Hybrid whale optimization algorithm with gathering strategies for high-dimensional problems

•A novel two-stage individual-based Whale Optimization Algorithm is proposed.•Opposition learning and grey wolf optimizer are added to raise solution diversity.•A big parameter value and differential disturbance are adopted in the first stage.•Historical agent best solutions and a global-best way ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 179; S. 115032
Hauptverfasser: Zhang, Xinming, Wen, Shaochen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Ltd 01.10.2021
Elsevier BV
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A novel two-stage individual-based Whale Optimization Algorithm is proposed.•Opposition learning and grey wolf optimizer are added to raise solution diversity.•A big parameter value and differential disturbance are adopted in the first stage.•Historical agent best solutions and a global-best way are used in the second stage.•Experiments are carried on high-dimensional functions and fuzzy C-means clustering. In order to solve the problems, such as insufficient search ability and low search efficiency, of Whale Optimization Algorithm (WOA) in solving high-dimensional problems, a novel Hybrid WOA with Gathering strategies (HWOAG) is proposed in this paper. Firstly, an individual-based updating way is used in HWOAG instead of the dimension-based updating one of WOA to reduce the computational complexity and to be more suitable for high-dimensional problems. Secondly, a random opposition learning strategy is embedded into the individual-based WOA to form an opposition learning WOA (OWOA), and Grey Wolf Optimizer (GWO) is integrated into OWOA to form an OWOA with GWO (OWOAG) so as to improve the global search ability of WOA. Finally, two standalone OWOAGs are formulated to balance exploration and exploitation better. The two OWOAGs adopt strategies such as switching parameter tuning, random differential disturbance and global-best spiral operator to get stronger search ability. A lot of experimental results on high-dimensional (i.e. 1000-, 2000-, 4000- and 8000- dimensional) benchmark functions and clustering datasets for Fuzzy C-Means (FCM) optimization show that HWOAG has stronger search ability and higher search efficiency than WOA and quite a few state-of-the-art algorithms and that all the strategies gathered to WOA are effective. The source codes of the proposed algorithm HWOAG are available at https://github.com/kangzhai/HWOAG.
AbstractList •A novel two-stage individual-based Whale Optimization Algorithm is proposed.•Opposition learning and grey wolf optimizer are added to raise solution diversity.•A big parameter value and differential disturbance are adopted in the first stage.•Historical agent best solutions and a global-best way are used in the second stage.•Experiments are carried on high-dimensional functions and fuzzy C-means clustering. In order to solve the problems, such as insufficient search ability and low search efficiency, of Whale Optimization Algorithm (WOA) in solving high-dimensional problems, a novel Hybrid WOA with Gathering strategies (HWOAG) is proposed in this paper. Firstly, an individual-based updating way is used in HWOAG instead of the dimension-based updating one of WOA to reduce the computational complexity and to be more suitable for high-dimensional problems. Secondly, a random opposition learning strategy is embedded into the individual-based WOA to form an opposition learning WOA (OWOA), and Grey Wolf Optimizer (GWO) is integrated into OWOA to form an OWOA with GWO (OWOAG) so as to improve the global search ability of WOA. Finally, two standalone OWOAGs are formulated to balance exploration and exploitation better. The two OWOAGs adopt strategies such as switching parameter tuning, random differential disturbance and global-best spiral operator to get stronger search ability. A lot of experimental results on high-dimensional (i.e. 1000-, 2000-, 4000- and 8000- dimensional) benchmark functions and clustering datasets for Fuzzy C-Means (FCM) optimization show that HWOAG has stronger search ability and higher search efficiency than WOA and quite a few state-of-the-art algorithms and that all the strategies gathered to WOA are effective. The source codes of the proposed algorithm HWOAG are available at https://github.com/kangzhai/HWOAG.
In order to solve the problems, such as insufficient search ability and low search efficiency, of Whale Optimization Algorithm (WOA) in solving high-dimensional problems, a novel Hybrid WOA with Gathering strategies (HWOAG) is proposed in this paper. Firstly, an individual-based updating way is used in HWOAG instead of the dimension-based updating one of WOA to reduce the computational complexity and to be more suitable for high-dimensional problems. Secondly, a random opposition learning strategy is embedded into the individual-based WOA to form an opposition learning WOA (OWOA), and Grey Wolf Optimizer (GWO) is integrated into OWOA to form an OWOA with GWO (OWOAG) so as to improve the global search ability of WOA. Finally, two standalone OWOAGs are formulated to balance exploration and exploitation better. The two OWOAGs adopt strategies such as switching parameter tuning, random differential disturbance and global-best spiral operator to get stronger search ability. A lot of experimental results on high-dimensional (i.e. 1000-, 2000-, 4000- and 8000- dimensional) benchmark functions and clustering datasets for Fuzzy C-Means (FCM) optimization show that HWOAG has stronger search ability and higher search efficiency than WOA and quite a few state-of-the-art algorithms and that all the strategies gathered to WOA are effective. The source codes of the proposed algorithm HWOAG are available at https://github.com/kangzhai/HWOAG.
