJotBPCOWFaX6Dh0htZO9kqhdbZushRGIulL1_B1qyb4SGwCuuc3AsXMd56o_PC-4rwT08i0oIjyNdfurGpAHnQwXhsIhHhuomGaoKhmmSoEZwOfX705Tf-2fog2GNomUwxgqO1QZuE0EUTOpQqvN4I3g63CVvhwMTMsFtRm8C2NLlA9eu_j_wGtouQDhHDW45gazlf4TE8sz-XD4v5CU3TqTqJ0_QXIAfh6w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9UwFD7MTVAfnG6Kd5uagW9al6bpj_h2mRsb3pXB7mD4UtLkRIVxK_eHf78naW6ZKMLeCk3S0pMvOV9zzvkA3hmnbVkZH1bO80RqR5ByhKtWSJOXEpXhIVF4UtZ1dXOjLjfgw5ALg4gh-Aw_-stwlm87s_K_yo4UbcdcygewlUsp0j5bazgzkHnQQSYfhjBORGKdIsPV0fRyfHFOZFCkxFF9QRevXJRJWgjySv6xIwWJlb_W5bDZnG7f7zWfwdPoVLJxPwuewwbOdmB7LdjAIn534Mmd6oO7cP0V5109vvrEPkeVFEJ7e4usL0Xt10EW9JoX2s9SVvcR4wvWhygzcneZHyK5-t4tWSzU-u0FXJ-eTI_PkqiykJhMVMuk0o4rbpG3RBZVIWxpNXEoiVpZKa2VunUCNS-dLgtbtlWFxppCpCi1wcxlL2Fz1s3wFbAci5QcDBtQ3jqtUuFcTisAPYloC44gXX_pxsQS5F4J47YJVISrJhiq8YZqoqFG8H7o87MvwPHf1rveHkPLaIoRHKwN2kSMLhrfIav8643gcLhN6PJHJnqG3YraeL6lyAkq9v498lt4dDa9mDST8_rLPjwWPjkiBLscwOZyvsLX8ND8Wv5YzN-EyfobtA_kSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ZeroNAS%3A+Differentiable+Generative+Adversarial+Networks+Search+for+Zero-Shot+Learning&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Yan%2C+Caixia&rft.au=Chang%2C+Xiaojun&rft.au=Li%2C+Zhihui&rft.au=Guan%2C+Weili&rft.date=2022-12-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=44&rft.issue=12&rft.spage=9733&rft.epage=9740&rft_id=info:doi/10.1109%2FTPAMI.2021.3127346&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2021_3127346
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon