Low-Area and High-Throughput Architecture for an Adaptive Filter Using Distributed Arithmetic

A high-performance implementation scheme for a least mean square adaptive filter is presented. The architecture is based on distributed arithmetic in which the partial products of filter coefficients are precomputed and stored in lookup tables (LUTs) and the filtering is done by shift-and-accumulate...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. II, Express briefs Vol. 60; no. 11; pp. 781 - 785
Main Authors: Prakash, M. Surya, Shaik, Rafi Ahamed
Format: Journal Article
Language:English
Published: New York IEEE 01.11.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1549-7747, 1558-3791
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A high-performance implementation scheme for a least mean square adaptive filter is presented. The architecture is based on distributed arithmetic in which the partial products of filter coefficients are precomputed and stored in lookup tables (LUTs) and the filtering is done by shift-and-accumulate operations on these partial products. In the case of an adaptive filter, it is required that the filter coefficients be updated and, hence, these LUTs are to be recalculated. A new strategy based on the offset binary coding scheme has been proposed in order to update these LUTs from time to time. Simulation results show that the proposed scheme consumes very less chip area and operates at high throughput for large base unit size k ( = N/m) , where m is an integer and N is the number of filter coefficients. For example, a 128-tap finite-impulse-response adaptive filter with the proposed implementation produces 12 times more throughput (for k = 8) and consumes almost 26% less area when compared to the best of existing architectures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2013.2281747