ArticleNumber 115032
Author Zhang, Xinming
Wen, Shaochen
Author_xml – sequence: 1
  givenname: Xinming
  surname: Zhang
  fullname: Zhang, Xinming
  email: xinmingzhang@126.com
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan, China
– sequence: 2
  givenname: Shaochen
  surname: Wen
  fullname: Wen, Shaochen
  email: 2929488077@qq.com
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan, China
BookMark eNp9kL1OwzAURi1UJNrCCzBZYk6wk8ZOJBZUAUWqxAITg-U4N4mjJC62oSpPj0uYGLrcu3zn_pwFmo1mBISuKYkpoey2i8HtZZyQhMaUZiRNztCc5jyNGC_SGZqTIuPRivLVBVo41xFCOSF8jt43h9LqCu9b2QM2O68H_S29NiOWfWOs9u2A96HiRvoWrB4b7LyVHhoNDtfG4lY3bVTpAUYXMNnjnTVlD4O7ROe17B1c_fUlent8eF1vou3L0_P6fhupNMl9lK9qplTNs1TmLAFFaDif1VKlRVUz4CVJCM1LVhWslJSrLC9YpbisJXCmCkiX6GaaGxZ_fILzojOfNlziRJJlJEsJI0VIJVNKWeOchVrsrB6kPQhKxFGi6MRRojhKFJPEAOX_IKX9r57gQPen0bsJhfD6lwYrnNIwKqi0BeVFZfQp_AcAcJE3
CitedBy_id crossref_primary_10_1007_s10489_022_04132_9
crossref_primary_10_1016_j_knosys_2021_107543
crossref_primary_10_1038_s41598_025_03636_x
crossref_primary_10_1007_s10479_022_04849_3
crossref_primary_10_1093_jcde_qwac092
crossref_primary_10_3390_biomimetics10050273
crossref_primary_10_1007_s42235_024_00493_8
crossref_primary_10_1109_TMTT_2023_3236676
crossref_primary_10_1016_j_agwat_2022_107618
crossref_primary_10_1186_s13638_023_02246_3
crossref_primary_10_1007_s11831_023_09928_7
crossref_primary_10_7717_peerj_cs_1729
crossref_primary_10_1155_2022_3618197
crossref_primary_10_3233_JIFS_210842
crossref_primary_10_3390_w15122217
crossref_primary_10_1371_journal_pone_0260725
crossref_primary_10_3934_era_2025248
crossref_primary_10_3390_s24247879
crossref_primary_10_1016_j_asoc_2024_112634
crossref_primary_10_1007_s00500_023_09351_x
crossref_primary_10_1007_s42452_023_05367_y
crossref_primary_10_1016_j_applthermaleng_2024_123161
crossref_primary_10_1007_s10696_023_09502_0
crossref_primary_10_1016_j_cie_2022_108361
crossref_primary_10_1007_s00158_024_03955_z
crossref_primary_10_1016_j_asoc_2021_107854
crossref_primary_10_1177_14727978251371200
crossref_primary_10_1002_cpe_8101
crossref_primary_10_1016_j_matcom_2021_10_003
crossref_primary_10_1016_j_knosys_2023_110368
crossref_primary_10_1016_j_oceaneng_2022_112862
crossref_primary_10_1038_s41598_025_13539_6
crossref_primary_10_1007_s11063_022_10876_9
crossref_primary_10_1007_s11227_022_04755_2
crossref_primary_10_1155_2024_5806437
crossref_primary_10_1007_s00521_023_08917_y
crossref_primary_10_1088_2631_8695_ad6d2e
crossref_primary_10_1016_j_knosys_2022_108664
crossref_primary_10_4018_IJSIR_378429
crossref_primary_10_1016_j_eswa_2022_119303
crossref_primary_10_1007_s11227_025_07629_5
crossref_primary_10_1016_j_asoc_2024_111979
crossref_primary_10_1093_jcde_qwaf014
Cites_doi 10.1007/s10489-018-1362-4
10.1016/j.eswa.2018.11.032
10.1016/j.apenergy.2018.09.118
10.1016/j.swevo.2011.02.002
10.1016/j.ins.2014.10.042
10.1108/COMPEL-04-2018-0175
10.1016/j.energy.2018.11.034
10.1007/s12065-013-0102-2
10.1016/j.asoc.2018.02.049
10.1109/ACCESS.2019.2901849
10.1007/s10489-018-1247-6
10.1016/j.asoc.2018.11.033
10.1016/j.advengsoft.2013.12.007
10.1016/j.ins.2019.01.009
10.1016/j.apm.2020.05.016
10.1155/2019/2653512
10.1016/j.enconman.2018.05.062
10.1023/A:1008202821328
10.1016/j.neucom.2015.11.018
10.1016/j.asoc.2018.11.047
10.1023/A:1022602019183
10.1109/ACCESS.2017.2695498
10.1016/j.amc.2007.09.004
10.1016/j.asoc.2016.02.018
10.1016/j.swevo.2017.03.001
10.1016/j.advengsoft.2016.01.008
10.1109/ACCESS.2016.2613940
10.1016/j.neucom.2017.04.053
10.1016/j.engappai.2019.103457
10.1080/15325008.2019.1602687
10.1016/j.asoc.2018.04.027
10.1016/j.asoc.2018.10.032
10.1016/j.enconman.2018.02.006
10.1109/TEVC.2008.919004
10.1007/s00521-019-04483-4
10.1016/j.asoc.2009.12.025
10.1007/s00500-017-2916-9
10.1016/j.engappai.2017.10.024
10.1109/CIMCA.2005.1631345
10.1016/j.ins.2016.11.013
10.1016/j.asoc.2019.105925
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Oct 1, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Oct 1, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.115032
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_115032
S0957417421004735
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-84f6ccf753a862ec010326fac39df6e7b02018b6d96ba17c5896dc7afae76c9e3
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663549200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Fri Jul 25 06:31:03 EDT 2025
Sat Nov 29 07:09:59 EST 2025
Tue Nov 18 21:12:14 EST 2025
Fri Feb 23 02:43:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Optimization algorithm
Grey Wolf optimizer
Whale optimization algorithm
Fuzzy C-means
High-dimensional problems
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-84f6ccf753a862ec010326fac39df6e7b02018b6d96ba17c5896dc7afae76c9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2550530609
PQPubID 2045477
ParticipantIDs proquest_journals_2550530609
crossref_primary_10_1016_j_eswa_2021_115032
crossref_citationtrail_10_1016_j_eswa_2021_115032
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115032
PublicationCentury 2000
PublicationDate 2021-10-01
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Mahdavi, Shiri, Rahnamayan (b0115) 2015; 295
Zhang, Wang, Fu, Liu, Mao, Liu, Jiang, Li (b0210) 2020; 86
Derrac, Garcia, Molina, Herrera (b0015) 2011; 1
Hu, He, Chen (b0045) 2017; 381
Tizhoosh, H. R. (2005). Opposition-based learning: A new scheme for machine intelligence. In International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC’06) (pp. 695–701). doi: 10.1109/CIMCA.2005.1631345.
Gu, Li, Jiang (b0035) 2019; 2019
Guo, Liu, Dai, Xu (b0040) 2020; 86
Omran, Mahdavi (b0135) 2008; 198
Singh, Dhillon (b0155) 2019; 169
Kennedy, Eberhart (b0060) 1995; 4
Zhang, Jiang, Zhou, Xue, Chen (b0195) 2017; 23
Yousri, Allam, Eteiba (b0190) 2018; 74
Mirjalili, Mirjalili, Lewis (b0130) 2014; 69
Storn, Price (b0160) 1997; 11
Simon (b0150) 2008; 12
Fan, Chen, Zhang, Fang (b0025) 2020
Zhang, Kang, Cheng (b0200) 2018; 67
Long, Wu, Liang, Xu (b0100) 2019; 123
Zhang, Wang, Chen (b0205) 2019; 7
Korashy, Kamel, Jurado, Youssef (b0065) 2019; 47
Luo, Shi (b0105) 2018; 49
Ling, Zhou, Luo (b0080) 2017; 5
Goldberg, Holland (b0030) 1988; 3
Abd Elaziz, Oliva (b0005) 2018; 171
Jensi, Jiji (b0050) 2016; 43
De Falco, Della Cioppa, Trunfio (b0010) 2019; 482
Peng, Wu (b0140) 2017; 35
Zhang, Wang, Chen, Wang, Fu (b0215) 2020; 32
Laskar, Guha, Chatterjee, Chanda, Baishnab, Paul (b0070) 2019; 49
Liu, Wu, Li (b0085) 2018; 161
Emary, Zawbaa, Sharawi (b0020) 2018; 75
Long, Jiao, Liang (b0090) 2018; 68
Long, Wu, Jiao, Tang, Xu (b0095) 2020; 89
Sun, Zhang (b0165) 2018; 231
Mafarja, Mirjalili (b0110) 2017; 260
Karaboga, Ozturk (b0055) 2011; 11
Majeed, Patri (b0120) 2019; 38
Mirjalili, Lewis (b0125) 2016; 95
Wang, Deb, Gandomi, Alavi (b0180) 2016; 177
Li, Sun, Kang (b0075) 2016; 4
Santos, Borges, Santos, Silva, Sales, Costa (b0145) 2018; 69
Yang (b0185) 2014; 7
Tu, Chen, Liu (b0175) 2019; 76
Peng (10.1016/j.eswa.2021.115032_b0140) 2017; 35
Luo (10.1016/j.eswa.2021.115032_b0105) 2018; 49
Gu (10.1016/j.eswa.2021.115032_b0035) 2019; 2019
Kennedy (10.1016/j.eswa.2021.115032_b0060) 1995; 4
Li (10.1016/j.eswa.2021.115032_b0075) 2016; 4
Omran (10.1016/j.eswa.2021.115032_b0135) 2008; 198
Singh (10.1016/j.eswa.2021.115032_b0155) 2019; 169
Zhang (10.1016/j.eswa.2021.115032_b0205) 2019; 7
Long (10.1016/j.eswa.2021.115032_b0100) 2019; 123
Yang (10.1016/j.eswa.2021.115032_b0185) 2014; 7
Mirjalili (10.1016/j.eswa.2021.115032_b0130) 2014; 69
Karaboga (10.1016/j.eswa.2021.115032_b0055) 2011; 11
10.1016/j.eswa.2021.115032_b0170
De Falco (10.1016/j.eswa.2021.115032_b0010) 2019; 482
Derrac (10.1016/j.eswa.2021.115032_b0015) 2011; 1
Hu (10.1016/j.eswa.2021.115032_b0045) 2017; 381
Storn (10.1016/j.eswa.2021.115032_b0160) 1997; 11
Guo (10.1016/j.eswa.2021.115032_b0040) 2020; 86
Ling (10.1016/j.eswa.2021.115032_b0080) 2017; 5
Tu (10.1016/j.eswa.2021.115032_b0175) 2019; 76
Emary (10.1016/j.eswa.2021.115032_b0020) 2018; 75
Long (10.1016/j.eswa.2021.115032_b0095) 2020; 89
Wang (10.1016/j.eswa.2021.115032_b0180) 2016; 177
Santos (10.1016/j.eswa.2021.115032_b0145) 2018; 69
Liu (10.1016/j.eswa.2021.115032_b0085) 2018; 161
Zhang (10.1016/j.eswa.2021.115032_b0210) 2020; 86
Goldberg (10.1016/j.eswa.2021.115032_b0030) 1988; 3
Mahdavi (10.1016/j.eswa.2021.115032_b0115) 2015; 295
Korashy (10.1016/j.eswa.2021.115032_b0065) 2019; 47
Mirjalili (10.1016/j.eswa.2021.115032_b0125) 2016; 95
Fan (10.1016/j.eswa.2021.115032_b0025) 2020
Sun (10.1016/j.eswa.2021.115032_b0165) 2018; 231
Yousri (10.1016/j.eswa.2021.115032_b0190) 2018; 74
Mafarja (10.1016/j.eswa.2021.115032_b0110) 2017; 260
Jensi (10.1016/j.eswa.2021.115032_b0050) 2016; 43
Zhang (10.1016/j.eswa.2021.115032_b0215) 2020; 32
Abd Elaziz (10.1016/j.eswa.2021.115032_b0005) 2018; 171
Laskar (10.1016/j.eswa.2021.115032_b0070) 2019; 49
Long (10.1016/j.eswa.2021.115032_b0090) 2018; 68
Majeed (10.1016/j.eswa.2021.115032_b0120) 2019; 38
Simon (10.1016/j.eswa.2021.115032_b0150) 2008; 12
Zhang (10.1016/j.eswa.2021.115032_b0195) 2017; 23
Zhang (10.1016/j.eswa.2021.115032_b0200) 2018; 67
References_xml – volume: 161
  start-page: 266
  year: 2018
  end-page: 283
  ident: b0085
  article-title: Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction
  publication-title: Energy Conversion and Management
– volume: 86
  start-page: 74
  year: 2020
  end-page: 91
  ident: b0210
  article-title: Novel biogeography-based optimization algorithm with hybrid migration and global-best gaussian mutation
  publication-title: Applied Mathematical Modelling
– volume: 11
  start-page: 652
  year: 2011
  end-page: 657
  ident: b0055
  article-title: A novel clustering approach: Artificial bee colony (ABC) algorithm
  publication-title: Applied Soft Computing
– volume: 49
  start-page: 1982
  year: 2018
  end-page: 2000
  ident: b0105
  article-title: A hybrid whale optimization algorithm based on modified differential evolution for global optimization problems
  publication-title: Applied Intelligence
– volume: 49
  start-page: 265
  year: 2019
  end-page: 291
  ident: b0070
  article-title: HWPSO: A new hybrid whale-particle swarm optimization algorithm and its application in electronic design optimization problems
  publication-title: Applied Intelligence
– volume: 23
  start-page: 2033
  year: 2017
  end-page: 2046
  ident: b0195
  article-title: A hybrid biogeography-based optimization and fuzzy c-means algorithm for image segmentation
  publication-title: Soft Computing
– volume: 12
  start-page: 702
  year: 2008
  end-page: 713
  ident: b0150
  article-title: Biogeography-based optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 7
  start-page: 17
  year: 2014
  end-page: 28
  ident: b0185
  article-title: Swarm intelligence based algorithms: A critical analysis
  publication-title: Evolutionary Intelligence
– volume: 67
  start-page: 197
  year: 2018
  end-page: 214
  ident: b0200
  article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer
  publication-title: Applied Soft Computing
– volume: 7
  start-page: 28810
  year: 2019
  end-page: 28825
  ident: b0205
  article-title: Improved biogeography-based optimization algorithm and its application to clustering optimization and medical image segmentation
  publication-title: IEEE Access
– reference: Tizhoosh, H. R. (2005). Opposition-based learning: A new scheme for machine intelligence. In International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC’06) (pp. 695–701). doi: 10.1109/CIMCA.2005.1631345.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0130
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 18
  ident: b0035
  article-title: Hybrid genetic grey wolf algorithm for large-scale global optimization
  publication-title: Complexity
– volume: 169
  start-page: 398
  year: 2019
  end-page: 419
  ident: b0155
  article-title: Ameliorated grey wolf optimization for economic load dispatch problem
  publication-title: Energy
– volume: 198
  start-page: 643
  year: 2008
  end-page: 656
  ident: b0135
  article-title: Global-best harmony search
  publication-title: Applied Mathematics and Computation
– volume: 231
  start-page: 1354
  year: 2018
  end-page: 1371
  ident: b0165
  article-title: Analysis and forecasting of the carbon price using multi resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm
  publication-title: Applied Energy
– volume: 43
  start-page: 248
  year: 2016
  end-page: 261
  ident: b0050
  article-title: An enhanced particle swarm optimization with levy flight for global optimization
  publication-title: Applied Soft Computing
– volume: 4
  start-page: 6438
  year: 2016
  end-page: 6450
  ident: b0075
  article-title: Fuzzy multilevel image thresholding based on modified discrete grey wolf optimizer and local information aggregation
  publication-title: IEEE Access
– volume: 381
  start-page: 142
  year: 2017
  end-page: 160
  ident: b0045
  article-title: Cooperation coevolution with fast interdependency identification for large scale optimization
  publication-title: Information Sciences
– year: 2020
  ident: b0025
  article-title: Essawoa: Enhanced whale optimization algorithm integrated with salp swarm algorithm for global optimization
  publication-title: Engineering with Computers
– volume: 295
  start-page: 407
  year: 2015
  end-page: 428
  ident: b0115
  article-title: Meta-heuristics in large-scale global continuous optimization: A survey
  publication-title: Information Sciences
– volume: 38
  start-page: 452
  year: 2019
  end-page: 476
  ident: b0120
  article-title: A hybrid of WOA and mGWO algorithms for global optimization and analog circuit design automation
  publication-title: COMPEL–The International Journal for Computation and Mathematics in Electrical and Electronic Engineering
– volume: 69
  start-page: 330
  year: 2018
  end-page: 343
  ident: b0145
  article-title: A semi-autonomous particle swarm optimizer based on gradient information and diversity control for global optimization
  publication-title: Applied Soft Computing
– volume: 74
  start-page: 479
  year: 2018
  end-page: 503
  ident: b0190
  article-title: Chaotic whale optimizer variants for parameters estimation of the chaotic behavior in permanent magnet synchronous motor
  publication-title: Applied Soft Computing
– volume: 3
  start-page: 95
  year: 1988
  end-page: 99
  ident: b0030
  article-title: Genetic algorithms and machine learning
  publication-title: Machine Learning
– volume: 89
  year: 2020
  ident: b0095
  article-title: Refraction-learning-based whale optimization algorithm for high-dimensional problems and parameter estimation of pv model
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b0015
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
– volume: 260
  start-page: 302
  year: 2017
  end-page: 312
  ident: b0110
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
– volume: 123
  start-page: 108
  year: 2019
  end-page: 126
  ident: b0100
  article-title: Solving high- dimensional global optimization problems using an improved sine cosine algorithm
  publication-title: Expert Systems with Applications
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: b0060
  article-title: Particle swarm optimization
  publication-title: IEEE international conference on neural networks
– volume: 86
  year: 2020
  ident: b0040
  article-title: An improved whale optimization algorithm for forecasting water resources demand
  publication-title: Applied Soft Computing
– volume: 32
  start-page: 1305
  year: 2020
  end-page: 1325
  ident: b0215
  article-title: Improved GWO for large-scale function optimization and MLP optimization in cancer identification
  publication-title: Neural Computing and Applications
– volume: 35
  start-page: 65
  year: 2017
  end-page: 77
  ident: b0140
  article-title: Large-scale cooperative co-evolution using niching-based multi-modal optimization and adaptive fast clustering
  publication-title: Swarm and Evolutionary Computation
– volume: 75
  start-page: 775
  year: 2018
  end-page: 789
  ident: b0020
  article-title: Impact of Lévy flight on modern meta-heuristic optimizers
  publication-title: Applied Soft Computing
– volume: 68
  start-page: 63
  year: 2018
  end-page: 80
  ident: b0090
  article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 76
  start-page: 16
  year: 2019
  end-page: 30
  ident: b0175
  article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection
  publication-title: Applied Soft Computing
– volume: 482
  start-page: 1
  year: 2019
  end-page: 26
  ident: b0010
  article-title: Investigating surrogate-assisted cooperative coevolution for large-scale global optimization
  publication-title: Information Sciences
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0125
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0160
  article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– volume: 177
  start-page: 147
  year: 2016
  end-page: 157
  ident: b0180
  article-title: Opposition-based krill herd algorithm with Cauchy mutation and position clamping
  publication-title: Neurocomputing
– volume: 47
  start-page: 644
  year: 2019
  end-page: 658
  ident: b0065
  article-title: Hybrid whale optimization algorithm and grey wolf optimizer algorithm for optimal coordination of direction overcurrent relays
  publication-title: Electric Power Components and Systems
– volume: 5
  start-page: 6168
  year: 2017
  end-page: 6186
  ident: b0080
  article-title: Lévy flight trajectory-based whale optimization algorithm for global optimization
  publication-title: IEEE Access
– volume: 171
  start-page: 1843
  year: 2018
  end-page: 1859
  ident: b0005
  article-title: Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm
  publication-title: Energy Conversion and Management
– volume: 49
  start-page: 1982
  issue: 5
  year: 2018
  ident: 10.1016/j.eswa.2021.115032_b0105
  article-title: A hybrid whale optimization algorithm based on modified differential evolution for global optimization problems
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-018-1362-4
– volume: 123
  start-page: 108
  year: 2019
  ident: 10.1016/j.eswa.2021.115032_b0100
  article-title: Solving high- dimensional global optimization problems using an improved sine cosine algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.11.032
– volume: 231
  start-page: 1354
  year: 2018
  ident: 10.1016/j.eswa.2021.115032_b0165
  article-title: Analysis and forecasting of the carbon price using multi resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2018.09.118
– volume: 1
  start-page: 3
  year: 2011
  ident: 10.1016/j.eswa.2021.115032_b0015
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.02.002
– volume: 295
  start-page: 407
  year: 2015
  ident: 10.1016/j.eswa.2021.115032_b0115
  article-title: Meta-heuristics in large-scale global continuous optimization: A survey
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.10.042
– volume: 38
  start-page: 452
  year: 2019
  ident: 10.1016/j.eswa.2021.115032_b0120
  article-title: A hybrid of WOA and mGWO algorithms for global optimization and analog circuit design automation
  publication-title: COMPEL–The International Journal for Computation and Mathematics in Electrical and Electronic Engineering
  doi: 10.1108/COMPEL-04-2018-0175
– volume: 169
  start-page: 398
  year: 2019
  ident: 10.1016/j.eswa.2021.115032_b0155
  article-title: Ameliorated grey wolf optimization for economic load dispatch problem
  publication-title: Energy
  doi: 10.1016/j.energy.2018.11.034
– volume: 7
  start-page: 17
  year: 2014
  ident: 10.1016/j.eswa.2021.115032_b0185
  article-title: Swarm intelligence based algorithms: A critical analysis
  publication-title: Evolutionary Intelligence
  doi: 10.1007/s12065-013-0102-2
– volume: 67
  start-page: 197
  year: 2018
  ident: 10.1016/j.eswa.2021.115032_b0200
  article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.02.049
– volume: 7
  start-page: 28810
  year: 2019
  ident: 10.1016/j.eswa.2021.115032_b0205
  article-title: Improved biogeography-based optimization algorithm and its application to clustering optimization and medical image segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2901849
– volume: 49
  start-page: 265
  year: 2019
  ident: 10.1016/j.eswa.2021.115032_b0070
  article-title: HWPSO: A new hybrid whale-particle swarm optimization algorithm and its application in electronic design optimization problems
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-018-1247-6
– volume: 75
  start-page: 775
  year: 2018
  ident: 10.1016/j.eswa.2021.115032_b0020
  article-title: Impact of Lévy flight on modern meta-heuristic optimizers
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.11.033
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.eswa.2021.115032_b0130
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– year: 2020
  ident: 10.1016/j.eswa.2021.115032_b0025
  article-title: Essawoa: Enhanced whale optimization algorithm integrated with salp swarm algorithm for global optimization
  publication-title: Engineering with Computers
– volume: 482
  start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.115032_b0010
  article-title: Investigating surrogate-assisted cooperative coevolution for large-scale global optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.01.009
– volume: 86
  start-page: 74
  year: 2020
  ident: 10.1016/j.eswa.2021.115032_b0210
  article-title: Novel biogeography-based optimization algorithm with hybrid migration and global-best gaussian mutation
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2020.05.016
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.115032_b0035
  article-title: Hybrid genetic grey wolf algorithm for large-scale global optimization
  publication-title: Complexity
  doi: 10.1155/2019/2653512
– volume: 171
  start-page: 1843
  year: 2018
  ident: 10.1016/j.eswa.2021.115032_b0005
  article-title: Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2018.05.062
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.eswa.2021.115032_b0160
  article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 177
  start-page: 147
  year: 2016
  ident: 10.1016/j.eswa.2021.115032_b0180
  article-title: Opposition-based krill herd algorithm with Cauchy mutation and position clamping
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.018
– volume: 76
  start-page: 16
  year: 2019
  ident: 10.1016/j.eswa.2021.115032_b0175
  article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.11.047
– volume: 3
  start-page: 95
  year: 1988
  ident: 10.1016/j.eswa.2021.115032_b0030
  article-title: Genetic algorithms and machine learning
  publication-title: Machine Learning
  doi: 10.1023/A:1022602019183
– volume: 5
  start-page: 6168
  year: 2017
  ident: 10.1016/j.eswa.2021.115032_b0080
  article-title: Lévy flight trajectory-based whale optimization algorithm for global optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2695498
– volume: 198
  start-page: 643
  year: 2008
  ident: 10.1016/j.eswa.2021.115032_b0135
  article-title: Global-best harmony search
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2007.09.004
– volume: 43
  start-page: 248
  year: 2016
  ident: 10.1016/j.eswa.2021.115032_b0050
  article-title: An enhanced particle swarm optimization with levy flight for global optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.02.018
– volume: 35
  start-page: 65
  year: 2017
  ident: 10.1016/j.eswa.2021.115032_b0140
  article-title: Large-scale cooperative co-evolution using niching-based multi-modal optimization and adaptive fast clustering
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2017.03.001
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.eswa.2021.115032_b0125
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 4
  start-page: 6438
  year: 2016
  ident: 10.1016/j.eswa.2021.115032_b0075
  article-title: Fuzzy multilevel image thresholding based on modified discrete grey wolf optimizer and local information aggregation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2613940
– volume: 260
  start-page: 302
  year: 2017
  ident: 10.1016/j.eswa.2021.115032_b0110
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– volume: 89
  year: 2020
  ident: 10.1016/j.eswa.2021.115032_b0095
  article-title: Refraction-learning-based whale optimization algorithm for high-dimensional problems and parameter estimation of pv model
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2019.103457
– volume: 47
  start-page: 644
  year: 2019
  ident: 10.1016/j.eswa.2021.115032_b0065
  article-title: Hybrid whale optimization algorithm and grey wolf optimizer algorithm for optimal coordination of direction overcurrent relays
  publication-title: Electric Power Components and Systems
  doi: 10.1080/15325008.2019.1602687
– volume: 69
  start-page: 330
  year: 2018
  ident: 10.1016/j.eswa.2021.115032_b0145
  article-title: A semi-autonomous particle swarm optimizer based on gradient information and diversity control for global optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.04.027
– volume: 74
  start-page: 479
  year: 2018
  ident: 10.1016/j.eswa.2021.115032_b0190
  article-title: Chaotic whale optimizer variants for parameters estimation of the chaotic behavior in permanent magnet synchronous motor
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.10.032
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.eswa.2021.115032_b0060
  article-title: Particle swarm optimization
  publication-title: IEEE international conference on neural networks
– volume: 161
  start-page: 266
  year: 2018
  ident: 10.1016/j.eswa.2021.115032_b0085
  article-title: Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2018.02.006
– volume: 12
  start-page: 702
  year: 2008
  ident: 10.1016/j.eswa.2021.115032_b0150
  article-title: Biogeography-based optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.919004
– volume: 32
  start-page: 1305
  year: 2020
  ident: 10.1016/j.eswa.2021.115032_b0215
  article-title: Improved GWO for large-scale function optimization and MLP optimization in cancer identification
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-019-04483-4
– volume: 11
  start-page: 652
  year: 2011
  ident: 10.1016/j.eswa.2021.115032_b0055
  article-title: A novel clustering approach: Artificial bee colony (ABC) algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2009.12.025
– volume: 23
  start-page: 2033
  year: 2017
  ident: 10.1016/j.eswa.2021.115032_b0195
  article-title: A hybrid biogeography-based optimization and fuzzy c-means algorithm for image segmentation
  publication-title: Soft Computing
  doi: 10.1007/s00500-017-2916-9
– volume: 68
  start-page: 63
  year: 2018
  ident: 10.1016/j.eswa.2021.115032_b0090
  article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2017.10.024
– ident: 10.1016/j.eswa.2021.115032_b0170
  doi: 10.1109/CIMCA.2005.1631345
– volume: 381
  start-page: 142
  year: 2017
  ident: 10.1016/j.eswa.2021.115032_b0045
  article-title: Cooperation coevolution with fast interdependency identification for large scale optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2016.11.013
– volume: 86
  year: 2020
  ident: 10.1016/j.eswa.2021.115032_b0040
  article-title: An improved whale optimization algorithm for forecasting water resources demand
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105925
SSID ssj0017007
Score 2.553777
Snippet •A novel two-stage individual-based Whale Optimization Algorithm is proposed.•Opposition learning and grey wolf optimizer are added to raise solution...
In order to solve the problems, such as insufficient search ability and low search efficiency, of Whale Optimization Algorithm (WOA) in solving...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115032
SubjectTerms Algorithms
Clustering
Fuzzy C-means
Fuzzy sets
Grey Wolf optimizer
High-dimensional problems
Learning
Operators (mathematics)
Optimization
Optimization algorithm
Optimization algorithms
Searching
Whale optimization algorithm
Title Hybrid whale optimization algorithm with gathering strategies for high-dimensional problems
URI https://dx.doi.org/10.1016/j.eswa.2021.115032
https://www.proquest.com/docview/2550530609
Volume 179
WOSCitedRecordID wos000663549200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZg48CF32gbA_mAuFSumh-14-OEOg00FQ4disTBchx77bRmpcnY-O_xi-2sLVDBgUsUpU1a-X1-8Xt-7_sQequSZFiwYUSoKWKSahun8IJKkmZABZOZ0uhBKzbBxuMsz_lnX5BZt3ICrKqy21u--K-mttessaF19h_M3T3UXrDn1uj2aM1uj39l-JMf0ITVu5lKqBu0HmHuWy178vL8ajlrpnOXfT33zX-QTwiEEW3VIVAYkxJo_x1lR8-rztRraXzgSG48E3TokVvZDf8lI53Pqnl4T7ZbQS7zOpWg2VWtZh_iqKtj8ymxri3my1pqkZE0cuo7fe0ca8YSQplTQ-w8r9OR8b4z-q1Hd8mFi76ub4AmKo76sIb1OdE1-uzxJ3F8dnoqJqN88m7xjYCyGOzAe5mV-2g3ZkNuPd_u0YdR_rHba2ID11Qf_rVvrXJVgJs_-6fly8aLvF2dTJ6gRz6swEcODk_RPV09Q4-DZAf2Hvw5-urQgVt04FV04A4dGGyJO3TgO3Rgiw68iQ4c0PECnR2PJu9PiNfXICqJs4ZkqaFKGRuwShvXagWSHzE1UiW8NFSzwoYSUVbQktNCRkwNM05LxaSRmlHFdfIS7VRXld5DmBqj7CTUNtqQqZYyK8oUYmkuC6BXMvsoCsMmlCefBw2USxGqDC8EDLWAoRZuqPdRr7tn4ahXtn57GKwh_OLRLQqFRdLW-w6D6YSfxbWIIW63wfSAH2z_-BV6eDcrDtFOs7zWr9ED9b2Z1cs3Hmk_Aa4MnMw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+whale+optimization+algorithm+with+gathering+strategies+for+high-dimensional+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Zhang%2C+Xinming&rft.au=Wen%2C+Shaochen&rft.date=2021-10-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=179&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2021.115032&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon