An adaptive differential evolution algorithm to optimal multi-level thresholding for MRI brain image segmentation

•The ALDE algorithm works better for MRI image analysis than DE variants.•The ALDE algorithm is less sensitive to increasing number of thresholds.•The ALDE algorithm is fast enough for real-world image analysis applications.•The ALDE algorithm can efficiently balance between exploration and exploita...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 138; p. 112820
Main Authors: Tarkhaneh, Omid, Shen, Haifeng
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 30.12.2019
Elsevier BV
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •The ALDE algorithm works better for MRI image analysis than DE variants.•The ALDE algorithm is less sensitive to increasing number of thresholds.•The ALDE algorithm is fast enough for real-world image analysis applications.•The ALDE algorithm can efficiently balance between exploration and exploitation. Segmentation is an important method for MRI medical image analysis as it can provide the radiologists with noninvasive information about a patient that is crucial to the diagnostic process. The efficiency of such a computer-aided diagnosis system relies on the accuracy of an adopted image segmentation method. Multi-level thresholding is a segmentation method that has been widely adopted in medical image analysis in recent studies, where selecting the optimal thresholds has a pivotal role in determining the efficiency and the accuracy of the segmentation algorithm. While some well-known methods, such as Kapur’s and Otsu’s, are proven effective for bi-level thresholding, multi-level thresholding remains a challenge as it is computationally expensive. Evolutionary algorithms, such as Differential Evolution (DE), have the potential to address this problem, as they can find sufficiently good solutions with manageable computational effort. While a number of DE solutions have been proposed for multi-level thresholding, they are not stable, in that, when the number of thresholds increases, the algorithm efficiency decreases due to the imbalance between exploration and exploitation. In this paper, we propose a DE solution that achieves a good balance between exploration and exploitation through a new adaptive approach and new mutation strategies. The new adaptive approach can generate optimal solutions in assigning populations by measuring the quality of candidate solutions to evaluate the efficiency of different parts of the proposed DE algorithm. The new mutation methods harness Mantegna Lévy and Cauchy distributions, as well as Cotes’ Spiral to improve global search, and to further balance between exploitation and exploration. We further experimentally compare the proposed DE algorithm, referred to as Adaptive Differential Evolution with Lévy Distribution (ALDE), against three DE benchmark algorithms on T2 weighted MRI brain images. Our results show that ALDE can, not only obtain optimal thresholds at a reasonable computational cost, but more importantly, clearly outperforms the benchmark algorithms.
AbstractList Segmentation is an important method for MRI medical image analysis as it can provide the radiologists with noninvasive information about a patient that is crucial to the diagnostic process. The efficiency of such a computer-aided diagnosis system relies on the accuracy of an adopted image segmentation method. Multi-level thresholding is a segmentation method that has been widely adopted in medical image analysis in recent studies, where selecting the optimal thresholds has a pivotal role in determining the efficiency and the accuracy of the segmentation algorithm. While some well-known methods, such as Kapur's and Otsu's, are proven effective for bi-level thresholding, multi-level thresholding remains a challenge as it is computationally expensive. Evolutionary algorithms, such as Differential Evolution (DE), have the potential to address this problem, as they can find sufficiently good solutions with manageable computational effort. While a number of DE solutions have been proposed for multi-level thresholding, they are not stable, in that, when the number of thresholds increases, the algorithm efficiency decreases due to the imbalance between exploration and exploitation. In this paper, we propose a DE solution that achieves a good balance between exploration and exploitation through a new adaptive approach and new mutation strategies. The new adaptive approach can generate optimal solutions in assigning populations by measuring the quality of candidate solutions to evaluate the efficiency of different parts of the proposed DE algorithm. The new mutation methods harness Mantegna Lévy and Cauchy distributions, as well as Cotes' Spiral to improve global search, and to further balance between exploitation and exploration. We further experimentally compare the proposed DE algorithm, referred to as Adaptive Differential Evolution with Lévy Distribution (ALDE), against three DE benchmark algorithms on T2 weighted MRI brain images. Our results show that ALDE can, not only obtain optimal thresholds at a reasonable computational cost, but more importantly, clearly outperforms the benchmark algorithms.
•The ALDE algorithm works better for MRI image analysis than DE variants.•The ALDE algorithm is less sensitive to increasing number of thresholds.•The ALDE algorithm is fast enough for real-world image analysis applications.•The ALDE algorithm can efficiently balance between exploration and exploitation. Segmentation is an important method for MRI medical image analysis as it can provide the radiologists with noninvasive information about a patient that is crucial to the diagnostic process. The efficiency of such a computer-aided diagnosis system relies on the accuracy of an adopted image segmentation method. Multi-level thresholding is a segmentation method that has been widely adopted in medical image analysis in recent studies, where selecting the optimal thresholds has a pivotal role in determining the efficiency and the accuracy of the segmentation algorithm. While some well-known methods, such as Kapur’s and Otsu’s, are proven effective for bi-level thresholding, multi-level thresholding remains a challenge as it is computationally expensive. Evolutionary algorithms, such as Differential Evolution (DE), have the potential to address this problem, as they can find sufficiently good solutions with manageable computational effort. While a number of DE solutions have been proposed for multi-level thresholding, they are not stable, in that, when the number of thresholds increases, the algorithm efficiency decreases due to the imbalance between exploration and exploitation. In this paper, we propose a DE solution that achieves a good balance between exploration and exploitation through a new adaptive approach and new mutation strategies. The new adaptive approach can generate optimal solutions in assigning populations by measuring the quality of candidate solutions to evaluate the efficiency of different parts of the proposed DE algorithm. The new mutation methods harness Mantegna Lévy and Cauchy distributions, as well as Cotes’ Spiral to improve global search, and to further balance between exploitation and exploration. We further experimentally compare the proposed DE algorithm, referred to as Adaptive Differential Evolution with Lévy Distribution (ALDE), against three DE benchmark algorithms on T2 weighted MRI brain images. Our results show that ALDE can, not only obtain optimal thresholds at a reasonable computational cost, but more importantly, clearly outperforms the benchmark algorithms.
ArticleNumber 112820
Author Shen, Haifeng
Tarkhaneh, Omid
Author_xml – sequence: 1
  givenname: Omid
  orcidid: 0000-0002-5827-2848
  surname: Tarkhaneh
  fullname: Tarkhaneh, Omid
  email: Tarkhanehomid@gmail.com, o_tarkhane91@ms.tabrizu.ac.ir
  organization: Department of Computer Sciences, University of Tabriz, Tabriz, Iran
– sequence: 2
  givenname: Haifeng
  orcidid: 0000-0002-8221-981X
  surname: Shen
  fullname: Shen, Haifeng
  email: haifeng.shen@acu.edu.au
  organization: Peter Faber Business School, Australian Catholic University, North Sydney, Australia
BookMark eNp9kE9LAzEQxYNUsFa_gKeA512TTTfZBS-l-KdQEUTPId1M2pR00yZpxW9vSj156GkO83tv5r1rNOh9DwjdUVJSQvnDuoT4rcqK0LYkoiRMXKAhbQQruGjZAA1JW4tiTMX4Cl3HuCaECkLEEO0mPVZabZM9ANbWGAjQJ6schoN3-2R93rulDzatNjh57DO6yevN3iVbODiAw2kVIK6807ZfYuMDfvuY4UVQtseZXQKOsNxkW3W0u0GXRrkIt39zhL6enz6nr8X8_WU2ncyLjlVNKhohFGe8Aso6YcatohSYojVTptZcK60XdQuKmkUNrG55y4gRlRnTmmeIKzZC9yffbfC7PcQk134f-nxSVowIyhrGm0xVJ6oLPsYARm5D_jn8SErksVq5lsdq5bFaSYTM1WZR80_U2VO4lEO789LHkxRy9IOFIGNnoe9A2wBdktrbc_JfpSaY2g
CitedBy_id crossref_primary_10_1007_s00500_021_06454_1
crossref_primary_10_1007_s11235_021_00833_7
crossref_primary_10_1007_s11831_022_09825_5
crossref_primary_10_3390_math10071090
crossref_primary_10_1007_s11042_020_09006_1
crossref_primary_10_1088_2057_1976_acd256
crossref_primary_10_1109_ACCESS_2020_2988284
crossref_primary_10_1007_s11042_023_17189_6
crossref_primary_10_1007_s10773_023_05527_1
crossref_primary_10_1109_ACCESS_2022_3179376
crossref_primary_10_1016_j_knosys_2022_108696
crossref_primary_10_32604_cmc_2021_016956
crossref_primary_10_1016_j_imavis_2025_105432
crossref_primary_10_1109_ACCESS_2020_2997355
crossref_primary_10_1007_s11042_021_10738_x
crossref_primary_10_3390_math10152785
crossref_primary_10_1007_s10586_024_04982_7
crossref_primary_10_1016_j_ecoinf_2021_101230
crossref_primary_10_1109_TEVC_2022_3220747
crossref_primary_10_3389_fninf_2023_1126783
crossref_primary_10_1016_j_eswa_2023_121950
crossref_primary_10_1007_s00521_022_08078_4
crossref_primary_10_1016_j_compmedimag_2023_102313
crossref_primary_10_1016_j_eswa_2023_121674
crossref_primary_10_1016_j_apm_2020_12_026
crossref_primary_10_1007_s00521_024_10667_4
crossref_primary_10_1007_s11831_024_10093_8
crossref_primary_10_1007_s12046_021_01744_8
crossref_primary_10_1016_j_eswa_2024_126239
crossref_primary_10_3390_e23111429
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_1016_j_compbiomed_2021_104941
crossref_primary_10_1109_ACCESS_2020_3037197
crossref_primary_10_3390_app10093225
crossref_primary_10_1016_j_bspc_2025_107853
crossref_primary_10_1016_j_bspc_2022_103866
crossref_primary_10_1155_2020_6765274
crossref_primary_10_1016_j_knosys_2020_105889
crossref_primary_10_1007_s00521_023_08291_9
crossref_primary_10_1007_s11042_020_10443_1
crossref_primary_10_3390_brainsci11081055
crossref_primary_10_1007_s10334_025_01233_7
crossref_primary_10_1016_j_ins_2021_02_061
crossref_primary_10_1093_jcde_qwac141
crossref_primary_10_1109_ACCESS_2020_3015108
crossref_primary_10_1016_j_displa_2024_102727
crossref_primary_10_1007_s12530_023_09566_1
crossref_primary_10_1007_s11760_025_03815_3
crossref_primary_10_1016_j_compbiomed_2024_109011
crossref_primary_10_1016_j_ins_2021_03_062
crossref_primary_10_1109_ACCESS_2021_3060749
crossref_primary_10_1016_j_bspc_2023_104893
crossref_primary_10_1016_j_measurement_2022_110884
crossref_primary_10_3390_app11041825
crossref_primary_10_1016_j_bspc_2024_106631
crossref_primary_10_1155_2021_1892497
crossref_primary_10_1007_s10586_024_04525_0
crossref_primary_10_1007_s00500_021_06449_y
crossref_primary_10_1016_j_wneu_2022_06_050
crossref_primary_10_1049_cit2_12377
crossref_primary_10_1016_j_bspc_2024_106484
crossref_primary_10_1007_s00521_023_08649_z
crossref_primary_10_1007_s11042_024_19461_9
crossref_primary_10_3390_app15052355
crossref_primary_10_3390_e23091196
crossref_primary_10_1016_j_eswa_2020_113750
crossref_primary_10_1155_2020_9767282
crossref_primary_10_1007_s11042_020_10122_1
crossref_primary_10_1016_j_compbiomed_2024_107922
crossref_primary_10_1016_j_eswa_2022_117667
crossref_primary_10_1007_s00521_022_07718_z
crossref_primary_10_1007_s11042_024_18489_1
crossref_primary_10_1016_j_compbiomed_2022_106404
crossref_primary_10_1007_s00500_023_07891_w
crossref_primary_10_1007_s10462_024_10919_8
crossref_primary_10_1016_j_asoc_2022_108776
crossref_primary_10_1016_j_asoc_2025_112727
crossref_primary_10_1016_j_asoc_2020_106157
crossref_primary_10_1016_j_patrec_2019_11_020
Cites_doi 10.1007/s10732-006-9003-1
10.1016/j.compeleceng.2017.12.037
10.1016/j.asoc.2012.03.072
10.1145/2480741.2480752
10.1016/j.patrec.2008.10.003
10.1109/42.251125
10.1016/0167-8655(91)90002-4
10.1016/j.asoc.2013.11.018
10.1016/j.eswa.2014.09.043
10.1016/j.measurement.2018.08.007
10.1109/TSMC.1979.4310076
10.3923/itj.2011.2378.2384
10.1016/j.measurement.2013.09.031
10.1016/j.amc.2006.06.057
10.1007/s10287-009-0107-6
10.1016/j.eswa.2017.04.023
10.1109/97.720555
10.1016/j.eswa.2016.08.046
10.1109/TIP.2003.819861
10.1016/S0167-8655(03)00166-1
10.1016/j.neuroimage.2007.05.018
10.1016/j.imavis.2007.08.007
10.1109/42.811270
10.1109/TEVC.2009.2014613
10.1109/TSMCB.2012.2217491
10.1016/j.asoc.2007.12.008
10.1109/TMI.2003.819929
10.1016/j.neucom.2011.03.010
10.1016/j.eswa.2010.09.151
10.1109/72.159057
10.1109/42.511747
10.1109/42.232255
10.1016/j.cor.2015.09.006
10.1016/j.ins.2013.07.005
10.1016/0734-189X(85)90125-2
10.1023/A:1008202821328
10.1016/j.asoc.2017.02.005
10.1103/PhysRevE.49.4677
10.2174/157340561101150423103441
10.1016/j.asoc.2010.04.024
10.1007/s10278-018-0111-x
10.1016/j.measurement.2008.03.002
10.1016/j.cmpb.2008.06.012
10.1109/TEVC.2010.2059031
10.1146/annurev.bioeng.2.1.315
10.1016/j.engappai.2009.09.011
10.1002/ima.22060
10.1109/LGRS.2014.2306263
10.1007/s11042-016-3891-3
10.2307/3001968
10.1007/s00500-002-0235-1
10.1016/j.asoc.2016.01.054
10.1016/j.jcp.2007.06.008
10.1016/j.eswa.2013.10.059
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Dec 30, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 30, 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2019.07.037
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2019_07_037
S0957417419305226
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-877a6362e13c7f49a11e3a153af5d6daddb59ea1fb5e3596930f72f41561536a3
ISICitedReferencesCount 92
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489189900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Mon Jul 14 10:41:35 EDT 2025
Tue Nov 18 20:49:22 EST 2025
Sat Nov 29 07:03:23 EST 2025
Fri Feb 23 02:24:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Differential evolution
Image segmentation
Lévy distribution
Optimal thresholding
Cauchy distribution
Cotes’ Spiral
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-877a6362e13c7f49a11e3a153af5d6daddb59ea1fb5e3596930f72f41561536a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8221-981X
0000-0002-5827-2848
PQID 2307138368
PQPubID 2045477
ParticipantIDs proquest_journals_2307138368
crossref_primary_10_1016_j_eswa_2019_07_037
crossref_citationtrail_10_1016_j_eswa_2019_07_037
elsevier_sciencedirect_doi_10_1016_j_eswa_2019_07_037
PublicationCentury 2000
PublicationDate 2019-12-30
PublicationDateYYYYMMDD 2019-12-30
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-30
  day: 30
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Maitra, Chatterjee (bib0045) 2008; 41
Huang, Cao, Luo (bib0034) 2008; 92
Omran, Salman, Engelbrecht (bib0054) 2005
Dehshibi, Sourizaei, Fazlali, Talaee, Samadyar, Shanbehzadeh (bib0017) 2017; 76
Amor, Rettinger (bib0003) 2005
Črepinšek, Liu, Mernik (bib0011) 2013; 45
Hammouche, Diaf, Siarry (bib0031) 2010; 23
Pavlyukevich (bib0056) 2007; 226
Brajevic, Tuba (bib0006) 2014
Vrooman, Cocosco, van der Lijn, Stokking, Ikram, Vernooij (bib0070) 2007; 37
Halder, Das, Maity (bib0028) 2013; 43
El-Helly, El-Beltagy, Rafea (bib0020) 2004
Kotte, Pullakura, Injeti (bib0039) 2018; 130
Sun, Zhang, Yao, Wang (bib0062) 2016; 46
Zhou, Yang, Ling, Zhang (bib0079) 2018
Li, Goldgof, Hall (bib0041) 1993; 12
Carballido-Gamio, Belongie, Majumdar (bib0008) 2004; 23
Sathya, Kayalvizhi (bib0059) 2011; 74
Zheng, Simon, Richter, Gao (bib0078) 2014
Hamdaoui, Ladgham, Sakly, Mtibaa (bib0030) 2013; 23
Storn, Price (bib0061) 1997; 11
Cui, Li, Lin, Chen, Lu (bib0012) 2016; 67
Li, Wang (bib0043) 2011; 10
Hall, Bensaid, Clarke, Velthuizen, Silbiger, Bezdek (bib0029) 1992; 3
Tian, Liu, Qi (bib0066) 2009
Storn, Price (bib0060) 1995
Otsu (bib0055) 1979; 9
Wilcoxon (bib0073) 1945; 1
Gao, Kwong, Yang, Cao (bib0024) 2013; 250
Kapur, Sahoo, Wong (bib0036) 1985; 29
Danby (bib0013) 1988
Li, Zhang, Kwong, Li, Wang (bib0042) 2013; 18
Krink, Paterlini (bib0040) 2011; 8
Ali, Ahn, Pant (bib0002) 2014; 17
Suresh, Lal (bib0063) 2017; 55
Nasa-ngium, Sunat, Chiewchanwattana (bib0053) 2013
Elnakib, Gimel’farb, Suri, El-Baz (bib0021) 2011
Dave (bib0016) 1991; 12
Khorram, Yazdi (bib0037) 2019; 32
Mallipeddi, Suganthan, Pan, Tasgetiren (bib0046) 2011; 11
Yin (bib0076) 2007; 184
Mohamed, Mohamed (bib0051) 2017
Chaiyaratana, Piroonratana, Sangkawelert (bib0009) 2007; 13
Kohonen (bib0038) 2001
Yang (bib0075) 2011
Das, Konar (bib0014) 2009; 9
Wong, Lee, Leung, Ho (bib0074) 2003; 7
Wells, Grimson, Kikinis, Jolesz (bib0072) 1996; 15
Akay (bib0001) 2013; 13
Tao, Tian, Liu (bib0064) 2003; 24
Gao, Fu, Pun, Hu, Lan (bib0023) 2018; 70
Pham, Xu, Prince (bib0057) 2000; 2
Tuba, Alihodzic, Tuba (bib0068) 2017
Horng (bib0032) 2011; 38
Mantegna (bib0048) 1994; 49
Tayal, Gupta (bib0065) 2012
Guo, Li (bib0027) 2007
Manikandan, Ramar, Iruthayarajan, Srinivasagan (bib0047) 2014; 47
Cao, Bao, Shi (bib0007) 2008; 26
Wang, Bovik, Sheikh, Simoncelli (bib0071) 2004; 13
Zhang, Sanderson (bib0077) 2009; 13
Das, Suganthan (bib0015) 2011; 15
Liao, Chen, Chung (bib0044) 2001; 17
Feoktistov (bib0022) 2006
Chander, Chatterjee, Siarry (bib0010) 2011; 38
Earnshaw (bib0018) 1832
Van Leemput, Maes, Vandermeulen, Suetens (bib0069) 1999; 18
Bhandari, Singh, Kumar, Singh (bib0005) 2014; 41
Masood, Sharif, Masood, Yasmin, Raza (bib0049) 2015; 11
Tolias, Panas (bib0067) 1998; 5
Moser, Chiong (bib0052) 2013
Price, Storn, Lampinen (bib0058) 2006
Ayala, dos Santos, Mariani, dos Santos Coelho (bib0004) 2015; 42
Mlakar, Potočnik, Brest (bib0050) 2016; 65
Gao, Pan, Gao (bib0025) 2014; 11
Joliot, Mazoyer (bib0035) 1993; 12
El Aziz, Ewees, Hassanien (bib0019) 2017; 83
Huang, Wang (bib0033) 2009; 30
Grossman (bib0026) 1996
Feoktistov (10.1016/j.eswa.2019.07.037_bib0022) 2006
Yin (10.1016/j.eswa.2019.07.037_bib0076) 2007; 184
Khorram (10.1016/j.eswa.2019.07.037_bib0037) 2019; 32
Price (10.1016/j.eswa.2019.07.037_bib0058) 2006
Omran (10.1016/j.eswa.2019.07.037_bib0054) 2005
Yang (10.1016/j.eswa.2019.07.037_bib0075) 2011
Suresh (10.1016/j.eswa.2019.07.037_bib0063) 2017; 55
Tuba (10.1016/j.eswa.2019.07.037_bib0068) 2017
Hall (10.1016/j.eswa.2019.07.037_bib0029) 1992; 3
Tolias (10.1016/j.eswa.2019.07.037_bib0067) 1998; 5
Otsu (10.1016/j.eswa.2019.07.037_bib0055) 1979; 9
Tao (10.1016/j.eswa.2019.07.037_bib0064) 2003; 24
Amor (10.1016/j.eswa.2019.07.037_bib0003) 2005
Gao (10.1016/j.eswa.2019.07.037_bib0023) 2018; 70
Cui (10.1016/j.eswa.2019.07.037_bib0012) 2016; 67
Bhandari (10.1016/j.eswa.2019.07.037_bib0005) 2014; 41
Huang (10.1016/j.eswa.2019.07.037_bib0033) 2009; 30
Carballido-Gamio (10.1016/j.eswa.2019.07.037_bib0008) 2004; 23
Wong (10.1016/j.eswa.2019.07.037_bib0074) 2003; 7
Chaiyaratana (10.1016/j.eswa.2019.07.037_bib0009) 2007; 13
El Aziz (10.1016/j.eswa.2019.07.037_bib0019) 2017; 83
Wang (10.1016/j.eswa.2019.07.037_bib0071) 2004; 13
Zhou (10.1016/j.eswa.2019.07.037_bib0079) 2018
Akay (10.1016/j.eswa.2019.07.037_bib0001) 2013; 13
Brajevic (10.1016/j.eswa.2019.07.037_bib0006) 2014
Pavlyukevich (10.1016/j.eswa.2019.07.037_bib0056) 2007; 226
Wilcoxon (10.1016/j.eswa.2019.07.037_bib0073) 1945; 1
Dave (10.1016/j.eswa.2019.07.037_bib0016) 1991; 12
Moser (10.1016/j.eswa.2019.07.037_bib0052) 2013
Elnakib (10.1016/j.eswa.2019.07.037_bib0021) 2011
Storn (10.1016/j.eswa.2019.07.037_bib0060) 1995
Wells (10.1016/j.eswa.2019.07.037_bib0072) 1996; 15
Cao (10.1016/j.eswa.2019.07.037_bib0007) 2008; 26
Pham (10.1016/j.eswa.2019.07.037_bib0057) 2000; 2
Das (10.1016/j.eswa.2019.07.037_bib0015) 2011; 15
Kotte (10.1016/j.eswa.2019.07.037_bib0039) 2018; 130
Mlakar (10.1016/j.eswa.2019.07.037_bib0050) 2016; 65
Ali (10.1016/j.eswa.2019.07.037_bib0002) 2014; 17
Hamdaoui (10.1016/j.eswa.2019.07.037_bib0030) 2013; 23
Guo (10.1016/j.eswa.2019.07.037_bib0027) 2007
Chander (10.1016/j.eswa.2019.07.037_bib0010) 2011; 38
Kohonen (10.1016/j.eswa.2019.07.037_bib0038) 2001
Mallipeddi (10.1016/j.eswa.2019.07.037_bib0046) 2011; 11
Masood (10.1016/j.eswa.2019.07.037_bib0049) 2015; 11
Zheng (10.1016/j.eswa.2019.07.037_bib0078) 2014
Storn (10.1016/j.eswa.2019.07.037_bib0061) 1997; 11
Das (10.1016/j.eswa.2019.07.037_bib0014) 2009; 9
El-Helly (10.1016/j.eswa.2019.07.037_bib0020) 2004
Gao (10.1016/j.eswa.2019.07.037_bib0025) 2014; 11
Horng (10.1016/j.eswa.2019.07.037_bib0032) 2011; 38
Li (10.1016/j.eswa.2019.07.037_bib0041) 1993; 12
Maitra (10.1016/j.eswa.2019.07.037_bib0045) 2008; 41
Earnshaw (10.1016/j.eswa.2019.07.037_bib0018) 1832
Dehshibi (10.1016/j.eswa.2019.07.037_bib0017) 2017; 76
Li (10.1016/j.eswa.2019.07.037_bib0042) 2013; 18
Liao (10.1016/j.eswa.2019.07.037_bib0044) 2001; 17
Sathya (10.1016/j.eswa.2019.07.037_bib0059) 2011; 74
Halder (10.1016/j.eswa.2019.07.037_bib0028) 2013; 43
Mantegna (10.1016/j.eswa.2019.07.037_bib0048) 1994; 49
Zhang (10.1016/j.eswa.2019.07.037_bib0077) 2009; 13
Grossman (10.1016/j.eswa.2019.07.037_bib0026) 1996
Ayala (10.1016/j.eswa.2019.07.037_bib0004) 2015; 42
Manikandan (10.1016/j.eswa.2019.07.037_bib0047) 2014; 47
Tian (10.1016/j.eswa.2019.07.037_bib0066) 2009
Danby (10.1016/j.eswa.2019.07.037_bib0013) 1988
Krink (10.1016/j.eswa.2019.07.037_bib0040) 2011; 8
Li (10.1016/j.eswa.2019.07.037_bib0043) 2011; 10
Tayal (10.1016/j.eswa.2019.07.037_bib0065) 2012
Gao (10.1016/j.eswa.2019.07.037_bib0024) 2013; 250
Huang (10.1016/j.eswa.2019.07.037_bib0034) 2008; 92
Črepinšek (10.1016/j.eswa.2019.07.037_bib0011) 2013; 45
Van Leemput (10.1016/j.eswa.2019.07.037_bib0069) 1999; 18
Sun (10.1016/j.eswa.2019.07.037_bib0062) 2016; 46
Vrooman (10.1016/j.eswa.2019.07.037_bib0070) 2007; 37
Kapur (10.1016/j.eswa.2019.07.037_bib0036) 1985; 29
Nasa-ngium (10.1016/j.eswa.2019.07.037_bib0053) 2013
Joliot (10.1016/j.eswa.2019.07.037_bib0035) 1993; 12
Hammouche (10.1016/j.eswa.2019.07.037_bib0031) 2010; 23
Mohamed (10.1016/j.eswa.2019.07.037_bib0051) 2017
References_xml – start-page: 78
  year: 2012
  end-page: 83
  ident: bib0065
  article-title: A new scale factor for differential evolution optimization
  publication-title: 7th national conference communication technologies & its impact on next generation computing (CSI)
– volume: 15
  start-page: 429
  year: 1996
  end-page: 442
  ident: bib0072
  article-title: Adaptive segmentation of MRI data
  publication-title: IEEE Transactions on Medical Imaging
– start-page: 5276
  year: 2014
  end-page: 5281
  ident: bib0078
  article-title: Differential particle swarm evolution for robot control tuning
  publication-title: 2014 American control conference
– volume: 42
  start-page: 2136
  year: 2015
  end-page: 2142
  ident: bib0004
  article-title: Image thresholding segmentation based on a novel beta differential evolution approach
  publication-title: Expert Systems with Applications
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib0071
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Transactions on Image Processing
– volume: 38
  start-page: 13785
  year: 2011
  end-page: 13791
  ident: bib0032
  article-title: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation
  publication-title: Expert Systems with Applications
– volume: 130
  start-page: 340
  year: 2018
  end-page: 361
  ident: bib0039
  article-title: Optimal multilevel thresholding selection for brain MRI image segmentation based on adaptive wind driven optimization
  publication-title: Measurement
– start-page: 1
  year: 2011
  end-page: 39
  ident: bib0021
  article-title: Medical image segmentation: A brief survey
  publication-title: Multi modality state-of-the-art medical image segmentation and registration methodologies
– volume: 67
  start-page: 155
  year: 2016
  end-page: 173
  ident: bib0012
  article-title: Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations
  publication-title: Computers & Operations Research
– start-page: 369
  year: 2009
  end-page: 372
  ident: bib0066
  article-title: K-harmonic means data clustering with differential evolution
  publication-title: International conference on future biomedical information engineering
– volume: 2
  start-page: 315
  year: 2000
  end-page: 337
  ident: bib0057
  article-title: Current methods in medical image segmentation
  publication-title: Annual Review of Biomedical Engineering
– volume: 13
  start-page: 1
  year: 2007
  end-page: 34
  ident: bib0009
  article-title: Effects of diversity control in single-objective and multi-objective genetic algorithms
  publication-title: Journal of Heuristics
– volume: 41
  start-page: 3538
  year: 2014
  end-page: 3560
  ident: bib0005
  article-title: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy
  publication-title: Expert Systems with Applications
– volume: 11
  start-page: 1702
  year: 2014
  end-page: 1706
  ident: bib0025
  article-title: A new highly efficient differential evolution scheme and its application to waveform inversion
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 76
  start-page: 15951
  year: 2017
  end-page: 15986
  ident: bib0017
  article-title: A hybrid bio-inspired learning algorithm for image segmentation using multilevel thresholding
  publication-title: Multimedia Tools and Applications
– start-page: 240
  year: 2017
  end-page: 243
  ident: bib0068
  article-title: Multilevel image thresholding using elephant herding optimization algorithm
  publication-title: Proceedings of the 14th international conference on engineering of modern electric systems
– volume: 12
  start-page: 269
  year: 1993
  end-page: 277
  ident: bib0035
  article-title: Three-dimensional segmentation and interpolation of magnetic resonance brain images
  publication-title: IEEE Transactions on Medical Imaging
– start-page: 115
  year: 2014
  end-page: 139
  ident: bib0006
  article-title: Cuckoo search and firefly algorithm applied to multilevel image thresholding
  publication-title: Cuckoo search and firefly algorithm
– volume: 9
  start-page: 226
  year: 2009
  end-page: 236
  ident: bib0014
  article-title: Automatic image pixel clustering with an improved differential evolution
  publication-title: Applied Soft Computing
– volume: 47
  start-page: 558
  year: 2014
  end-page: 568
  ident: bib0047
  article-title: Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm
  publication-title: Measurement
– volume: 30
  start-page: 275
  year: 2009
  end-page: 284
  ident: bib0033
  article-title: Optimal multi-level thresholding using a two-stage Otsu optimization approach
  publication-title: Pattern Recognition Letters
– volume: 26
  start-page: 716
  year: 2008
  end-page: 724
  ident: bib0007
  article-title: The strongest schema learning ga and its application to multilevel thresholding
  publication-title: Image and Vision Computing
– volume: 250
  start-page: 82
  year: 2013
  end-page: 112
  ident: bib0024
  article-title: Particle swarm optimization based on intermediate disturbance strategy algorithm and its application in multi-threshold image segmentation
  publication-title: Information Sciences
– start-page: 35
  year: 2013
  end-page: 59
  ident: bib0052
  article-title: Dynamic function optimization: The moving peaks benchmark
  publication-title: Metaheuristics for dynamic optimization
– year: 2006
  ident: bib0058
  article-title: Differential evolution: A practical approach to global optimization
– volume: 55
  start-page: 503
  year: 2017
  end-page: 522
  ident: bib0063
  article-title: Multilevel thresholding based on chaotic darwinian particle swarm optimization for segmentation of satellite images
  publication-title: Applied Soft Computing
– volume: 5
  start-page: 245
  year: 1998
  end-page: 247
  ident: bib0067
  article-title: On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system
  publication-title: IEEE Signal Processing Letters
– volume: 18
  start-page: 909
  year: 2013
  end-page: 923
  ident: bib0042
  article-title: Stable matching-based selection in evolutionary multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 53
  year: 2013
  end-page: 57
  ident: bib0053
  article-title: Enhancing modified cuckoo search by using Mantegna Lévy flights and chaotic sequences
  publication-title: Proceedings of the 10th international joint conference on computer science and software engineering
– volume: 12
  start-page: 740
  year: 1993
  end-page: 750
  ident: bib0041
  article-title: Knowledge-based classification and tissue labeling of MR images of human brain
  publication-title: IEEE Transactions on Medical Imaging
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib0061
  article-title: Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– year: 1988
  ident: bib0013
  article-title: Fundamentals of celestial mechanics
– volume: 15
  start-page: 4
  year: 2011
  end-page: 31
  ident: bib0015
  article-title: Differential evolution: A survey of the state-of-the-art
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 92
  start-page: 267
  year: 2008
  end-page: 273
  ident: bib0034
  article-title: An artificial ant colonies approach to medical image segmentation
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 74
  start-page: 2299
  year: 2011
  end-page: 2313
  ident: bib0059
  article-title: Optimal segmentation of brain MRI based on adaptive bacterial foraging algorithm
  publication-title: Neurocomputing
– volume: 24
  start-page: 3069
  year: 2003
  end-page: 3078
  ident: bib0064
  article-title: Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm
  publication-title: Pattern Recognition Letters
– volume: 7
  start-page: 506
  year: 2003
  end-page: 515
  ident: bib0074
  article-title: A novel approach in parameter adaptation and diversity maintenance for genetic algorithms
  publication-title: Soft Computing
– volume: 17
  start-page: 713
  year: 2001
  end-page: 727
  ident: bib0044
  article-title: A fast algorithm for multilevel thresholding
  publication-title: Journal of Information Science and Engineering
– year: 1995
  ident: bib0060
  article-title: Differential evolution–A simple and efficient adaptive scheme for global optimization over continuous spaces
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: bib0073
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics Bulletin
– volume: 83
  start-page: 242
  year: 2017
  end-page: 256
  ident: bib0019
  article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation
  publication-title: Expert Systems with Applications
– volume: 11
  start-page: 3
  year: 2015
  end-page: 14
  ident: bib0049
  article-title: A survey on medical image segmentation
  publication-title: Current Medical Imaging Reviews
– volume: 45
  start-page: 35
  year: 2013
  ident: bib0011
  article-title: Exploration and exploitation in evolutionary algorithms: A survey
  publication-title: ACM Computing Surveys
– volume: 8
  start-page: 157
  year: 2011
  end-page: 179
  ident: bib0040
  article-title: Multiobjective optimization using differential evolution for real-world portfolio optimization
  publication-title: Computational Management Science
– volume: 23
  start-page: 36
  year: 2004
  end-page: 44
  ident: bib0008
  article-title: Normalized cuts in 3-d for spinal MRI segmentation
  publication-title: IEEE Transactions on Medical Imaging
– volume: 17
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib0002
  article-title: Multi-level image thresholding by synergetic differential evolution
  publication-title: Applied Soft Computing
– start-page: 1
  year: 2018
  end-page: 29
  ident: bib0079
  article-title: Meta-heuristic moth swarm algorithm for multilevel thresholding image segmentation
  publication-title: Multimedia Tools and Applications
– start-page: 21
  year: 2011
  end-page: 32
  ident: bib0075
  article-title: Metaheuristic optimization: Algorithm analysis and open problems
  publication-title: International symposium on experimental algorithms
– start-page: 192
  year: 2005
  end-page: 199
  ident: bib0054
  article-title: Self-adaptive differential evolution
  publication-title: International conference on computational and information science
– year: 2006
  ident: bib0022
  article-title: Differential evolution
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: bib0055
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 70
  start-page: 931
  year: 2018
  end-page: 938
  ident: bib0023
  article-title: A multi-level thresholding image segmentation based on an improved artificial bee colony algorithm
  publication-title: Computers & Electrical Engineering
– volume: 23
  start-page: 265
  year: 2013
  end-page: 271
  ident: bib0030
  article-title: A new images segmentation method based on modified particle swarm optimization algorithm
  publication-title: International Journal of Imaging Systems and Technology
– volume: 49
  start-page: 4677
  year: 1994
  ident: bib0048
  article-title: Fast, accurate algorithm for numerical simulation of levy stable stochastic processes
  publication-title: Physical Review E
– start-page: 1
  year: 2004
  end-page: 6
  ident: bib0020
  article-title: Image analysis based interface for diagnostic expert systems
  publication-title: Proceedings of the winter international symposium on information and communication technologies
– volume: 38
  start-page: 4998
  year: 2011
  end-page: 5004
  ident: bib0010
  article-title: A new social and momentum component adaptive PSO algorithm for image segmentation
  publication-title: Expert Systems with Applications
– year: 1832
  ident: bib0018
  article-title: Dynamics: Or an elementary treatise on motion
– volume: 23
  start-page: 676
  year: 2010
  end-page: 688
  ident: bib0031
  article-title: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 3
  start-page: 672
  year: 1992
  end-page: 682
  ident: bib0029
  article-title: A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain
  publication-title: IEEE Transactions on Neural Networks
– start-page: 654
  year: 2007
  end-page: 658
  ident: bib0027
  article-title: Multilevel thresholding method for image segmentation based on an adaptive particle swarm optimization algorithm
  publication-title: Australasian joint conference on artificial intelligence
– volume: 29
  start-page: 273
  year: 1985
  end-page: 285
  ident: bib0036
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Computer Vision, Graphics, and Image Processing
– volume: 37
  start-page: 71
  year: 2007
  end-page: 81
  ident: bib0070
  article-title: Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification
  publication-title: Neuroimage
– volume: 11
  start-page: 1679
  year: 2011
  end-page: 1696
  ident: bib0046
  article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies
  publication-title: Applied Soft Computing
– volume: 13
  start-page: 945
  year: 2009
  end-page: 958
  ident: bib0077
  article-title: Jade: Adaptive differential evolution with optional external archive
  publication-title: IEEE Transactions on evolutionary computation
– start-page: 1
  year: 2017
  end-page: 25
  ident: bib0051
  article-title: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization
  publication-title: International Journal of Machine Learning and Cybernetics
– volume: 12
  start-page: 657
  year: 1991
  end-page: 664
  ident: bib0016
  article-title: Characterization and detection of noise in clustering
  publication-title: Pattern Recognition Letters
– volume: 226
  start-page: 1830
  year: 2007
  end-page: 1844
  ident: bib0056
  article-title: Lévy flights, non-local search and simulated annealing
  publication-title: Journal of Computational Physics
– volume: 41
  start-page: 1124
  year: 2008
  end-page: 1134
  ident: bib0045
  article-title: A novel technique for multilevel optimal magnetic resonance brain image thresholding using bacterial foraging
  publication-title: Measurement
– volume: 43
  start-page: 881
  year: 2013
  end-page: 897
  ident: bib0028
  article-title: A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments
  publication-title: IEEE Transactions on Cybernetics
– volume: 184
  start-page: 503
  year: 2007
  end-page: 513
  ident: bib0076
  article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization
  publication-title: Applied Mathematics and Computation
– volume: 13
  start-page: 3066
  year: 2013
  end-page: 3091
  ident: bib0001
  article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding
  publication-title: Applied Soft Computing
– year: 1996
  ident: bib0026
  article-title: The sheer joy of celestial mechanics
– start-page: 1531
  year: 2005
  end-page: 1538
  ident: bib0003
  article-title: Intelligent exploration for genetic algorithms: Using self-organizing maps in evolutionary computation
  publication-title: Proceedings of the 7th annual conference on genetic and evolutionary computation
– year: 2001
  ident: bib0038
  article-title: Self-organising maps
– volume: 10
  start-page: 2378
  year: 2011
  end-page: 2384
  ident: bib0043
  article-title: Chaotic differential evolution algorithm for solving constrained optimization problems
  publication-title: Information Technology Journal
– volume: 65
  start-page: 221
  year: 2016
  end-page: 232
  ident: bib0050
  article-title: A hybrid differential evolution for optimal multilevel image thresholding
  publication-title: Expert Systems with Applications
– volume: 18
  start-page: 897
  year: 1999
  end-page: 908
  ident: bib0069
  article-title: Automated model-based tissue classification of mr images of the brain
  publication-title: IEEE Transactions on Medical Imaging
– volume: 32
  start-page: 162
  year: 2019
  end-page: 174
  ident: bib0037
  article-title: A new optimized thresholding method using ant colony algorithm for mr brain image segmentation
  publication-title: Journal of Digital Imaging
– volume: 46
  start-page: 703
  year: 2016
  end-page: 730
  ident: bib0062
  article-title: A novel hybrid algorithm of gravitational search algorithm with genetic algorithm for multi-level thresholding
  publication-title: Applied Soft Computing
– volume: 13
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2019.07.037_bib0009
  article-title: Effects of diversity control in single-objective and multi-objective genetic algorithms
  publication-title: Journal of Heuristics
  doi: 10.1007/s10732-006-9003-1
– start-page: 53
  year: 2013
  ident: 10.1016/j.eswa.2019.07.037_bib0053
  article-title: Enhancing modified cuckoo search by using Mantegna Lévy flights and chaotic sequences
– volume: 70
  start-page: 931
  year: 2018
  ident: 10.1016/j.eswa.2019.07.037_bib0023
  article-title: A multi-level thresholding image segmentation based on an improved artificial bee colony algorithm
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2017.12.037
– start-page: 1531
  year: 2005
  ident: 10.1016/j.eswa.2019.07.037_bib0003
  article-title: Intelligent exploration for genetic algorithms: Using self-organizing maps in evolutionary computation
– volume: 13
  start-page: 3066
  issue: 6
  year: 2013
  ident: 10.1016/j.eswa.2019.07.037_bib0001
  article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.03.072
– volume: 45
  start-page: 35
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2019.07.037_bib0011
  article-title: Exploration and exploitation in evolutionary algorithms: A survey
  publication-title: ACM Computing Surveys
  doi: 10.1145/2480741.2480752
– volume: 30
  start-page: 275
  issue: 3
  year: 2009
  ident: 10.1016/j.eswa.2019.07.037_bib0033
  article-title: Optimal multi-level thresholding using a two-stage Otsu optimization approach
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2008.10.003
– volume: 12
  start-page: 740
  issue: 4
  year: 1993
  ident: 10.1016/j.eswa.2019.07.037_bib0041
  article-title: Knowledge-based classification and tissue labeling of MR images of human brain
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.251125
– volume: 12
  start-page: 657
  issue: 11
  year: 1991
  ident: 10.1016/j.eswa.2019.07.037_bib0016
  article-title: Characterization and detection of noise in clustering
  publication-title: Pattern Recognition Letters
  doi: 10.1016/0167-8655(91)90002-4
– volume: 17
  start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2019.07.037_bib0002
  article-title: Multi-level image thresholding by synergetic differential evolution
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2013.11.018
– volume: 42
  start-page: 2136
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2019.07.037_bib0004
  article-title: Image thresholding segmentation based on a novel beta differential evolution approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.09.043
– year: 1832
  ident: 10.1016/j.eswa.2019.07.037_bib0018
– volume: 17
  start-page: 713
  issue: 5
  year: 2001
  ident: 10.1016/j.eswa.2019.07.037_bib0044
  article-title: A fast algorithm for multilevel thresholding
  publication-title: Journal of Information Science and Engineering
– start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2019.07.037_bib0079
  article-title: Meta-heuristic moth swarm algorithm for multilevel thresholding image segmentation
  publication-title: Multimedia Tools and Applications
– volume: 130
  start-page: 340
  year: 2018
  ident: 10.1016/j.eswa.2019.07.037_bib0039
  article-title: Optimal multilevel thresholding selection for brain MRI image segmentation based on adaptive wind driven optimization
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.08.007
– start-page: 21
  year: 2011
  ident: 10.1016/j.eswa.2019.07.037_bib0075
  article-title: Metaheuristic optimization: Algorithm analysis and open problems
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.eswa.2019.07.037_bib0055
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1979.4310076
– start-page: 1
  year: 2004
  ident: 10.1016/j.eswa.2019.07.037_bib0020
  article-title: Image analysis based interface for diagnostic expert systems
– start-page: 654
  year: 2007
  ident: 10.1016/j.eswa.2019.07.037_bib0027
  article-title: Multilevel thresholding method for image segmentation based on an adaptive particle swarm optimization algorithm
– volume: 10
  start-page: 2378
  issue: 12
  year: 2011
  ident: 10.1016/j.eswa.2019.07.037_bib0043
  article-title: Chaotic differential evolution algorithm for solving constrained optimization problems
  publication-title: Information Technology Journal
  doi: 10.3923/itj.2011.2378.2384
– volume: 47
  start-page: 558
  year: 2014
  ident: 10.1016/j.eswa.2019.07.037_bib0047
  article-title: Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.09.031
– volume: 184
  start-page: 503
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2019.07.037_bib0076
  article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.06.057
– volume: 8
  start-page: 157
  issue: 1–2
  year: 2011
  ident: 10.1016/j.eswa.2019.07.037_bib0040
  article-title: Multiobjective optimization using differential evolution for real-world portfolio optimization
  publication-title: Computational Management Science
  doi: 10.1007/s10287-009-0107-6
– volume: 83
  start-page: 242
  year: 2017
  ident: 10.1016/j.eswa.2019.07.037_bib0019
  article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.04.023
– volume: 5
  start-page: 245
  issue: 10
  year: 1998
  ident: 10.1016/j.eswa.2019.07.037_bib0067
  article-title: On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/97.720555
– volume: 65
  start-page: 221
  year: 2016
  ident: 10.1016/j.eswa.2019.07.037_bib0050
  article-title: A hybrid differential evolution for optimal multilevel image thresholding
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.08.046
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.eswa.2019.07.037_bib0071
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.819861
– volume: 24
  start-page: 3069
  issue: 16
  year: 2003
  ident: 10.1016/j.eswa.2019.07.037_bib0064
  article-title: Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm
  publication-title: Pattern Recognition Letters
  doi: 10.1016/S0167-8655(03)00166-1
– start-page: 5276
  year: 2014
  ident: 10.1016/j.eswa.2019.07.037_bib0078
  article-title: Differential particle swarm evolution for robot control tuning
– volume: 18
  start-page: 909
  issue: 6
  year: 2013
  ident: 10.1016/j.eswa.2019.07.037_bib0042
  article-title: Stable matching-based selection in evolutionary multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 37
  start-page: 71
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2019.07.037_bib0070
  article-title: Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.05.018
– volume: 26
  start-page: 716
  issue: 5
  year: 2008
  ident: 10.1016/j.eswa.2019.07.037_bib0007
  article-title: The strongest schema learning ga and its application to multilevel thresholding
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2007.08.007
– volume: 18
  start-page: 897
  issue: 10
  year: 1999
  ident: 10.1016/j.eswa.2019.07.037_bib0069
  article-title: Automated model-based tissue classification of mr images of the brain
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.811270
– volume: 13
  start-page: 945
  issue: 5
  year: 2009
  ident: 10.1016/j.eswa.2019.07.037_bib0077
  article-title: Jade: Adaptive differential evolution with optional external archive
  publication-title: IEEE Transactions on evolutionary computation
  doi: 10.1109/TEVC.2009.2014613
– volume: 43
  start-page: 881
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2019.07.037_bib0028
  article-title: A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TSMCB.2012.2217491
– volume: 9
  start-page: 226
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2019.07.037_bib0014
  article-title: Automatic image pixel clustering with an improved differential evolution
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2007.12.008
– start-page: 35
  year: 2013
  ident: 10.1016/j.eswa.2019.07.037_bib0052
  article-title: Dynamic function optimization: The moving peaks benchmark
– volume: 23
  start-page: 36
  issue: 1
  year: 2004
  ident: 10.1016/j.eswa.2019.07.037_bib0008
  article-title: Normalized cuts in 3-d for spinal MRI segmentation
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2003.819929
– volume: 74
  start-page: 2299
  issue: 14–15
  year: 2011
  ident: 10.1016/j.eswa.2019.07.037_bib0059
  article-title: Optimal segmentation of brain MRI based on adaptive bacterial foraging algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.03.010
– volume: 38
  start-page: 4998
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2019.07.037_bib0010
  article-title: A new social and momentum component adaptive PSO algorithm for image segmentation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.09.151
– volume: 3
  start-page: 672
  issue: 5
  year: 1992
  ident: 10.1016/j.eswa.2019.07.037_bib0029
  article-title: A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.159057
– year: 1988
  ident: 10.1016/j.eswa.2019.07.037_bib0013
– volume: 15
  start-page: 429
  issue: 4
  year: 1996
  ident: 10.1016/j.eswa.2019.07.037_bib0072
  article-title: Adaptive segmentation of MRI data
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.511747
– volume: 12
  start-page: 269
  issue: 2
  year: 1993
  ident: 10.1016/j.eswa.2019.07.037_bib0035
  article-title: Three-dimensional segmentation and interpolation of magnetic resonance brain images
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.232255
– start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2019.07.037_bib0051
  article-title: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization
  publication-title: International Journal of Machine Learning and Cybernetics
– volume: 67
  start-page: 155
  year: 2016
  ident: 10.1016/j.eswa.2019.07.037_bib0012
  article-title: Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2015.09.006
– year: 2006
  ident: 10.1016/j.eswa.2019.07.037_bib0022
– volume: 250
  start-page: 82
  year: 2013
  ident: 10.1016/j.eswa.2019.07.037_bib0024
  article-title: Particle swarm optimization based on intermediate disturbance strategy algorithm and its application in multi-threshold image segmentation
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2013.07.005
– volume: 29
  start-page: 273
  issue: 3
  year: 1985
  ident: 10.1016/j.eswa.2019.07.037_bib0036
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Computer Vision, Graphics, and Image Processing
  doi: 10.1016/0734-189X(85)90125-2
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.eswa.2019.07.037_bib0061
  article-title: Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 55
  start-page: 503
  year: 2017
  ident: 10.1016/j.eswa.2019.07.037_bib0063
  article-title: Multilevel thresholding based on chaotic darwinian particle swarm optimization for segmentation of satellite images
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.02.005
– volume: 38
  start-page: 13785
  issue: 11
  year: 2011
  ident: 10.1016/j.eswa.2019.07.037_bib0032
  article-title: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation
  publication-title: Expert Systems with Applications
– volume: 49
  start-page: 4677
  issue: 5
  year: 1994
  ident: 10.1016/j.eswa.2019.07.037_bib0048
  article-title: Fast, accurate algorithm for numerical simulation of levy stable stochastic processes
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.49.4677
– start-page: 78
  year: 2012
  ident: 10.1016/j.eswa.2019.07.037_bib0065
  article-title: A new scale factor for differential evolution optimization
– year: 1995
  ident: 10.1016/j.eswa.2019.07.037_bib0060
– volume: 11
  start-page: 3
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2019.07.037_bib0049
  article-title: A survey on medical image segmentation
  publication-title: Current Medical Imaging Reviews
  doi: 10.2174/157340561101150423103441
– volume: 11
  start-page: 1679
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2019.07.037_bib0046
  article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2010.04.024
– volume: 32
  start-page: 162
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2019.07.037_bib0037
  article-title: A new optimized thresholding method using ant colony algorithm for mr brain image segmentation
  publication-title: Journal of Digital Imaging
  doi: 10.1007/s10278-018-0111-x
– year: 2001
  ident: 10.1016/j.eswa.2019.07.037_bib0038
– volume: 41
  start-page: 1124
  issue: 10
  year: 2008
  ident: 10.1016/j.eswa.2019.07.037_bib0045
  article-title: A novel technique for multilevel optimal magnetic resonance brain image thresholding using bacterial foraging
  publication-title: Measurement
  doi: 10.1016/j.measurement.2008.03.002
– volume: 92
  start-page: 267
  issue: 3
  year: 2008
  ident: 10.1016/j.eswa.2019.07.037_bib0034
  article-title: An artificial ant colonies approach to medical image segmentation
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2008.06.012
– volume: 15
  start-page: 4
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2019.07.037_bib0015
  article-title: Differential evolution: A survey of the state-of-the-art
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2010.2059031
– start-page: 1
  year: 2011
  ident: 10.1016/j.eswa.2019.07.037_bib0021
  article-title: Medical image segmentation: A brief survey
– start-page: 192
  year: 2005
  ident: 10.1016/j.eswa.2019.07.037_bib0054
  article-title: Self-adaptive differential evolution
– volume: 2
  start-page: 315
  issue: 1
  year: 2000
  ident: 10.1016/j.eswa.2019.07.037_bib0057
  article-title: Current methods in medical image segmentation
  publication-title: Annual Review of Biomedical Engineering
  doi: 10.1146/annurev.bioeng.2.1.315
– volume: 23
  start-page: 676
  issue: 5
  year: 2010
  ident: 10.1016/j.eswa.2019.07.037_bib0031
  article-title: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2009.09.011
– volume: 23
  start-page: 265
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2019.07.037_bib0030
  article-title: A new images segmentation method based on modified particle swarm optimization algorithm
  publication-title: International Journal of Imaging Systems and Technology
  doi: 10.1002/ima.22060
– year: 2006
  ident: 10.1016/j.eswa.2019.07.037_bib0058
– start-page: 240
  year: 2017
  ident: 10.1016/j.eswa.2019.07.037_bib0068
  article-title: Multilevel image thresholding using elephant herding optimization algorithm
– start-page: 115
  year: 2014
  ident: 10.1016/j.eswa.2019.07.037_bib0006
  article-title: Cuckoo search and firefly algorithm applied to multilevel image thresholding
– volume: 11
  start-page: 1702
  issue: 10
  year: 2014
  ident: 10.1016/j.eswa.2019.07.037_bib0025
  article-title: A new highly efficient differential evolution scheme and its application to waveform inversion
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2014.2306263
– year: 1996
  ident: 10.1016/j.eswa.2019.07.037_bib0026
– volume: 76
  start-page: 15951
  issue: 14
  year: 2017
  ident: 10.1016/j.eswa.2019.07.037_bib0017
  article-title: A hybrid bio-inspired learning algorithm for image segmentation using multilevel thresholding
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-016-3891-3
– volume: 1
  start-page: 80
  issue: 6
  year: 1945
  ident: 10.1016/j.eswa.2019.07.037_bib0073
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics Bulletin
  doi: 10.2307/3001968
– volume: 7
  start-page: 506
  issue: 8
  year: 2003
  ident: 10.1016/j.eswa.2019.07.037_bib0074
  article-title: A novel approach in parameter adaptation and diversity maintenance for genetic algorithms
  publication-title: Soft Computing
  doi: 10.1007/s00500-002-0235-1
– volume: 46
  start-page: 703
  year: 2016
  ident: 10.1016/j.eswa.2019.07.037_bib0062
  article-title: A novel hybrid algorithm of gravitational search algorithm with genetic algorithm for multi-level thresholding
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.01.054
– start-page: 369
  year: 2009
  ident: 10.1016/j.eswa.2019.07.037_bib0066
  article-title: K-harmonic means data clustering with differential evolution
– volume: 226
  start-page: 1830
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2019.07.037_bib0056
  article-title: Lévy flights, non-local search and simulated annealing
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2007.06.008
– volume: 41
  start-page: 3538
  issue: 7
  year: 2014
  ident: 10.1016/j.eswa.2019.07.037_bib0005
  article-title: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.10.059
SSID ssj0017007
Score 2.5704336
Snippet •The ALDE algorithm works better for MRI image analysis than DE variants.•The ALDE algorithm is less sensitive to increasing number of thresholds.•The ALDE...
Segmentation is an important method for MRI medical image analysis as it can provide the radiologists with noninvasive information about a patient that is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112820
SubjectTerms Adaptive algorithms
Algorithms
Benchmarks
Brain
Cauchy distribution
Cotes’ Spiral
Diagnostic systems
Differential evolution
Efficiency
Evolutionary algorithms
Evolutionary computation
Exploitation
Exploration
Image analysis
Image segmentation
Lévy distribution
Magnetic resonance imaging
Medical imaging
Mutation
Optimal thresholding
Thresholds
Title An adaptive differential evolution algorithm to optimal multi-level thresholding for MRI brain image segmentation
URI https://dx.doi.org/10.1016/j.eswa.2019.07.037
https://www.proquest.com/docview/2307138368
Volume 138
WOSCitedRecordID wos000489189900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3ohCQXtAXCxX2fix9jFCqVpUUoRSlNtqY--mKYmTJiaUf8_MPtykgggOXKzIWcdW5tvZ8ezM9xHyLmOyyNuqwI6eIoxlHIejDmbEJEs05zLRqTRiE7zfz4bD_HOr9dP3wqynvKqym5t88V9NDefA2Ng6-w_mbn4UTsBnMDocwexw_CvDd6tAlnJhSoK8_EmNeXG1dvcN5HQ8X07qyxlGnnMYOsMeEiwtDKdYRITqPWrlNqZMIeKnL6fBCNUkAhg7VsFKjWeua6naSu4jc3Lt-KF959zGHvltomD57VJWyiR1zme-rN5QRRo_eCInWrlV1SUlmFFUcPsrJlPWdMt83co48jBmVpTnSFl_m_EoTLkVSWwcsuV7cS6V_dbR25zD1ZFa_UD2KJYbClbLH7PNqt0_F8cXZ2di0BsO3i-uQxQcw415p75yj-x3eJKDT9_vnvaGH5stKN62vfb-qV3HlS0OvHvbP0U1d9Z3E7QMHpOH7m2Ddi1KnpCWqp6SR17JgzrH_oxcdyvqQUM3QUMb0NAGNLSeUwcaugEaugkaCqChABpqQEMNaOgmaJ6Ti-Pe4MNJ6MQ4wiLqZDWsmlymEO0oFhVcx7lkTEUwoSOpkzItYZkcJbmSTI8SFSU5Kmxq3tGYH4BBqYxekL1qXqmXhHZkhu8BecaiEhnoRqmKSl7wUqW6rTU_IMz_maJwTPUomDIVviTxSqABBBpAtLkAAxyQoLlmYXlado5OvI2EizRtBCkAXzuvO_QGFW7KrwS2UgBkozR7tfvr1-TB7Vw5JHv18rt6Q-4X63qyWr51-PsF3U-sVA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+differential+evolution+algorithm+to+optimal+multi-level+thresholding+for+MRI+brain+image+segmentation&rft.jtitle=Expert+systems+with+applications&rft.au=Tarkhaneh%2C+Omid&rft.au=Shen%2C+Haifeng&rft.date=2019-12-30&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=138&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2019.07.037&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon