An adaptive differential evolution algorithm to optimal multi-level thresholding for MRI brain image segmentation
•The ALDE algorithm works better for MRI image analysis than DE variants.•The ALDE algorithm is less sensitive to increasing number of thresholds.•The ALDE algorithm is fast enough for real-world image analysis applications.•The ALDE algorithm can efficiently balance between exploration and exploita...
Saved in:
| Published in: | Expert systems with applications Vol. 138; p. 112820 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Elsevier Ltd
30.12.2019
Elsevier BV |
| Subjects: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •The ALDE algorithm works better for MRI image analysis than DE variants.•The ALDE algorithm is less sensitive to increasing number of thresholds.•The ALDE algorithm is fast enough for real-world image analysis applications.•The ALDE algorithm can efficiently balance between exploration and exploitation.
Segmentation is an important method for MRI medical image analysis as it can provide the radiologists with noninvasive information about a patient that is crucial to the diagnostic process. The efficiency of such a computer-aided diagnosis system relies on the accuracy of an adopted image segmentation method. Multi-level thresholding is a segmentation method that has been widely adopted in medical image analysis in recent studies, where selecting the optimal thresholds has a pivotal role in determining the efficiency and the accuracy of the segmentation algorithm. While some well-known methods, such as Kapur’s and Otsu’s, are proven effective for bi-level thresholding, multi-level thresholding remains a challenge as it is computationally expensive. Evolutionary algorithms, such as Differential Evolution (DE), have the potential to address this problem, as they can find sufficiently good solutions with manageable computational effort. While a number of DE solutions have been proposed for multi-level thresholding, they are not stable, in that, when the number of thresholds increases, the algorithm efficiency decreases due to the imbalance between exploration and exploitation. In this paper, we propose a DE solution that achieves a good balance between exploration and exploitation through a new adaptive approach and new mutation strategies. The new adaptive approach can generate optimal solutions in assigning populations by measuring the quality of candidate solutions to evaluate the efficiency of different parts of the proposed DE algorithm. The new mutation methods harness Mantegna Lévy and Cauchy distributions, as well as Cotes’ Spiral to improve global search, and to further balance between exploitation and exploration. We further experimentally compare the proposed DE algorithm, referred to as Adaptive Differential Evolution with Lévy Distribution (ALDE), against three DE benchmark algorithms on T2 weighted MRI brain images. Our results show that ALDE can, not only obtain optimal thresholds at a reasonable computational cost, but more importantly, clearly outperforms the benchmark algorithms. |
|---|---|
| AbstractList | Segmentation is an important method for MRI medical image analysis as it can provide the radiologists with noninvasive information about a patient that is crucial to the diagnostic process. The efficiency of such a computer-aided diagnosis system relies on the accuracy of an adopted image segmentation method. Multi-level thresholding is a segmentation method that has been widely adopted in medical image analysis in recent studies, where selecting the optimal thresholds has a pivotal role in determining the efficiency and the accuracy of the segmentation algorithm. While some well-known methods, such as Kapur's and Otsu's, are proven effective for bi-level thresholding, multi-level thresholding remains a challenge as it is computationally expensive. Evolutionary algorithms, such as Differential Evolution (DE), have the potential to address this problem, as they can find sufficiently good solutions with manageable computational effort. While a number of DE solutions have been proposed for multi-level thresholding, they are not stable, in that, when the number of thresholds increases, the algorithm efficiency decreases due to the imbalance between exploration and exploitation. In this paper, we propose a DE solution that achieves a good balance between exploration and exploitation through a new adaptive approach and new mutation strategies. The new adaptive approach can generate optimal solutions in assigning populations by measuring the quality of candidate solutions to evaluate the efficiency of different parts of the proposed DE algorithm. The new mutation methods harness Mantegna Lévy and Cauchy distributions, as well as Cotes' Spiral to improve global search, and to further balance between exploitation and exploration. We further experimentally compare the proposed DE algorithm, referred to as Adaptive Differential Evolution with Lévy Distribution (ALDE), against three DE benchmark algorithms on T2 weighted MRI brain images. Our results show that ALDE can, not only obtain optimal thresholds at a reasonable computational cost, but more importantly, clearly outperforms the benchmark algorithms. •The ALDE algorithm works better for MRI image analysis than DE variants.•The ALDE algorithm is less sensitive to increasing number of thresholds.•The ALDE algorithm is fast enough for real-world image analysis applications.•The ALDE algorithm can efficiently balance between exploration and exploitation. Segmentation is an important method for MRI medical image analysis as it can provide the radiologists with noninvasive information about a patient that is crucial to the diagnostic process. The efficiency of such a computer-aided diagnosis system relies on the accuracy of an adopted image segmentation method. Multi-level thresholding is a segmentation method that has been widely adopted in medical image analysis in recent studies, where selecting the optimal thresholds has a pivotal role in determining the efficiency and the accuracy of the segmentation algorithm. While some well-known methods, such as Kapur’s and Otsu’s, are proven effective for bi-level thresholding, multi-level thresholding remains a challenge as it is computationally expensive. Evolutionary algorithms, such as Differential Evolution (DE), have the potential to address this problem, as they can find sufficiently good solutions with manageable computational effort. While a number of DE solutions have been proposed for multi-level thresholding, they are not stable, in that, when the number of thresholds increases, the algorithm efficiency decreases due to the imbalance between exploration and exploitation. In this paper, we propose a DE solution that achieves a good balance between exploration and exploitation through a new adaptive approach and new mutation strategies. The new adaptive approach can generate optimal solutions in assigning populations by measuring the quality of candidate solutions to evaluate the efficiency of different parts of the proposed DE algorithm. The new mutation methods harness Mantegna Lévy and Cauchy distributions, as well as Cotes’ Spiral to improve global search, and to further balance between exploitation and exploration. We further experimentally compare the proposed DE algorithm, referred to as Adaptive Differential Evolution with Lévy Distribution (ALDE), against three DE benchmark algorithms on T2 weighted MRI brain images. Our results show that ALDE can, not only obtain optimal thresholds at a reasonable computational cost, but more importantly, clearly outperforms the benchmark algorithms. |
| ArticleNumber | 112820 |
| Author | Shen, Haifeng Tarkhaneh, Omid |
| Author_xml | – sequence: 1 givenname: Omid orcidid: 0000-0002-5827-2848 surname: Tarkhaneh fullname: Tarkhaneh, Omid email: Tarkhanehomid@gmail.com, o_tarkhane91@ms.tabrizu.ac.ir organization: Department of Computer Sciences, University of Tabriz, Tabriz, Iran – sequence: 2 givenname: Haifeng orcidid: 0000-0002-8221-981X surname: Shen fullname: Shen, Haifeng email: haifeng.shen@acu.edu.au organization: Peter Faber Business School, Australian Catholic University, North Sydney, Australia |
| BookMark | eNp9kE9LAzEQxYNUsFa_gKeA512TTTfZBS-l-KdQEUTPId1M2pR00yZpxW9vSj156GkO83tv5r1rNOh9DwjdUVJSQvnDuoT4rcqK0LYkoiRMXKAhbQQruGjZAA1JW4tiTMX4Cl3HuCaECkLEEO0mPVZabZM9ANbWGAjQJ6schoN3-2R93rulDzatNjh57DO6yevN3iVbODiAw2kVIK6807ZfYuMDfvuY4UVQtseZXQKOsNxkW3W0u0GXRrkIt39zhL6enz6nr8X8_WU2ncyLjlVNKhohFGe8Aso6YcatohSYojVTptZcK60XdQuKmkUNrG55y4gRlRnTmmeIKzZC9yffbfC7PcQk134f-nxSVowIyhrGm0xVJ6oLPsYARm5D_jn8SErksVq5lsdq5bFaSYTM1WZR80_U2VO4lEO789LHkxRy9IOFIGNnoe9A2wBdktrbc_JfpSaY2g |
| CitedBy_id | crossref_primary_10_1007_s00500_021_06454_1 crossref_primary_10_1007_s11235_021_00833_7 crossref_primary_10_1007_s11831_022_09825_5 crossref_primary_10_3390_math10071090 crossref_primary_10_1007_s11042_020_09006_1 crossref_primary_10_1088_2057_1976_acd256 crossref_primary_10_1109_ACCESS_2020_2988284 crossref_primary_10_1007_s11042_023_17189_6 crossref_primary_10_1007_s10773_023_05527_1 crossref_primary_10_1109_ACCESS_2022_3179376 crossref_primary_10_1016_j_knosys_2022_108696 crossref_primary_10_32604_cmc_2021_016956 crossref_primary_10_1016_j_imavis_2025_105432 crossref_primary_10_1109_ACCESS_2020_2997355 crossref_primary_10_1007_s11042_021_10738_x crossref_primary_10_3390_math10152785 crossref_primary_10_1007_s10586_024_04982_7 crossref_primary_10_1016_j_ecoinf_2021_101230 crossref_primary_10_1109_TEVC_2022_3220747 crossref_primary_10_3389_fninf_2023_1126783 crossref_primary_10_1016_j_eswa_2023_121950 crossref_primary_10_1007_s00521_022_08078_4 crossref_primary_10_1016_j_compmedimag_2023_102313 crossref_primary_10_1016_j_eswa_2023_121674 crossref_primary_10_1016_j_apm_2020_12_026 crossref_primary_10_1007_s00521_024_10667_4 crossref_primary_10_1007_s11831_024_10093_8 crossref_primary_10_1007_s12046_021_01744_8 crossref_primary_10_1016_j_eswa_2024_126239 crossref_primary_10_3390_e23111429 crossref_primary_10_1007_s12530_022_09425_5 crossref_primary_10_1016_j_compbiomed_2021_104941 crossref_primary_10_1109_ACCESS_2020_3037197 crossref_primary_10_3390_app10093225 crossref_primary_10_1016_j_bspc_2025_107853 crossref_primary_10_1016_j_bspc_2022_103866 crossref_primary_10_1155_2020_6765274 crossref_primary_10_1016_j_knosys_2020_105889 crossref_primary_10_1007_s00521_023_08291_9 crossref_primary_10_1007_s11042_020_10443_1 crossref_primary_10_3390_brainsci11081055 crossref_primary_10_1007_s10334_025_01233_7 crossref_primary_10_1016_j_ins_2021_02_061 crossref_primary_10_1093_jcde_qwac141 crossref_primary_10_1109_ACCESS_2020_3015108 crossref_primary_10_1016_j_displa_2024_102727 crossref_primary_10_1007_s12530_023_09566_1 crossref_primary_10_1007_s11760_025_03815_3 crossref_primary_10_1016_j_compbiomed_2024_109011 crossref_primary_10_1016_j_ins_2021_03_062 crossref_primary_10_1109_ACCESS_2021_3060749 crossref_primary_10_1016_j_bspc_2023_104893 crossref_primary_10_1016_j_measurement_2022_110884 crossref_primary_10_3390_app11041825 crossref_primary_10_1016_j_bspc_2024_106631 crossref_primary_10_1155_2021_1892497 crossref_primary_10_1007_s10586_024_04525_0 crossref_primary_10_1007_s00500_021_06449_y crossref_primary_10_1016_j_wneu_2022_06_050 crossref_primary_10_1049_cit2_12377 crossref_primary_10_1016_j_bspc_2024_106484 crossref_primary_10_1007_s00521_023_08649_z crossref_primary_10_1007_s11042_024_19461_9 crossref_primary_10_3390_app15052355 crossref_primary_10_3390_e23091196 crossref_primary_10_1016_j_eswa_2020_113750 crossref_primary_10_1155_2020_9767282 crossref_primary_10_1007_s11042_020_10122_1 crossref_primary_10_1016_j_compbiomed_2024_107922 crossref_primary_10_1016_j_eswa_2022_117667 crossref_primary_10_1007_s00521_022_07718_z crossref_primary_10_1007_s11042_024_18489_1 crossref_primary_10_1016_j_compbiomed_2022_106404 crossref_primary_10_1007_s00500_023_07891_w crossref_primary_10_1007_s10462_024_10919_8 crossref_primary_10_1016_j_asoc_2022_108776 crossref_primary_10_1016_j_asoc_2025_112727 crossref_primary_10_1016_j_asoc_2020_106157 crossref_primary_10_1016_j_patrec_2019_11_020 |
| Cites_doi | 10.1007/s10732-006-9003-1 10.1016/j.compeleceng.2017.12.037 10.1016/j.asoc.2012.03.072 10.1145/2480741.2480752 10.1016/j.patrec.2008.10.003 10.1109/42.251125 10.1016/0167-8655(91)90002-4 10.1016/j.asoc.2013.11.018 10.1016/j.eswa.2014.09.043 10.1016/j.measurement.2018.08.007 10.1109/TSMC.1979.4310076 10.3923/itj.2011.2378.2384 10.1016/j.measurement.2013.09.031 10.1016/j.amc.2006.06.057 10.1007/s10287-009-0107-6 10.1016/j.eswa.2017.04.023 10.1109/97.720555 10.1016/j.eswa.2016.08.046 10.1109/TIP.2003.819861 10.1016/S0167-8655(03)00166-1 10.1016/j.neuroimage.2007.05.018 10.1016/j.imavis.2007.08.007 10.1109/42.811270 10.1109/TEVC.2009.2014613 10.1109/TSMCB.2012.2217491 10.1016/j.asoc.2007.12.008 10.1109/TMI.2003.819929 10.1016/j.neucom.2011.03.010 10.1016/j.eswa.2010.09.151 10.1109/72.159057 10.1109/42.511747 10.1109/42.232255 10.1016/j.cor.2015.09.006 10.1016/j.ins.2013.07.005 10.1016/0734-189X(85)90125-2 10.1023/A:1008202821328 10.1016/j.asoc.2017.02.005 10.1103/PhysRevE.49.4677 10.2174/157340561101150423103441 10.1016/j.asoc.2010.04.024 10.1007/s10278-018-0111-x 10.1016/j.measurement.2008.03.002 10.1016/j.cmpb.2008.06.012 10.1109/TEVC.2010.2059031 10.1146/annurev.bioeng.2.1.315 10.1016/j.engappai.2009.09.011 10.1002/ima.22060 10.1109/LGRS.2014.2306263 10.1007/s11042-016-3891-3 10.2307/3001968 10.1007/s00500-002-0235-1 10.1016/j.asoc.2016.01.054 10.1016/j.jcp.2007.06.008 10.1016/j.eswa.2013.10.059 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Dec 30, 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Dec 30, 2019 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2019.07.037 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2019_07_037 S0957417419305226 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c328t-877a6362e13c7f49a11e3a153af5d6daddb59ea1fb5e3596930f72f41561536a3 |
| ISICitedReferencesCount | 92 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489189900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Mon Jul 14 10:41:35 EDT 2025 Tue Nov 18 20:49:22 EST 2025 Sat Nov 29 07:03:23 EST 2025 Fri Feb 23 02:24:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Differential evolution Image segmentation Lévy distribution Optimal thresholding Cauchy distribution Cotes’ Spiral |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c328t-877a6362e13c7f49a11e3a153af5d6daddb59ea1fb5e3596930f72f41561536a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8221-981X 0000-0002-5827-2848 |
| PQID | 2307138368 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2307138368 crossref_primary_10_1016_j_eswa_2019_07_037 crossref_citationtrail_10_1016_j_eswa_2019_07_037 elsevier_sciencedirect_doi_10_1016_j_eswa_2019_07_037 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-30 |
| PublicationDateYYYYMMDD | 2019-12-30 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-30 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Maitra, Chatterjee (bib0045) 2008; 41 Huang, Cao, Luo (bib0034) 2008; 92 Omran, Salman, Engelbrecht (bib0054) 2005 Dehshibi, Sourizaei, Fazlali, Talaee, Samadyar, Shanbehzadeh (bib0017) 2017; 76 Amor, Rettinger (bib0003) 2005 Črepinšek, Liu, Mernik (bib0011) 2013; 45 Hammouche, Diaf, Siarry (bib0031) 2010; 23 Pavlyukevich (bib0056) 2007; 226 Brajevic, Tuba (bib0006) 2014 Vrooman, Cocosco, van der Lijn, Stokking, Ikram, Vernooij (bib0070) 2007; 37 Halder, Das, Maity (bib0028) 2013; 43 El-Helly, El-Beltagy, Rafea (bib0020) 2004 Kotte, Pullakura, Injeti (bib0039) 2018; 130 Sun, Zhang, Yao, Wang (bib0062) 2016; 46 Zhou, Yang, Ling, Zhang (bib0079) 2018 Li, Goldgof, Hall (bib0041) 1993; 12 Carballido-Gamio, Belongie, Majumdar (bib0008) 2004; 23 Sathya, Kayalvizhi (bib0059) 2011; 74 Zheng, Simon, Richter, Gao (bib0078) 2014 Hamdaoui, Ladgham, Sakly, Mtibaa (bib0030) 2013; 23 Storn, Price (bib0061) 1997; 11 Cui, Li, Lin, Chen, Lu (bib0012) 2016; 67 Li, Wang (bib0043) 2011; 10 Hall, Bensaid, Clarke, Velthuizen, Silbiger, Bezdek (bib0029) 1992; 3 Tian, Liu, Qi (bib0066) 2009 Storn, Price (bib0060) 1995 Otsu (bib0055) 1979; 9 Wilcoxon (bib0073) 1945; 1 Gao, Kwong, Yang, Cao (bib0024) 2013; 250 Kapur, Sahoo, Wong (bib0036) 1985; 29 Danby (bib0013) 1988 Li, Zhang, Kwong, Li, Wang (bib0042) 2013; 18 Krink, Paterlini (bib0040) 2011; 8 Ali, Ahn, Pant (bib0002) 2014; 17 Suresh, Lal (bib0063) 2017; 55 Nasa-ngium, Sunat, Chiewchanwattana (bib0053) 2013 Elnakib, Gimel’farb, Suri, El-Baz (bib0021) 2011 Dave (bib0016) 1991; 12 Khorram, Yazdi (bib0037) 2019; 32 Mallipeddi, Suganthan, Pan, Tasgetiren (bib0046) 2011; 11 Yin (bib0076) 2007; 184 Mohamed, Mohamed (bib0051) 2017 Chaiyaratana, Piroonratana, Sangkawelert (bib0009) 2007; 13 Kohonen (bib0038) 2001 Yang (bib0075) 2011 Das, Konar (bib0014) 2009; 9 Wong, Lee, Leung, Ho (bib0074) 2003; 7 Wells, Grimson, Kikinis, Jolesz (bib0072) 1996; 15 Akay (bib0001) 2013; 13 Tao, Tian, Liu (bib0064) 2003; 24 Gao, Fu, Pun, Hu, Lan (bib0023) 2018; 70 Pham, Xu, Prince (bib0057) 2000; 2 Tuba, Alihodzic, Tuba (bib0068) 2017 Horng (bib0032) 2011; 38 Mantegna (bib0048) 1994; 49 Tayal, Gupta (bib0065) 2012 Guo, Li (bib0027) 2007 Manikandan, Ramar, Iruthayarajan, Srinivasagan (bib0047) 2014; 47 Cao, Bao, Shi (bib0007) 2008; 26 Wang, Bovik, Sheikh, Simoncelli (bib0071) 2004; 13 Zhang, Sanderson (bib0077) 2009; 13 Das, Suganthan (bib0015) 2011; 15 Liao, Chen, Chung (bib0044) 2001; 17 Feoktistov (bib0022) 2006 Chander, Chatterjee, Siarry (bib0010) 2011; 38 Earnshaw (bib0018) 1832 Van Leemput, Maes, Vandermeulen, Suetens (bib0069) 1999; 18 Bhandari, Singh, Kumar, Singh (bib0005) 2014; 41 Masood, Sharif, Masood, Yasmin, Raza (bib0049) 2015; 11 Tolias, Panas (bib0067) 1998; 5 Moser, Chiong (bib0052) 2013 Price, Storn, Lampinen (bib0058) 2006 Ayala, dos Santos, Mariani, dos Santos Coelho (bib0004) 2015; 42 Mlakar, Potočnik, Brest (bib0050) 2016; 65 Gao, Pan, Gao (bib0025) 2014; 11 Joliot, Mazoyer (bib0035) 1993; 12 El Aziz, Ewees, Hassanien (bib0019) 2017; 83 Huang, Wang (bib0033) 2009; 30 Grossman (bib0026) 1996 Feoktistov (10.1016/j.eswa.2019.07.037_bib0022) 2006 Yin (10.1016/j.eswa.2019.07.037_bib0076) 2007; 184 Khorram (10.1016/j.eswa.2019.07.037_bib0037) 2019; 32 Price (10.1016/j.eswa.2019.07.037_bib0058) 2006 Omran (10.1016/j.eswa.2019.07.037_bib0054) 2005 Yang (10.1016/j.eswa.2019.07.037_bib0075) 2011 Suresh (10.1016/j.eswa.2019.07.037_bib0063) 2017; 55 Tuba (10.1016/j.eswa.2019.07.037_bib0068) 2017 Hall (10.1016/j.eswa.2019.07.037_bib0029) 1992; 3 Tolias (10.1016/j.eswa.2019.07.037_bib0067) 1998; 5 Otsu (10.1016/j.eswa.2019.07.037_bib0055) 1979; 9 Tao (10.1016/j.eswa.2019.07.037_bib0064) 2003; 24 Amor (10.1016/j.eswa.2019.07.037_bib0003) 2005 Gao (10.1016/j.eswa.2019.07.037_bib0023) 2018; 70 Cui (10.1016/j.eswa.2019.07.037_bib0012) 2016; 67 Bhandari (10.1016/j.eswa.2019.07.037_bib0005) 2014; 41 Huang (10.1016/j.eswa.2019.07.037_bib0033) 2009; 30 Carballido-Gamio (10.1016/j.eswa.2019.07.037_bib0008) 2004; 23 Wong (10.1016/j.eswa.2019.07.037_bib0074) 2003; 7 Chaiyaratana (10.1016/j.eswa.2019.07.037_bib0009) 2007; 13 El Aziz (10.1016/j.eswa.2019.07.037_bib0019) 2017; 83 Wang (10.1016/j.eswa.2019.07.037_bib0071) 2004; 13 Zhou (10.1016/j.eswa.2019.07.037_bib0079) 2018 Akay (10.1016/j.eswa.2019.07.037_bib0001) 2013; 13 Brajevic (10.1016/j.eswa.2019.07.037_bib0006) 2014 Pavlyukevich (10.1016/j.eswa.2019.07.037_bib0056) 2007; 226 Wilcoxon (10.1016/j.eswa.2019.07.037_bib0073) 1945; 1 Dave (10.1016/j.eswa.2019.07.037_bib0016) 1991; 12 Moser (10.1016/j.eswa.2019.07.037_bib0052) 2013 Elnakib (10.1016/j.eswa.2019.07.037_bib0021) 2011 Storn (10.1016/j.eswa.2019.07.037_bib0060) 1995 Wells (10.1016/j.eswa.2019.07.037_bib0072) 1996; 15 Cao (10.1016/j.eswa.2019.07.037_bib0007) 2008; 26 Pham (10.1016/j.eswa.2019.07.037_bib0057) 2000; 2 Das (10.1016/j.eswa.2019.07.037_bib0015) 2011; 15 Kotte (10.1016/j.eswa.2019.07.037_bib0039) 2018; 130 Mlakar (10.1016/j.eswa.2019.07.037_bib0050) 2016; 65 Ali (10.1016/j.eswa.2019.07.037_bib0002) 2014; 17 Hamdaoui (10.1016/j.eswa.2019.07.037_bib0030) 2013; 23 Guo (10.1016/j.eswa.2019.07.037_bib0027) 2007 Chander (10.1016/j.eswa.2019.07.037_bib0010) 2011; 38 Kohonen (10.1016/j.eswa.2019.07.037_bib0038) 2001 Mallipeddi (10.1016/j.eswa.2019.07.037_bib0046) 2011; 11 Masood (10.1016/j.eswa.2019.07.037_bib0049) 2015; 11 Zheng (10.1016/j.eswa.2019.07.037_bib0078) 2014 Storn (10.1016/j.eswa.2019.07.037_bib0061) 1997; 11 Das (10.1016/j.eswa.2019.07.037_bib0014) 2009; 9 El-Helly (10.1016/j.eswa.2019.07.037_bib0020) 2004 Gao (10.1016/j.eswa.2019.07.037_bib0025) 2014; 11 Horng (10.1016/j.eswa.2019.07.037_bib0032) 2011; 38 Li (10.1016/j.eswa.2019.07.037_bib0041) 1993; 12 Maitra (10.1016/j.eswa.2019.07.037_bib0045) 2008; 41 Earnshaw (10.1016/j.eswa.2019.07.037_bib0018) 1832 Dehshibi (10.1016/j.eswa.2019.07.037_bib0017) 2017; 76 Li (10.1016/j.eswa.2019.07.037_bib0042) 2013; 18 Liao (10.1016/j.eswa.2019.07.037_bib0044) 2001; 17 Sathya (10.1016/j.eswa.2019.07.037_bib0059) 2011; 74 Halder (10.1016/j.eswa.2019.07.037_bib0028) 2013; 43 Mantegna (10.1016/j.eswa.2019.07.037_bib0048) 1994; 49 Zhang (10.1016/j.eswa.2019.07.037_bib0077) 2009; 13 Grossman (10.1016/j.eswa.2019.07.037_bib0026) 1996 Ayala (10.1016/j.eswa.2019.07.037_bib0004) 2015; 42 Manikandan (10.1016/j.eswa.2019.07.037_bib0047) 2014; 47 Tian (10.1016/j.eswa.2019.07.037_bib0066) 2009 Danby (10.1016/j.eswa.2019.07.037_bib0013) 1988 Krink (10.1016/j.eswa.2019.07.037_bib0040) 2011; 8 Li (10.1016/j.eswa.2019.07.037_bib0043) 2011; 10 Tayal (10.1016/j.eswa.2019.07.037_bib0065) 2012 Gao (10.1016/j.eswa.2019.07.037_bib0024) 2013; 250 Huang (10.1016/j.eswa.2019.07.037_bib0034) 2008; 92 Črepinšek (10.1016/j.eswa.2019.07.037_bib0011) 2013; 45 Van Leemput (10.1016/j.eswa.2019.07.037_bib0069) 1999; 18 Sun (10.1016/j.eswa.2019.07.037_bib0062) 2016; 46 Vrooman (10.1016/j.eswa.2019.07.037_bib0070) 2007; 37 Kapur (10.1016/j.eswa.2019.07.037_bib0036) 1985; 29 Nasa-ngium (10.1016/j.eswa.2019.07.037_bib0053) 2013 Joliot (10.1016/j.eswa.2019.07.037_bib0035) 1993; 12 Hammouche (10.1016/j.eswa.2019.07.037_bib0031) 2010; 23 Mohamed (10.1016/j.eswa.2019.07.037_bib0051) 2017 |
| References_xml | – start-page: 78 year: 2012 end-page: 83 ident: bib0065 article-title: A new scale factor for differential evolution optimization publication-title: 7th national conference communication technologies & its impact on next generation computing (CSI) – volume: 15 start-page: 429 year: 1996 end-page: 442 ident: bib0072 article-title: Adaptive segmentation of MRI data publication-title: IEEE Transactions on Medical Imaging – start-page: 5276 year: 2014 end-page: 5281 ident: bib0078 article-title: Differential particle swarm evolution for robot control tuning publication-title: 2014 American control conference – volume: 42 start-page: 2136 year: 2015 end-page: 2142 ident: bib0004 article-title: Image thresholding segmentation based on a novel beta differential evolution approach publication-title: Expert Systems with Applications – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: bib0071 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Transactions on Image Processing – volume: 38 start-page: 13785 year: 2011 end-page: 13791 ident: bib0032 article-title: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation publication-title: Expert Systems with Applications – volume: 130 start-page: 340 year: 2018 end-page: 361 ident: bib0039 article-title: Optimal multilevel thresholding selection for brain MRI image segmentation based on adaptive wind driven optimization publication-title: Measurement – start-page: 1 year: 2011 end-page: 39 ident: bib0021 article-title: Medical image segmentation: A brief survey publication-title: Multi modality state-of-the-art medical image segmentation and registration methodologies – volume: 67 start-page: 155 year: 2016 end-page: 173 ident: bib0012 article-title: Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations publication-title: Computers & Operations Research – start-page: 369 year: 2009 end-page: 372 ident: bib0066 article-title: K-harmonic means data clustering with differential evolution publication-title: International conference on future biomedical information engineering – volume: 2 start-page: 315 year: 2000 end-page: 337 ident: bib0057 article-title: Current methods in medical image segmentation publication-title: Annual Review of Biomedical Engineering – volume: 13 start-page: 1 year: 2007 end-page: 34 ident: bib0009 article-title: Effects of diversity control in single-objective and multi-objective genetic algorithms publication-title: Journal of Heuristics – volume: 41 start-page: 3538 year: 2014 end-page: 3560 ident: bib0005 article-title: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy publication-title: Expert Systems with Applications – volume: 11 start-page: 1702 year: 2014 end-page: 1706 ident: bib0025 article-title: A new highly efficient differential evolution scheme and its application to waveform inversion publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 76 start-page: 15951 year: 2017 end-page: 15986 ident: bib0017 article-title: A hybrid bio-inspired learning algorithm for image segmentation using multilevel thresholding publication-title: Multimedia Tools and Applications – start-page: 240 year: 2017 end-page: 243 ident: bib0068 article-title: Multilevel image thresholding using elephant herding optimization algorithm publication-title: Proceedings of the 14th international conference on engineering of modern electric systems – volume: 12 start-page: 269 year: 1993 end-page: 277 ident: bib0035 article-title: Three-dimensional segmentation and interpolation of magnetic resonance brain images publication-title: IEEE Transactions on Medical Imaging – start-page: 115 year: 2014 end-page: 139 ident: bib0006 article-title: Cuckoo search and firefly algorithm applied to multilevel image thresholding publication-title: Cuckoo search and firefly algorithm – volume: 9 start-page: 226 year: 2009 end-page: 236 ident: bib0014 article-title: Automatic image pixel clustering with an improved differential evolution publication-title: Applied Soft Computing – volume: 47 start-page: 558 year: 2014 end-page: 568 ident: bib0047 article-title: Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm publication-title: Measurement – volume: 30 start-page: 275 year: 2009 end-page: 284 ident: bib0033 article-title: Optimal multi-level thresholding using a two-stage Otsu optimization approach publication-title: Pattern Recognition Letters – volume: 26 start-page: 716 year: 2008 end-page: 724 ident: bib0007 article-title: The strongest schema learning ga and its application to multilevel thresholding publication-title: Image and Vision Computing – volume: 250 start-page: 82 year: 2013 end-page: 112 ident: bib0024 article-title: Particle swarm optimization based on intermediate disturbance strategy algorithm and its application in multi-threshold image segmentation publication-title: Information Sciences – start-page: 35 year: 2013 end-page: 59 ident: bib0052 article-title: Dynamic function optimization: The moving peaks benchmark publication-title: Metaheuristics for dynamic optimization – year: 2006 ident: bib0058 article-title: Differential evolution: A practical approach to global optimization – volume: 55 start-page: 503 year: 2017 end-page: 522 ident: bib0063 article-title: Multilevel thresholding based on chaotic darwinian particle swarm optimization for segmentation of satellite images publication-title: Applied Soft Computing – volume: 5 start-page: 245 year: 1998 end-page: 247 ident: bib0067 article-title: On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system publication-title: IEEE Signal Processing Letters – volume: 18 start-page: 909 year: 2013 end-page: 923 ident: bib0042 article-title: Stable matching-based selection in evolutionary multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation – start-page: 53 year: 2013 end-page: 57 ident: bib0053 article-title: Enhancing modified cuckoo search by using Mantegna Lévy flights and chaotic sequences publication-title: Proceedings of the 10th international joint conference on computer science and software engineering – volume: 12 start-page: 740 year: 1993 end-page: 750 ident: bib0041 article-title: Knowledge-based classification and tissue labeling of MR images of human brain publication-title: IEEE Transactions on Medical Imaging – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib0061 article-title: Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization – year: 1988 ident: bib0013 article-title: Fundamentals of celestial mechanics – volume: 15 start-page: 4 year: 2011 end-page: 31 ident: bib0015 article-title: Differential evolution: A survey of the state-of-the-art publication-title: IEEE Transactions on Evolutionary Computation – volume: 92 start-page: 267 year: 2008 end-page: 273 ident: bib0034 article-title: An artificial ant colonies approach to medical image segmentation publication-title: Computer Methods and Programs in Biomedicine – volume: 74 start-page: 2299 year: 2011 end-page: 2313 ident: bib0059 article-title: Optimal segmentation of brain MRI based on adaptive bacterial foraging algorithm publication-title: Neurocomputing – volume: 24 start-page: 3069 year: 2003 end-page: 3078 ident: bib0064 article-title: Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm publication-title: Pattern Recognition Letters – volume: 7 start-page: 506 year: 2003 end-page: 515 ident: bib0074 article-title: A novel approach in parameter adaptation and diversity maintenance for genetic algorithms publication-title: Soft Computing – volume: 17 start-page: 713 year: 2001 end-page: 727 ident: bib0044 article-title: A fast algorithm for multilevel thresholding publication-title: Journal of Information Science and Engineering – year: 1995 ident: bib0060 article-title: Differential evolution–A simple and efficient adaptive scheme for global optimization over continuous spaces – volume: 1 start-page: 80 year: 1945 end-page: 83 ident: bib0073 article-title: Individual comparisons by ranking methods publication-title: Biometrics Bulletin – volume: 83 start-page: 242 year: 2017 end-page: 256 ident: bib0019 article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation publication-title: Expert Systems with Applications – volume: 11 start-page: 3 year: 2015 end-page: 14 ident: bib0049 article-title: A survey on medical image segmentation publication-title: Current Medical Imaging Reviews – volume: 45 start-page: 35 year: 2013 ident: bib0011 article-title: Exploration and exploitation in evolutionary algorithms: A survey publication-title: ACM Computing Surveys – volume: 8 start-page: 157 year: 2011 end-page: 179 ident: bib0040 article-title: Multiobjective optimization using differential evolution for real-world portfolio optimization publication-title: Computational Management Science – volume: 23 start-page: 36 year: 2004 end-page: 44 ident: bib0008 article-title: Normalized cuts in 3-d for spinal MRI segmentation publication-title: IEEE Transactions on Medical Imaging – volume: 17 start-page: 1 year: 2014 end-page: 11 ident: bib0002 article-title: Multi-level image thresholding by synergetic differential evolution publication-title: Applied Soft Computing – start-page: 1 year: 2018 end-page: 29 ident: bib0079 article-title: Meta-heuristic moth swarm algorithm for multilevel thresholding image segmentation publication-title: Multimedia Tools and Applications – start-page: 21 year: 2011 end-page: 32 ident: bib0075 article-title: Metaheuristic optimization: Algorithm analysis and open problems publication-title: International symposium on experimental algorithms – start-page: 192 year: 2005 end-page: 199 ident: bib0054 article-title: Self-adaptive differential evolution publication-title: International conference on computational and information science – year: 2006 ident: bib0022 article-title: Differential evolution – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: bib0055 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 70 start-page: 931 year: 2018 end-page: 938 ident: bib0023 article-title: A multi-level thresholding image segmentation based on an improved artificial bee colony algorithm publication-title: Computers & Electrical Engineering – volume: 23 start-page: 265 year: 2013 end-page: 271 ident: bib0030 article-title: A new images segmentation method based on modified particle swarm optimization algorithm publication-title: International Journal of Imaging Systems and Technology – volume: 49 start-page: 4677 year: 1994 ident: bib0048 article-title: Fast, accurate algorithm for numerical simulation of levy stable stochastic processes publication-title: Physical Review E – start-page: 1 year: 2004 end-page: 6 ident: bib0020 article-title: Image analysis based interface for diagnostic expert systems publication-title: Proceedings of the winter international symposium on information and communication technologies – volume: 38 start-page: 4998 year: 2011 end-page: 5004 ident: bib0010 article-title: A new social and momentum component adaptive PSO algorithm for image segmentation publication-title: Expert Systems with Applications – year: 1832 ident: bib0018 article-title: Dynamics: Or an elementary treatise on motion – volume: 23 start-page: 676 year: 2010 end-page: 688 ident: bib0031 article-title: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem publication-title: Engineering Applications of Artificial Intelligence – volume: 3 start-page: 672 year: 1992 end-page: 682 ident: bib0029 article-title: A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain publication-title: IEEE Transactions on Neural Networks – start-page: 654 year: 2007 end-page: 658 ident: bib0027 article-title: Multilevel thresholding method for image segmentation based on an adaptive particle swarm optimization algorithm publication-title: Australasian joint conference on artificial intelligence – volume: 29 start-page: 273 year: 1985 end-page: 285 ident: bib0036 article-title: A new method for gray-level picture thresholding using the entropy of the histogram publication-title: Computer Vision, Graphics, and Image Processing – volume: 37 start-page: 71 year: 2007 end-page: 81 ident: bib0070 article-title: Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification publication-title: Neuroimage – volume: 11 start-page: 1679 year: 2011 end-page: 1696 ident: bib0046 article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies publication-title: Applied Soft Computing – volume: 13 start-page: 945 year: 2009 end-page: 958 ident: bib0077 article-title: Jade: Adaptive differential evolution with optional external archive publication-title: IEEE Transactions on evolutionary computation – start-page: 1 year: 2017 end-page: 25 ident: bib0051 article-title: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization publication-title: International Journal of Machine Learning and Cybernetics – volume: 12 start-page: 657 year: 1991 end-page: 664 ident: bib0016 article-title: Characterization and detection of noise in clustering publication-title: Pattern Recognition Letters – volume: 226 start-page: 1830 year: 2007 end-page: 1844 ident: bib0056 article-title: Lévy flights, non-local search and simulated annealing publication-title: Journal of Computational Physics – volume: 41 start-page: 1124 year: 2008 end-page: 1134 ident: bib0045 article-title: A novel technique for multilevel optimal magnetic resonance brain image thresholding using bacterial foraging publication-title: Measurement – volume: 43 start-page: 881 year: 2013 end-page: 897 ident: bib0028 article-title: A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments publication-title: IEEE Transactions on Cybernetics – volume: 184 start-page: 503 year: 2007 end-page: 513 ident: bib0076 article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization publication-title: Applied Mathematics and Computation – volume: 13 start-page: 3066 year: 2013 end-page: 3091 ident: bib0001 article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding publication-title: Applied Soft Computing – year: 1996 ident: bib0026 article-title: The sheer joy of celestial mechanics – start-page: 1531 year: 2005 end-page: 1538 ident: bib0003 article-title: Intelligent exploration for genetic algorithms: Using self-organizing maps in evolutionary computation publication-title: Proceedings of the 7th annual conference on genetic and evolutionary computation – year: 2001 ident: bib0038 article-title: Self-organising maps – volume: 10 start-page: 2378 year: 2011 end-page: 2384 ident: bib0043 article-title: Chaotic differential evolution algorithm for solving constrained optimization problems publication-title: Information Technology Journal – volume: 65 start-page: 221 year: 2016 end-page: 232 ident: bib0050 article-title: A hybrid differential evolution for optimal multilevel image thresholding publication-title: Expert Systems with Applications – volume: 18 start-page: 897 year: 1999 end-page: 908 ident: bib0069 article-title: Automated model-based tissue classification of mr images of the brain publication-title: IEEE Transactions on Medical Imaging – volume: 32 start-page: 162 year: 2019 end-page: 174 ident: bib0037 article-title: A new optimized thresholding method using ant colony algorithm for mr brain image segmentation publication-title: Journal of Digital Imaging – volume: 46 start-page: 703 year: 2016 end-page: 730 ident: bib0062 article-title: A novel hybrid algorithm of gravitational search algorithm with genetic algorithm for multi-level thresholding publication-title: Applied Soft Computing – volume: 13 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.eswa.2019.07.037_bib0009 article-title: Effects of diversity control in single-objective and multi-objective genetic algorithms publication-title: Journal of Heuristics doi: 10.1007/s10732-006-9003-1 – start-page: 53 year: 2013 ident: 10.1016/j.eswa.2019.07.037_bib0053 article-title: Enhancing modified cuckoo search by using Mantegna Lévy flights and chaotic sequences – volume: 70 start-page: 931 year: 2018 ident: 10.1016/j.eswa.2019.07.037_bib0023 article-title: A multi-level thresholding image segmentation based on an improved artificial bee colony algorithm publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2017.12.037 – start-page: 1531 year: 2005 ident: 10.1016/j.eswa.2019.07.037_bib0003 article-title: Intelligent exploration for genetic algorithms: Using self-organizing maps in evolutionary computation – volume: 13 start-page: 3066 issue: 6 year: 2013 ident: 10.1016/j.eswa.2019.07.037_bib0001 article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.03.072 – volume: 45 start-page: 35 issue: 3 year: 2013 ident: 10.1016/j.eswa.2019.07.037_bib0011 article-title: Exploration and exploitation in evolutionary algorithms: A survey publication-title: ACM Computing Surveys doi: 10.1145/2480741.2480752 – volume: 30 start-page: 275 issue: 3 year: 2009 ident: 10.1016/j.eswa.2019.07.037_bib0033 article-title: Optimal multi-level thresholding using a two-stage Otsu optimization approach publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2008.10.003 – volume: 12 start-page: 740 issue: 4 year: 1993 ident: 10.1016/j.eswa.2019.07.037_bib0041 article-title: Knowledge-based classification and tissue labeling of MR images of human brain publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.251125 – volume: 12 start-page: 657 issue: 11 year: 1991 ident: 10.1016/j.eswa.2019.07.037_bib0016 article-title: Characterization and detection of noise in clustering publication-title: Pattern Recognition Letters doi: 10.1016/0167-8655(91)90002-4 – volume: 17 start-page: 1 year: 2014 ident: 10.1016/j.eswa.2019.07.037_bib0002 article-title: Multi-level image thresholding by synergetic differential evolution publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2013.11.018 – volume: 42 start-page: 2136 issue: 4 year: 2015 ident: 10.1016/j.eswa.2019.07.037_bib0004 article-title: Image thresholding segmentation based on a novel beta differential evolution approach publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.09.043 – year: 1832 ident: 10.1016/j.eswa.2019.07.037_bib0018 – volume: 17 start-page: 713 issue: 5 year: 2001 ident: 10.1016/j.eswa.2019.07.037_bib0044 article-title: A fast algorithm for multilevel thresholding publication-title: Journal of Information Science and Engineering – start-page: 1 year: 2018 ident: 10.1016/j.eswa.2019.07.037_bib0079 article-title: Meta-heuristic moth swarm algorithm for multilevel thresholding image segmentation publication-title: Multimedia Tools and Applications – volume: 130 start-page: 340 year: 2018 ident: 10.1016/j.eswa.2019.07.037_bib0039 article-title: Optimal multilevel thresholding selection for brain MRI image segmentation based on adaptive wind driven optimization publication-title: Measurement doi: 10.1016/j.measurement.2018.08.007 – start-page: 21 year: 2011 ident: 10.1016/j.eswa.2019.07.037_bib0075 article-title: Metaheuristic optimization: Algorithm analysis and open problems – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 10.1016/j.eswa.2019.07.037_bib0055 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMC.1979.4310076 – start-page: 1 year: 2004 ident: 10.1016/j.eswa.2019.07.037_bib0020 article-title: Image analysis based interface for diagnostic expert systems – start-page: 654 year: 2007 ident: 10.1016/j.eswa.2019.07.037_bib0027 article-title: Multilevel thresholding method for image segmentation based on an adaptive particle swarm optimization algorithm – volume: 10 start-page: 2378 issue: 12 year: 2011 ident: 10.1016/j.eswa.2019.07.037_bib0043 article-title: Chaotic differential evolution algorithm for solving constrained optimization problems publication-title: Information Technology Journal doi: 10.3923/itj.2011.2378.2384 – volume: 47 start-page: 558 year: 2014 ident: 10.1016/j.eswa.2019.07.037_bib0047 article-title: Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm publication-title: Measurement doi: 10.1016/j.measurement.2013.09.031 – volume: 184 start-page: 503 issue: 2 year: 2007 ident: 10.1016/j.eswa.2019.07.037_bib0076 article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.06.057 – volume: 8 start-page: 157 issue: 1–2 year: 2011 ident: 10.1016/j.eswa.2019.07.037_bib0040 article-title: Multiobjective optimization using differential evolution for real-world portfolio optimization publication-title: Computational Management Science doi: 10.1007/s10287-009-0107-6 – volume: 83 start-page: 242 year: 2017 ident: 10.1016/j.eswa.2019.07.037_bib0019 article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.04.023 – volume: 5 start-page: 245 issue: 10 year: 1998 ident: 10.1016/j.eswa.2019.07.037_bib0067 article-title: On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system publication-title: IEEE Signal Processing Letters doi: 10.1109/97.720555 – volume: 65 start-page: 221 year: 2016 ident: 10.1016/j.eswa.2019.07.037_bib0050 article-title: A hybrid differential evolution for optimal multilevel image thresholding publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.08.046 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.eswa.2019.07.037_bib0071 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2003.819861 – volume: 24 start-page: 3069 issue: 16 year: 2003 ident: 10.1016/j.eswa.2019.07.037_bib0064 article-title: Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm publication-title: Pattern Recognition Letters doi: 10.1016/S0167-8655(03)00166-1 – start-page: 5276 year: 2014 ident: 10.1016/j.eswa.2019.07.037_bib0078 article-title: Differential particle swarm evolution for robot control tuning – volume: 18 start-page: 909 issue: 6 year: 2013 ident: 10.1016/j.eswa.2019.07.037_bib0042 article-title: Stable matching-based selection in evolutionary multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 37 start-page: 71 issue: 1 year: 2007 ident: 10.1016/j.eswa.2019.07.037_bib0070 article-title: Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.05.018 – volume: 26 start-page: 716 issue: 5 year: 2008 ident: 10.1016/j.eswa.2019.07.037_bib0007 article-title: The strongest schema learning ga and its application to multilevel thresholding publication-title: Image and Vision Computing doi: 10.1016/j.imavis.2007.08.007 – volume: 18 start-page: 897 issue: 10 year: 1999 ident: 10.1016/j.eswa.2019.07.037_bib0069 article-title: Automated model-based tissue classification of mr images of the brain publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.811270 – volume: 13 start-page: 945 issue: 5 year: 2009 ident: 10.1016/j.eswa.2019.07.037_bib0077 article-title: Jade: Adaptive differential evolution with optional external archive publication-title: IEEE Transactions on evolutionary computation doi: 10.1109/TEVC.2009.2014613 – volume: 43 start-page: 881 issue: 3 year: 2013 ident: 10.1016/j.eswa.2019.07.037_bib0028 article-title: A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TSMCB.2012.2217491 – volume: 9 start-page: 226 issue: 1 year: 2009 ident: 10.1016/j.eswa.2019.07.037_bib0014 article-title: Automatic image pixel clustering with an improved differential evolution publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2007.12.008 – start-page: 35 year: 2013 ident: 10.1016/j.eswa.2019.07.037_bib0052 article-title: Dynamic function optimization: The moving peaks benchmark – volume: 23 start-page: 36 issue: 1 year: 2004 ident: 10.1016/j.eswa.2019.07.037_bib0008 article-title: Normalized cuts in 3-d for spinal MRI segmentation publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2003.819929 – volume: 74 start-page: 2299 issue: 14–15 year: 2011 ident: 10.1016/j.eswa.2019.07.037_bib0059 article-title: Optimal segmentation of brain MRI based on adaptive bacterial foraging algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.03.010 – volume: 38 start-page: 4998 issue: 5 year: 2011 ident: 10.1016/j.eswa.2019.07.037_bib0010 article-title: A new social and momentum component adaptive PSO algorithm for image segmentation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.09.151 – volume: 3 start-page: 672 issue: 5 year: 1992 ident: 10.1016/j.eswa.2019.07.037_bib0029 article-title: A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.159057 – year: 1988 ident: 10.1016/j.eswa.2019.07.037_bib0013 – volume: 15 start-page: 429 issue: 4 year: 1996 ident: 10.1016/j.eswa.2019.07.037_bib0072 article-title: Adaptive segmentation of MRI data publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.511747 – volume: 12 start-page: 269 issue: 2 year: 1993 ident: 10.1016/j.eswa.2019.07.037_bib0035 article-title: Three-dimensional segmentation and interpolation of magnetic resonance brain images publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.232255 – start-page: 1 year: 2017 ident: 10.1016/j.eswa.2019.07.037_bib0051 article-title: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization publication-title: International Journal of Machine Learning and Cybernetics – volume: 67 start-page: 155 year: 2016 ident: 10.1016/j.eswa.2019.07.037_bib0012 article-title: Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations publication-title: Computers & Operations Research doi: 10.1016/j.cor.2015.09.006 – year: 2006 ident: 10.1016/j.eswa.2019.07.037_bib0022 – volume: 250 start-page: 82 year: 2013 ident: 10.1016/j.eswa.2019.07.037_bib0024 article-title: Particle swarm optimization based on intermediate disturbance strategy algorithm and its application in multi-threshold image segmentation publication-title: Information Sciences doi: 10.1016/j.ins.2013.07.005 – volume: 29 start-page: 273 issue: 3 year: 1985 ident: 10.1016/j.eswa.2019.07.037_bib0036 article-title: A new method for gray-level picture thresholding using the entropy of the histogram publication-title: Computer Vision, Graphics, and Image Processing doi: 10.1016/0734-189X(85)90125-2 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.eswa.2019.07.037_bib0061 article-title: Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: 55 start-page: 503 year: 2017 ident: 10.1016/j.eswa.2019.07.037_bib0063 article-title: Multilevel thresholding based on chaotic darwinian particle swarm optimization for segmentation of satellite images publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.02.005 – volume: 38 start-page: 13785 issue: 11 year: 2011 ident: 10.1016/j.eswa.2019.07.037_bib0032 article-title: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation publication-title: Expert Systems with Applications – volume: 49 start-page: 4677 issue: 5 year: 1994 ident: 10.1016/j.eswa.2019.07.037_bib0048 article-title: Fast, accurate algorithm for numerical simulation of levy stable stochastic processes publication-title: Physical Review E doi: 10.1103/PhysRevE.49.4677 – start-page: 78 year: 2012 ident: 10.1016/j.eswa.2019.07.037_bib0065 article-title: A new scale factor for differential evolution optimization – year: 1995 ident: 10.1016/j.eswa.2019.07.037_bib0060 – volume: 11 start-page: 3 issue: 1 year: 2015 ident: 10.1016/j.eswa.2019.07.037_bib0049 article-title: A survey on medical image segmentation publication-title: Current Medical Imaging Reviews doi: 10.2174/157340561101150423103441 – volume: 11 start-page: 1679 issue: 2 year: 2011 ident: 10.1016/j.eswa.2019.07.037_bib0046 article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2010.04.024 – volume: 32 start-page: 162 issue: 1 year: 2019 ident: 10.1016/j.eswa.2019.07.037_bib0037 article-title: A new optimized thresholding method using ant colony algorithm for mr brain image segmentation publication-title: Journal of Digital Imaging doi: 10.1007/s10278-018-0111-x – year: 2001 ident: 10.1016/j.eswa.2019.07.037_bib0038 – volume: 41 start-page: 1124 issue: 10 year: 2008 ident: 10.1016/j.eswa.2019.07.037_bib0045 article-title: A novel technique for multilevel optimal magnetic resonance brain image thresholding using bacterial foraging publication-title: Measurement doi: 10.1016/j.measurement.2008.03.002 – volume: 92 start-page: 267 issue: 3 year: 2008 ident: 10.1016/j.eswa.2019.07.037_bib0034 article-title: An artificial ant colonies approach to medical image segmentation publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2008.06.012 – volume: 15 start-page: 4 issue: 1 year: 2011 ident: 10.1016/j.eswa.2019.07.037_bib0015 article-title: Differential evolution: A survey of the state-of-the-art publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2010.2059031 – start-page: 1 year: 2011 ident: 10.1016/j.eswa.2019.07.037_bib0021 article-title: Medical image segmentation: A brief survey – start-page: 192 year: 2005 ident: 10.1016/j.eswa.2019.07.037_bib0054 article-title: Self-adaptive differential evolution – volume: 2 start-page: 315 issue: 1 year: 2000 ident: 10.1016/j.eswa.2019.07.037_bib0057 article-title: Current methods in medical image segmentation publication-title: Annual Review of Biomedical Engineering doi: 10.1146/annurev.bioeng.2.1.315 – volume: 23 start-page: 676 issue: 5 year: 2010 ident: 10.1016/j.eswa.2019.07.037_bib0031 article-title: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2009.09.011 – volume: 23 start-page: 265 issue: 3 year: 2013 ident: 10.1016/j.eswa.2019.07.037_bib0030 article-title: A new images segmentation method based on modified particle swarm optimization algorithm publication-title: International Journal of Imaging Systems and Technology doi: 10.1002/ima.22060 – year: 2006 ident: 10.1016/j.eswa.2019.07.037_bib0058 – start-page: 240 year: 2017 ident: 10.1016/j.eswa.2019.07.037_bib0068 article-title: Multilevel image thresholding using elephant herding optimization algorithm – start-page: 115 year: 2014 ident: 10.1016/j.eswa.2019.07.037_bib0006 article-title: Cuckoo search and firefly algorithm applied to multilevel image thresholding – volume: 11 start-page: 1702 issue: 10 year: 2014 ident: 10.1016/j.eswa.2019.07.037_bib0025 article-title: A new highly efficient differential evolution scheme and its application to waveform inversion publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2014.2306263 – year: 1996 ident: 10.1016/j.eswa.2019.07.037_bib0026 – volume: 76 start-page: 15951 issue: 14 year: 2017 ident: 10.1016/j.eswa.2019.07.037_bib0017 article-title: A hybrid bio-inspired learning algorithm for image segmentation using multilevel thresholding publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-016-3891-3 – volume: 1 start-page: 80 issue: 6 year: 1945 ident: 10.1016/j.eswa.2019.07.037_bib0073 article-title: Individual comparisons by ranking methods publication-title: Biometrics Bulletin doi: 10.2307/3001968 – volume: 7 start-page: 506 issue: 8 year: 2003 ident: 10.1016/j.eswa.2019.07.037_bib0074 article-title: A novel approach in parameter adaptation and diversity maintenance for genetic algorithms publication-title: Soft Computing doi: 10.1007/s00500-002-0235-1 – volume: 46 start-page: 703 year: 2016 ident: 10.1016/j.eswa.2019.07.037_bib0062 article-title: A novel hybrid algorithm of gravitational search algorithm with genetic algorithm for multi-level thresholding publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.01.054 – start-page: 369 year: 2009 ident: 10.1016/j.eswa.2019.07.037_bib0066 article-title: K-harmonic means data clustering with differential evolution – volume: 226 start-page: 1830 issue: 2 year: 2007 ident: 10.1016/j.eswa.2019.07.037_bib0056 article-title: Lévy flights, non-local search and simulated annealing publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2007.06.008 – volume: 41 start-page: 3538 issue: 7 year: 2014 ident: 10.1016/j.eswa.2019.07.037_bib0005 article-title: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.10.059 |
| SSID | ssj0017007 |
| Score | 2.5704336 |
| Snippet | •The ALDE algorithm works better for MRI image analysis than DE variants.•The ALDE algorithm is less sensitive to increasing number of thresholds.•The ALDE... Segmentation is an important method for MRI medical image analysis as it can provide the radiologists with noninvasive information about a patient that is... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 112820 |
| SubjectTerms | Adaptive algorithms Algorithms Benchmarks Brain Cauchy distribution Cotes’ Spiral Diagnostic systems Differential evolution Efficiency Evolutionary algorithms Evolutionary computation Exploitation Exploration Image analysis Image segmentation Lévy distribution Magnetic resonance imaging Medical imaging Mutation Optimal thresholding Thresholds |
| Title | An adaptive differential evolution algorithm to optimal multi-level thresholding for MRI brain image segmentation |
| URI | https://dx.doi.org/10.1016/j.eswa.2019.07.037 https://www.proquest.com/docview/2307138368 |
| Volume | 138 |
| WOSCitedRecordID | wos000489189900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3ohCQXtAXCxX2fix9jFCqVpUUoRSlNtqY--mKYmTJiaUf8_MPtykgggOXKzIWcdW5tvZ8ezM9xHyLmOyyNuqwI6eIoxlHIejDmbEJEs05zLRqTRiE7zfz4bD_HOr9dP3wqynvKqym5t88V9NDefA2Ng6-w_mbn4UTsBnMDocwexw_CvDd6tAlnJhSoK8_EmNeXG1dvcN5HQ8X07qyxlGnnMYOsMeEiwtDKdYRITqPWrlNqZMIeKnL6fBCNUkAhg7VsFKjWeua6naSu4jc3Lt-KF959zGHvltomD57VJWyiR1zme-rN5QRRo_eCInWrlV1SUlmFFUcPsrJlPWdMt83co48jBmVpTnSFl_m_EoTLkVSWwcsuV7cS6V_dbR25zD1ZFa_UD2KJYbClbLH7PNqt0_F8cXZ2di0BsO3i-uQxQcw415p75yj-x3eJKDT9_vnvaGH5stKN62vfb-qV3HlS0OvHvbP0U1d9Z3E7QMHpOH7m2Ddi1KnpCWqp6SR17JgzrH_oxcdyvqQUM3QUMb0NAGNLSeUwcaugEaugkaCqChABpqQEMNaOgmaJ6Ti-Pe4MNJ6MQ4wiLqZDWsmlymEO0oFhVcx7lkTEUwoSOpkzItYZkcJbmSTI8SFSU5Kmxq3tGYH4BBqYxekL1qXqmXhHZkhu8BecaiEhnoRqmKSl7wUqW6rTU_IMz_maJwTPUomDIVviTxSqABBBpAtLkAAxyQoLlmYXlado5OvI2EizRtBCkAXzuvO_QGFW7KrwS2UgBkozR7tfvr1-TB7Vw5JHv18rt6Q-4X63qyWr51-PsF3U-sVA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+differential+evolution+algorithm+to+optimal+multi-level+thresholding+for+MRI+brain+image+segmentation&rft.jtitle=Expert+systems+with+applications&rft.au=Tarkhaneh%2C+Omid&rft.au=Shen%2C+Haifeng&rft.date=2019-12-30&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=138&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2019.07.037&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |